144951.fb2
Сева поднял руку:
- Ножницы не сработали потому, что Магистр не знал, что такое "пи". По его мнению, греческой буквой "пи" обозначают 180 градусов, а на самом деле...
- На самом деле буквой "пи" обозначают отвлеченное число, - перебил Нулик. - Это и я знаю. Оно равно... равно...
- Президент хочет сказать, что число "пи" равно отношению длины любой окружности к ее диаметру, - подсказал Олег.
Нулик важно кивнул:
- Вот именно.
- А еще он хочет сказать, что отношение это равно приближенно трем целым и четырнадцати сотым, - насмешливо сказала Таня.
- Нечего подшучивать, - обиделся Нулик. - Я и вправду это хотел сказать.
Олег примирительно погладил его по плечу:
- Хитрюга! А знаешь ли ты, что еще Архимед нашел, что длина окружности относится к своему диаметру, как 22/7? И отношение это точнее, чем 3, 14... Ладно, ладно, не дуйся. Скажи-ка лучше, на сколько же градусов должен был Магистр раскрыть ножницы, чтобы они сработали?
- Надо было 180 разделить на 3, 14, - сказал президент, ничуть не растерявшись. - Получится примерно 57 градусов 17 минут 45 секунд. А вовсе не 1 градус, как это думал Магистр.
- Умница, - похвалила Таня. - Добавь еще, что угол этот называется радианом.
- Да, да, - подтвердил Нулик, - градианом.
Никак не пойму, чего больше в этом ребенке - остроумия или невежества?
После небольшого перерыва мы перешли к тому вопросу, который задал себе наш рассеянный ученый в Музее самообслуживания: почему на медалях с каждой стороны изображены разные ученые? Но если Магистра это озадачило, то меня нисколько.
Я начал свой рассказ с медали, на которой изображены Эвклид и Лобачевский.
Великий древнегреческий математик Эвклид жил в Александрии в годы царствования Птолемея I, в начале III века до нашей эры. В тринадцати томах своего знаменитого труда "Начала" Эвклид изложил основы геометрии, той самой науки, которую изучают в школе. Школьники хорошо знают, как порой сложны бывают доказательства теорем. Вот и царь Птолемей тоже спрашивал Эвклида, не может ли он упростить свои рассуждения и пойти по более легкому пути? Говорят, будто Эвклид ответил на это, что в геометрии нет царских дорог.
В основу геометрии Эвклид положил несколько постулатов, иначе говоря, аксиом. А аксиома, как известно, - это то, что принимается без доказательства. Так вот, с помощью эвклидовых аксиом можно доказать любую геометрическую теорему.
Но есть среди этих аксиом одна, пятая по счету, которая не столь уж бесспорна, чтобы принимать ее без доказательства. С другой стороны, доказать ее не смог пока никто. Так же, впрочем, как и опровергнуть. Но самое главное, что многие теоремы геометрии Эвклида могут быть доказаны и без этой аксиомы.
Что же утверждает Эвклид в своем пятом постулате? Он утверждает, что через какую-либо точку можно провести только одну прямую, которая не пересекалась бы с другой прямой, то есть была бы ей параллельна. И с первого взгляда действительно кажется, что иначе и быть не может.
Но вот в XIX веке другой великий математик, профессор Казанского университета Николай Иванович Лобачевский, дерзнул выдвинуть другой постулат, прямо противоположный эвклидовому: через любую точку можно провести не одну, а сколько угодно прямых, которые не пересекались бы с другой прямой. Все эти прямые он тоже назвал параллельными.
Невероятно? Противоречит здравому смыслу? Но всегда ли следует этому здравому смыслу доверять? Бывает, что он нас и подводит. Многие открытия были сделаны только потому, что ученые сумели пойти против привычных, общеизвестных, общепринятых истин, которые вовсе не всегда так уж безупречны и неуязвимы.
Так вышло и с постулатом Лобачевского: он положил начало новой геометрии, которую, в отличие от эвклидовой, стали называть неэвклидовой. И хотя сам Лобачевский называл свою геометрию воображаемой, его "воображаемая" геометрия нашла огромное практическое применение в современной физике.
- Надеюсь, теперь вам ясно, - заключил я, - почему Эвклид и Лобачевский оказались на двух сторонах одной медали?
Ребята молча кивнули.
- Прекрасно. Тогда обратимся к другой паре: Птолемей - Коперник.
Древнегреческий астроном Клавдий Птолемей (не смешивайте его, пожалуйста, с царем Птолемеем) жил во II веке нашей эры. Астрономия того времени считала, что Земля неподвижна, а все планеты, Луна и Солнце обращаются вокруг нее.
Птолемей тоже разделял эту неверную точку зрения и все же умудрился с помощью сложнейших геометрических построений достаточно точно рассчитать движение планет по небу. Его вычислениями и таблицами пользовались астрономы в течение многих столетий. И только в середине XVI века великий польский астроном Николай Коперник создал новую систему мироздания, поместив в центре ее не Землю, а Солнце.
Коперник буквально перевернул систему Птолемея, поставил ее с головы на ноги. Он утверждал, что не Солнце обращается вокруг Земли, а Земля и все другие планеты обращаются вокруг Солнца. К сожалению, Коперник не до конца разобрался в строении Вселенной (да и можно ли вообще разобраться в этом до конца?). Он считал, что Солнце - не только центр нашей Солнечной системы, но и центр всей Вселенной, а звезды прикреплены к небесному куполу и вместе с ним обращаются вокруг Солнца.
С тех пор геоцентрическая система Птолемея уступила место гелиоцентрической системе Коперника - системе, где в центре не Земля (по-гречески "гео"), а Солнце ("гелиос").Но на самом деле Солнце - не центр Вселенной, а всего лишь маленькая звездочка среди миллиардов других звезд. Звезды эти объединяются в одно общее семейство, которое называется Галактикой. А таких галактик тоже великое множество. И все они составляют новое, еще более обширное семейство - Метагалактику. Но и это еще не конец...
Ясно, что всего этого Коперник в то далекое время знать не мог. Так что не будем предъявлять к нему непосильных требований. Вполне достаточно и того, что он сделал. И хотя его представление о Вселенной прямо противоположно Птолемееву, нельзя отрицать, что учения Птолемея и Коперника - две стороны одной медали. Кто знает: не было бы Птолемея, может быть, не было бы и Коперника!
- Э, нет! - не согласился со мной Сева. - Была бы Вселенная, а Коперник найдется!
- Перейдем к третьей медали, - продолжал я, - Ньютон - Эйнштейн.
Если в XVI веке Коперник установил, что Земля и планеты движутся вокруг Солнца, а в XVII веке немецкий астроном Иоганн Кеплер открыл законы этого движения, то в конце того же XVII века гениальный английский ученый Исаак Ньютон завершил их труды. Ньютон объяснил, почему планеты движутся именно так, а не иначе. Он открыл закон всемирного тяготения, то есть доказал, что все тела взаимно притягиваются. И еще он установил, что притягиваются они тем сильнее, чем массивнее, и тем меньше, чем дальше друг от друга. Если, например, расстояние между двумя телами увеличить вдвое, то сила их взаимного притяжения уменьшится, только не вдвое, а вчетверо, то есть в два в квадрате раза. Иначе говоря, сила притяжения зависит от квадрата расстояния между телами.
Ньютон открыл и много других законов. Он создал новую небесную механику. Он доказал, что все тела движутся по одним и тем же законам: и падающее яблоко, и хвостатая комета.
Открытие Ньютона было величайшим научным достижением. При этом законы Ньютона так точно подтверждались на опыте, что сомневаться в них никому и в голову не приходило.
Но вот в начале нашего столетия появились труды другого гениального физика - Альберта Эйнштейна.
- И он опроверг Ньютона?! - с надеждой в голосе перебил меня Нулик. (Очевидно, ему очень нравилось, когда кто-то кого-то опровергает.)
Пришлось огорчить его: Эйнштейн не опроверг ньютоновых законов. Но он их уточнил. Эйнштейн доказал, что законы движения, открытые Ньютоном, справедливы только в тех случаях, когда скорость движущегося тела мала по сравнению со скоростью света. А скорость света, как известно, составляет 300 тысяч километров в секунду. Так вот, если тело движется со скоростью, близкой к скорости света, законы Ньютона требуют существенных поправок. Вот Эйнштейн и поправил Ньютона. Но кого бы он поправлял, если бы Ньютона не было? Так что и эта пара не случайно помещена на одной медали.
Я с облегчением откинулся на спинку стула, намереваясь насладиться заслуженным отдыхом. Но отдохнуть мне не пришлось.
- А что это за поправку внес Эйнштейн в ньютоновы законы? - спросил Олег.
Я задумался. Ответить на такой вопрос было нелегко, то есть я хочу сказать, ответить так, чтобы дошло до всех, даже до Нулика. Ведь для этого мне пришлось бы рассказать о трудах Эйнштейна! Впрочем...
- Что вы знаете о теории относительности? - спросил я.
- Ничего, - честно сознался Сева. - Очевидно, Эйнштейн утверждал, что все в мире относительно?
- В том-то и дело, что не все. Эйнштейн как раз доказал, что в мире имеется одна величина, которая всегда остается постоянной. Это скорость света. И вот из постоянства скорости света и вытекает относительность всего остального.
- Ну, це ще треба розжуваты!
(Не пойму, с чего это Нулик заговорил вдруг по-украински?)
- Розжуваты, говоришь? Ладно, попробуем. Давайте пофантазируем. Вообразите, что мы едем в машине по шоссе. Не по обычному, а по небесному. И не куда-нибудь, а на Марс. Да-да, вообразить можно все что угодно! А чтобы межпланетный инспектор ОРУДа не отнял у нас прав, мы едем с дозволенной скоростью - 60 километров в час. Вот мы уже отъехали на солидное расстояние от Земли, примерно на 5 миллионов километров. И тут на шоссе появляются две другие машины. Одна догоняет нас, другая мчится навстречу. У обеих машин спидометры показывают скорость 80 километров в час. Но на что нам чужие спидометры? Мы хотим измерить скорости обеих машин сами. У нас для этого есть длинная, во всю длину машины, линейка и секундомер. Когда машины проносятся мимо нас, мы делаем нужные отметки и производим вычисления. Как вы думаете, с какой скоростью промчалась мимо догонявшая нас машина?
- Со скоростью 20 километров в час, - не задумываясь, ответила Таня. Ведь эта машина шла со скоростью 80, а наша - 60 километров в час. Причем в ту же сторону. А80-60=20.