145174.fb2 Жизнь в почве - читать онлайн бесплатно полную версию книги . Страница 7

Жизнь в почве - читать онлайн бесплатно полную версию книги . Страница 7

Правда, такое мнение отнюдь не бесспорно, поскольку первыми поселенцами суши могли быть микробы, которые обходятся и без свободного кислорода и легко переносят большие дозы ультрафиолета, да и хорошо защищены от него в толще почвы. Недаром академьк Л. С. Берг озаглавил одну нз своих статей сорокалетнел давности так: "Жизнь и почвообразование на докембрииских материках".

Есть все основания полагать, что образование почв происходило задолго до появления наземной растительности (в девонское время) и что биогенный круговорот веществ на материках, отнюдь не безжизненных, многие сотни миллионов лет поддерживался одними микробами.

Перехватывая различные соединения своими корнями, растения частично задерживают вынос веществ из почвы.

Поэтому так называемые биогенные элементы, необходимые для жизни растений, - фосфор, азот, калий, магний и другие - накапливаются, концентрируются в гумусовых горизонтах почв.

Необходимость регулирования круговорота таких элементов, как азот, фосфор, калий, давно уже признана земледелием. Впервые баланс азота в земледелии исследовал французский физиолог растений и агрохимик Ж.-Б. Буссенго, учеником которого с гордостью называл себя основоположник отечественной физиологии растений К. А. Тимирязев. Опыты Буссенго по обогащению почвы азотом при выращивании клевера и люцерны стали классическими, это и дало повод ученику Тимирязева академику Д. Н. Прянишникову считать, что агрохимия возникла в 1836 году - в год опубликования работ Буссенго.

Главная задача агрохимии, по определению Прянишникова, изучение круговорота веществ в земледелии и выявление тех мер воздействия на этот круговорот, которые могут повысить урожай или улучшить его качество. В сельском хозяйстве без удобрений не обойтись: с каждой тонной урожая пшеницы с поля выносится 37 килограммов азота, 13 - фосфора, 23 - калия. Для картофеля на тонну урожая вынос значительно меньше: 6 килограммов азота, 2 - фосфора, 8 - калия, а вот конопля - один из рекордсменов, она выносит с поля на одну тонну полученного волокна 200 килограммов азота, 62- фосфора и 100 - калия.

Углерод растение получает с углекислотой из воздуха, а минеральные элементы ему должна дать почва.

При этом в почве многие из них находятся в виде связанных с гумусом соединений. Например, 95-98 процентов азота содержится в почве в виде органического вещества и только 2-3 процента - в минеральных соединениях, непосредственно доступных растениям. Многие микроэлементы в больших количествах содержатся в живой биомассе растений, животных, микроорганизмов и, пока не погибнут их живые "носители", недоступны для других организмов.

Велико значение почвы и как своеобразного геохимического экрана. Это особенно актуально в связи с загрязнением ландшафтов тяжелыми металлами, такими, как свинец, ртуть, кадмий. Сейчас встает задача обеспечить замкнутый круговорот воды и многих других веществ, создать искусственные среды, из которых в окружающее пространство токсичные компоненты практически не выносились бы. И конечно, абсолютно недопустимо, чтобы те или иные государства использовали для захоронения вредных отходов территории слаборазвитых стран, где "мало отходов и много окружающей среды". Так геохимия соприкасается с социальными и политическими проблемами современности.

Живое вещество

Само понятие "живое вещество", весь комплекс представленией о его геохимической деятельности введены в науку В. И. Вернадским. Гениальная его работа "Биосфера" известна достаточно широко, но не все знают, что к созданию учения о биосфере и ноосфере, многих принципиально новых направлений в науке Вернадский пришел через почвоведение.

На Украине он начинал свой путь под руководством В. В. Докучаева с оценки черноземов Полтавщины и Приднепровья. На протяжении всей своей долгой творческой жизни ученый сохранил глубокий интерес к почвоведению, к практике сельского хозяйства. Значительная часть громадного научного наследия Вернадского непосредственно связана с разработкой фундаментальных проблем почвоведения.

Его интересовала роль живого вещества в создании почвы, биогеохимическая роль алюминия и кремния в почвах, значение почвенной атмосферы и ее биогенной структуры, роль почвенных растворов в биосфере, биогеохимический круговорот, распространение радиоактивных элементов и их накопление живыми организмами.

Учениками Вернадского были ученые, работы которых определили лицо и проблематику геохимии: академики А. Е. Ферсман, В. Г. Хлопин, Д. И. Щербаков, А. А. Полканов, А. П. Виноградов, А. А. Твалчрелидзе, члены-корреспонденты Академии паук СССР А. А. Сауков, К. А. Власов, К. А. Ненадкевич.

В 1919 году Вернадский организовал Украинскую академию наук и стал ее первым президентом. Судьба, однако, распорядилась так, что многие фундаментальные работы Вернадского о деятельности живого вещества в биосфере стали известны широкому читателю несколько десятилетий спустя после смерти их автора, в том числе написанная в начале 20-х годов и опубликованная в 1978 году книга "Живое вещество". А в 1984 году январский номер журнала "Наука и жизнь" украсила впервые увидевшая свет работа Владимира Ивановича "Об участии живого вещества в создании почв", которая 65 лет лежала в архивах. Что же именовал ученый живым веществом?

"Под именем живого вещества, - писал В. И. Вернадский в 1919 году, - я буду подразумевать всю совокупность всех организмов, растительности и животных, в том числе и человека. С геохимической точки зрения эта совокупность организмов имеет значение только той массой вещества, которая ее составляет, ее химическим составом и связанной с ней энергией. Очевидно, только с этой точки зрения имеет значение живое вещество и для почвы, так как, поскольку мы имеем дело с химией почв, мы имеем дело с частным проявлением общих геохимических процессов... Живое вещество, вошедшее в состав почвы, обусловливает в ней самые разнообразные изменения ее свойств, обычно не учитываемые в почвоведении. На первом месте я остановлюсь здесь на его влиянии на мелкоземлистость почвы, ибо это свойство почвы является самым основным и резким ее отличием от всех других продуктов земной поверхности. Оно же определяет ход всех химических реакций в почве и делает из почвы активнейшую область с химической точки зрения в биосфере".

Тогда же ученый впервые высказал мысль об органогенном парагенезисе как факторе геохимических преобразований - совместном нахождении химических элементов в живом веществе, которое определяется биологическими свойствами организмов, а не химическими свойствами элементов. К основным элементам органогенного парагенезиса Вернадский относил С, О, Н, N, S, P, C1, К, Mg, Ca, Na, Fe, к которым обычно присоединяют еще Si, Mn, F, J, Со, В, Ва, Sr, Pb, Zn, Ag, Br, V и т. д. В живом организме всегда содержится не менее 20-25 химических элементов, эти элементы оказываются вместе после гиболи живого в исключительно малых объемах, высоких концентрациях и в соотношениях, которые определяют жизнь.

Вернадский здесь высказался с присущей гению ясностью: "...в почве нет химических процессов вне участия в них живой материи и продуктов ее,изменения".

Но измерять количество живого вещества в почвах и на планете в целом биологи и почвоведы научились не сразу, даже когда поняли, что делать это необходимо.

Еще медленнее шло познание химического состава растений, животных, микробов, тех химических реакций, которые благодаря им осуществляются в почве.

Еще Вернадский отмечал, что масса растений в 10- 100 тысяч раз превышает массу животных, и ему было хорошо известно о почвообразующей деятельности дождевых червей и грызунов, термитов и муравьев, о биохимических процессах в почвах, вызываемых микробами.

Но точную количественную меру всем этим явлениям биологи нашли только в наши дни.

Многие поколения ученых интересовались жизнью корневых систем растений, почвенных животных и микроорганизмов. Они вели наблюдения, собирали и классифицировали материал. Постепенно вырабатывались и точные количественные методы учета. А подвела итоги всей этой работы Международная биологическая программа - МБП.

В 60-х годах нашего века началось планомерное изучение всей биосферы, в том числе п наземных биогеоценозов. Исследовали состав растительного покрова, его массу, ее ежегодный прирост, отмирание и разложение растительных остатков. Учитывали количество разных химических элементов, поступающих в растения и возвращающихся в почву с спадом. Определяли, какую часть биомассы составляют корни, листья, стебли. Исследован! я по международной программе резко изменили оценку роли животных и микроорганизмов в биологическом круговороте и почвообразовании.

Международная биологическая программа предусматривала "глобальное комплексное изучение биологичесш х основ продуктивности и благосостояния человека" и первоначально была рассчитана на восемь лет. В ней присутвовали 58 стран, и еще в 33 странах разрабатывались отдельные пункты программы. Основные исследования велись самостоятельно каждой страной на строго добровольных началах, за счет национальных средств.

Об окончательных научных итогах говорить пока рано, но некоторые выводы сделать все же можно. Вероятно, главный из них в том, что первый опыт международного сотрудничества в области биологии показал плодотворность разработки на международной основе тех ее клпитальных проблем, которые трудно решить в национальных границах. МБП активизировала изучение продуктивности биосферы, что имеет очень большое значение.

Собранные в разных ландшафтно-климатических зонах земного шара сведения помогут провести другую международную программу - "Человек и биосфера", которая в известной мере явится продолжением МБП.

МБП убедительно доказала опасность неблагоприятных изменений природной среды, особенно загрязнения в результате деятельности человека. И в рамках МБП возникла идея создания глобальной биологической службы, без которой невозможно определить тенденции таких изменений.

Так сколько же биомассы вокруг нас? В умеренной полосе СССР в лесах основная биомасса сосредоточена в древесине, ее - от 100 до 400 тонн на гектар. Эта биомасса многолетняя, в почву ежегодно поступает только 3,5-9 тонн опада листвы и сучьев. Масса корней составляет одну четверть от надземной части деревьев, но ежегодно и они дают 3-5 тонн сухого вещества за счет ежегодно отмирающих мелких корневых волосков.

В травянистых сообществах ежегодно отмирает большая часть как наземной, так и корневой биомассы, в степях и на лугах эта величина может быть очень значительной; так, опад в луговых степях только наземной части растений равен И тоннам на гектар.

Урожай с полей собирает человек, поэтому в биологический круговорот включаются только остатки жнивья и отмирающие корни. В дерново-подзолистых почвах, на суглинках, на полях однолетних культур остается 0,3- 1,9 тонны таких остатков и 1,3-5 тонн корней (сухого вещества) на гектар.

Труднее определить биомассу микробов. Она зависит от продуктивности наземной растительности, содержания гумуса и азота почвы, продолжительности теплого времени года, когда микробы могут активно функционировать. В тундрах, например, активное время жизни микробов ограничено 1-2 месяцами, а на юге они способны развиваться, если хватает влаги, круглогодично. По данным ленинградского профессора Т. В. Аристовской, в разных типах почв бактерии дают 3-15 генераций в месяц, но в среднем за год это составит, по-видимому, 10-15 генераций, учитывая разную продолжительность активной жизнедеятельности микробов.

По данным известного исследователя Э. Рассела, живой вес бактериальных клеток в пахотных почвах южной Англии составляет 2-4 тонны на гектар. При этом на долю бактерий приходится 0,5-1 процент от веса органического вещества почвы; биомасса грибов примерно такая же. По другим подсчетам, в пахотных почвах обитает около 20 тонн живых микробов на гектар. Академик Е. Н. Мишустин для разных типов почв дает цифру от 0,6 до 5 тонн сырого веса (0,1 -1,3 тонны сухого веса).

Для водорослей Э. А. Штина определила биомассу порядка 60-500 килограммов сухого веса в почвах под естественной растительностью, в исключительных случаях - до 1400 килограммов на гектар, при четырех генерациях в год -в условиях средней полосы СССР. Велика биомасса почвенных водорослей в агроценозах - порядка 0,2- 2,2 тонны на гектар.

Таким образом, общая продукция микрофлоры в почвах средней полосы европейской части СССР может быть оценена в 2-3 тонны сухого вещества на гектар в год.

На долю почвенных животных приходится 15-20 процентов от веса всех живых существ почвы, то есть около 1-1,5 тонны сухого вещества.

Биомасса млекопитающих в гайге - 141 килограмм на квадратный километр, в смешанных лесах - 511, лесостепи - 1230, степи - около 600. Птиц меньше: в тайге их около 80 килограммов, в смешанных лесах - 40.

лесостепи - 60, степи - около 13 килограммов на квадратный километр. Величины эти очень малы, если иметь в виду, что речь идет о "живой", а не о "сухой" биомассе, и притом на квадратный километр, а не на гектар.

В некоторых зарубежных странах биомассу животных в естественных ландшафтах удалось определить достаточно полно благодаря наблюдениям, которые велись десятилетиями. К таким районам в первую очередь относятся леса северо-западной Европы на бурых лесных почвах.

Так, в Бельгии на гектар лесной растительности приходится 4 тонны листвы, 270 тонн ветвей и стволов, 1 тонна травы, ежегодная первичная продукция составляет 12 тонн, нз них 52 процента составляют древесные растения и 8 процентов травы.

Потребителями этой первичной продукции являются (в живом весе) крупные млекопитающие (косули, кабаны - 2 килограмма на гектар), мелкие млекопитающие (грызуны, хищные, насекомоядные) - 5 килограммов, около 1,3 килограмма - птицы и около 1000 килограммов - почвенные беспозвоночные. Суммарная сухая масса всех животных составляет не более 100 килограммов на гектар.

Какие же изменения в сообществах живых организмов на суше происходят под влиянием хозяйственной деятельности человека?

Расхожее мнение, будто человек лишь губит живой покров Земли, разрушая его, не соответствует истине.

Научно обоснованная, продуманная деятельность человека отнюдь не ведет к обеднению биосферы. По важнейшим биологическим показателям продуктивности, количеству белка, генетическому разнообразию экосистем агросистемы и другие культурные ландшафты не только не уступают естественным, но часто и превосходят их.

И это вполне понятно: человек резко интенсифицирует протекание биологических процессов в биосфере, внося в почву минеральные удобрения, повышая продуктивность засушливых или переувлажненных бесплодных земель, выводя все более продуктивные породы растений, животных, а в последнее время - и микроорганизмов.

Правда, структура естественных сообществ нередко упрощается в агросистемах, но надо учитывать, что созданные человеком экосистемы несравнимо лабильнее. Это и дает основание экологам быть оптимистами, думая о будущем нашей планеты.

Судьбы элементов-биогенов

По сравнению с составом земной коры биомасса растений гораздо богаче азотом, углеродом, водородом и кислородом, а биомасса животных, кроме того, еще серой и фосфором. Все это - биогенные элементы, жизнь без них попросту невозможна. Больше всего в живом веществе, не считая воды, углерода, азота, кальция, калия, кремния, фосфора, серы, стронция, бора, цинка, молибдена, меди, никеля. Именно эти элементы - главные в биогенном круговороте веществ (если, конечно, не забывать, что 2/з любого живого вещества составляет вода). Общая продолжительность биогенного круговорота на суше в целом, по мнению В. А. Ковды, около 300 - 400 лет. Правда, цифра эта относится в основном к лесам, а в агроценозах круговороты биогенных элементов идут во много раз быстрее.

Всего в тканях живых организмов встречается 66 - 68 элементов, причем 47 из них постоянно. Жизненно необходимыми, как это твердо уетановлено, являются многие микроэлементы, в том числе медь, кобальт, цинк, бор, йод, молибден, железо, фтор и др. Можно выделить три группы элементов:

1) те, что постоянно содержатся в тканях и незаменимы в пище (О, С, Н, N, Са, Р, К, S, Cl, Na, Mg, Zn, Fe, Cu, I, Mn, V, Mo, Co, Se);