14526.fb2
А жизненного опыта химеру
На этот случай сдайте в гардероб!..
Некоторое время можно было надеяться, что все-таки большинство известных физических явлений хотя бы приблизительно можно описать с помощью дифференциальных уравнений.
Анализ, выполненный математиками, показал, что в случаях размерностей 1,2,3 и даже отчасти 5 и 6, это соответствует математической реальности. И, поскольку мы считаем наше физическое пространство трехмерным, то его характеристика, данная Б. Грином, вполне корректна.
Но, как сообщает Р. Пименов, «…Обнаружилось, что в размерности четыре ситуация совершенно иная. В той самой размерности, которая нужнее всего физике. Ибо физике нужна еще координата t сверх координат (x, y, z): без t вообще о детерминации и говорить нелепо. Прежде всего, оказалось, что существуют такие 4-многообразия, на которых НЕЛЬЗЯ ВВЕСТИ НИКАКОЙ ГЛАДКОСТИ… Обнаружено, что на R4 существует несколько… различных гладкостей…»
Это утверждение Револьта Ивановича хорошо иллюстрирует доказанная в 1976 г. американскими математиками Кеннетом Аппелем и Вольфгангом Хакеном теорема о том, что ЧЕТЫРЬМЯ различными красками можно раскрасить бесконечное число различных карт. А карта — это как раз топологическое многообразие. Как подсказал мне математик и блестящий толкователь «математических премудростей» А. В. Коганов, которому я признателен за весьма полезные замечания, множество RM можно сопоставить известной детской развивающей процедуре раскрашивания картинок: «каждый ретушер может выбрать свои цвета для деталей контурного изображения. И набор всех возможных раскрасок аналогичен множеству всех отображений множества деталей в множество цветов». А цвета — это «топологическая размерность».
Более того! Математика утверждает, как пишет Р. И. Пименов, что «… Даже в тех случаях, когда гладкость существует, она НЕ ЕДИНСТВЕННА для размерностей, начиная с 4… Объекты для разных гладкостей устроены существенно по-иному, они не изоморфны, значит, надо уметь ВЫБИРАТЬ СРЕДИ ЭТИХ ОБЪЕКТОВ. А мы не умеем. Нам не было нужды прежде проводить такой выбор, и мы не научились.
Может быть, мы научимся справляться с релятивностью гладкости. Не знаю. Я ведь пишу не о будущем, а о прошлом и о настоящем. В настоящем мы не умеем, в прошлом мы и не подозревали, что должны уметь».
Вот ключевая мысль пименовского эссе! Здесь Револьт Иванович обращает внимание на то, что разные гладкости не изоморфны.
Изоморфизм — «одинаковость формы». А если нет изоморфизма, значит, пространства имеют разные структуры, а неизоморфные объекты и «устроены по-разному».
Так, бурные политические события на рубеже тысячелетий привели к тому, что политические карты мира 1990 и 2011 гг. топологически совершенно разные объекты!
Почти одновременно с Р. И. Пименовым на экзотические гладкости и их применение к теории пространства-времени в 1987 году обратил внимание и А. К. Гуц, который тогда же обсуждал эти проблемы с Р. И. Пименовым.
Итак, даже в «классических случаях», описываемых «нашим» четырехмерным пространством-временем, мы, оказывается, каким-то образом ВЫБИРАЕМ среди множества РЕАЛЬНЫХ форм существования объектов только одну и живем в этом своем выборе!
Каков механизм этого выбора, как конкретно описать его математически — это и есть «прикладные вопросы», над которыми нужно работать. При этом, как заметил А. К. Гуц, «главная трудность состоит в том, что сама гладкость как-то не описывается без гладкости. Чего-то мы пока не понимаем».
Но вывод из «абстрактно-математических» результатов дифференциальной топологии вполне очевиден: физическое многомирие с математической точки зрения возможно.
Это ясно и самому Р. Пименову, который так говорит о мировоззренческих следствиях своего анализа применимости дифференциальных уравнений для описания реальности: «А это означает, что все, что писалось о детерминизме в XVIII–XX веках, НАДО ЗАЧЕРКНУТЬ. Ведь если у нас нет критерия "абсолютно различить" гладкую траекторию от негладкой… то спрашивается, по каким же траекториям переносится «настоящее» физическое воздействие?.. Вся идеология использования дифференциальных уравнений для детерминации будущего на основе настоящего и прошлого рушится из-за релятивизации гладкости… Детерминизм не был "выведен логически" или "доказан математически". Мы всего лишь ВЕРИЛИ В ДЕТЕРМИНИЗМ».
Со времен Лапласа принято считать, что у всякого следствия есть однозначная причина. «Классический математик» переводит это на математический язык — у любой функции есть дифференциал. В этом и состоит сущность лапласовского детерминизма.
После осознания сказанного Р. И. Пименовым, этот детерминизм, как мировоззренческий принцип, перестает быть всеобщим.
И круг задач, которые подчиняются парадигме дифференциальных уравнений, уже не всеобъемлющ. А среди первых разделов физики, актуальные интересы которых выходят за его пределы, следует указать на современную космологию.
Тебе, Чей Сумрак был так ярок,
Чей Голос тихостью зовет, -
Приподними небесных арок
Все опускающийся свод.
Будучи именно космологом и понимая, что вслед за ним пойдут другие исследователи, не столь искушенные в математике, Р. И. Пименов подчеркивает: «Предупредим одно возражение, недоразумение, которое может родиться у нематематика, знакомого все же с достижениями современной физической космологии. В последней оживленно обсуждаются «сингулярности», исследуются те или иные "особые точки", где перестают быть применимыми методы дифференциальных уравнений. Может показаться, будто бы это и есть те самые "негладкие модели", о которых мы пишем. Нет… Это особенности в УЖЕ СУЩЕСТВУЮЩЕЙ ГЛАДКОСТИ. Нынешняя космология может (при усилии) справиться с КОНЕЧНЫМ числом особых точек, тогда как нарождающаяся концепция… скорее склонна к моделям, где особых точек бесконечно много и где они распределены всюду плотно, т. е. НЕУСТРАНИМО. Прибегнув к несколько легкомысленному сравнению, скажем так: упоминание в современной космологии сингулярностей подобно выезду горожан-туристов на лоно природы, максимум с одной-двумя ночевками и с прихваченными собою дарами города. А теория "непрерывного-не-гладкого" подобна безвыездной жизни в тайге от рождения».
Это было написано 11 мая 1988 г. в Сыктывкаре, вдалеке от крупных научных центров, где он, как мы знаем, оказался совсем не по своей воле. Тем не менее «общий план» поля научного действа Р. И. Пименов видел удивительно ясно — современные ему космологические исследования в своем большинстве действительно были подобны «выезду горожан-туристов на лоно природы…»
Но в отдельных точках этого поля уже тогда возникли удивительные ростки новой теории — космологической инфляции. С 1980 года ее развивали известный советский физик А. А. Старобинский, американец А. Гут и, особенно интенсивно и плодотворно, скромный и робкий в те времена сотрудник ФИАН им. П. Н. Лебедева, А. Д. Линде. Его работы тех времен сегодня — космологическая классика.
И почти через 30 лет после оценки Р. И. Пименова, 10 июня 2007 года, в переполненном конференц-зале ФИАН им. П. Н. Лебедева, Андрей Дмитриевич Линде — теперь уже знаменитый космолог, профессор физики Стэнфордского университета — читал лекцию о сегодняшнем состоянии этой теории. В ней он, в частности, рассказывал о новом космологическом объекте, особенно ярко «проявившемся» в ходе развития этой теории — мультиверсе, или физическом многомирии. Вот как представил Андрей Дмитриевич один из вариантов «энергетической карты» этого объекта:
Комментируя этот слайд, А. Д. Линде сказал: «Каждый из этих пиков на самом деле является экспоненциально большой Вселенной, и в каждой из них свои законы физики, и они все еще продолжают меняться».
Нет, это не «миры Эверетта», не альтерверс. Это — мультиверс, один из четырех типологических видов физического многомирия по Тегмарку.
Не правда ли, этот «пейзаж Мироздания», увиденный современной космологией, по своему духу и настроению уже отчетливо напоминает то, о чем Револьт Иванович писал как о «безвыездной жизни в тайге от рождения»? Но ясно, что математическая «теория "непрерывного-не-гладкого"» многомирия будет еще сложнее. И в «математическом дворце» кроме башни дифференциальных уравнений с лапласовской причинностью появится новый архитектурный элемент, какая-нибудь «пименовская галерея», с которой будет легко и удобно рассматривать детали строения «мультиверса по Линде».
Дорога в тысячу ли начинается с одного
шага, — гласит пословица. Жалко, что от него
не зависит дорога обратно, превосходящая многократно
тысячу ли. Особенно отсчитывая от «о».
Одна ли тысяча ли, две ли тысячи ли…
Ее строительство, собственно, уже началось. Как сообщил мне А. К. Гуц, еще «в Кишеневе (1988) я сказал Пименову о мысли использовать топосы для описания гладкого пространства-времени. Мысль проста — не задавать гладкость — неясно как это делать без гладкости — а написать синтетическую аксиоматику, т. е. формальную теорию, среди множества моделей которой будут разные гладкие модели. Его реакция была скорее отрицательной: его обескуражила возможность безобразно большого числа моделей. Мультиверс — так сейчас это называется! Ему хотелось сделать все традиционными методами. Но он меня поддержал. Дал силы. Уже на обратном пути, в самолете я сделал первые наброски. Моя статья вышла уже после его смерти в ДАН СССР и стала первой статьей по применению топосов в теории относительности». И, как отмечает Александр Константинович, «возможно, неединственность гладкости — это путеводная звезда». С ним согласен и профессор С. В. Сипаров: «В ходе построения финслеровой теории анизотропного пространства-времени выявляется неизбежность перехода от привычных гладких функций к функциям более широкого класса». А. В. Коганов отмечает, что «в точке, где нет гладкости изменения параметров процесса, появляется возможность продолжать процесс многими способами, поскольку возможные касательные к траектории заполняют некоторый сектор пространства. И это дает математическую модель свободы волевого выбора пути».
Однако, с сожалением констатирует А. К. Гуц, «больно сложно здесь продвигаться». Сложно настолько, что за прошедшие десятилетия после пионерских работ Р. И. Пименова и А. К. Гуца первая книга о разнообразии гладкостей вышла только в 2007 г. в Сингапуре.
… Вот что я вижу в тексте статьи Р. И. Пименова сегодня. Разумеется, у другого читателя может возникнуть иное восприятие, ведь, как гласит пословица, «свой глазок — смотрок!». Возможно, я чего-то не понял, возможно даже, что и Револьт Иванович в чем-то ошибался. Уж очень сложен лабиринт, в который превратилась современная математика.
Но безусловно одно — эту статью следует читать внимательно и многим. Тем, кого я убедил, будет важно утвердиться в новом отношении к принципу причинности. Те, кто не согласился со мною, должны найти в первоисточнике опровергающие мои рассуждения аргументы. Увлечение же молодого читателя, еще только ищущего объект приложения своих интеллектуальных сил, на огромную стройку математического дома, туда, где после обучения и овладения необходимым «инструментарием», он смог бы самостоятельно трудиться на постройке «пименовской галереи», которой сегодня очень не хватает энтузиастов-профессионалов, я считаю одной из главных целей этой своей статьи.
Эссе Р. И. Пименова о проблеме выбора. И далеко не только в математике: и физик, и философ, и просто любой «думающий человек» постоянно сталкивается с ней и постоянно ее решает. И я ставлю читателя перед выбором: принять ли вызов, брошенный Револьтом Ивановичем парадигме детерминизма, или верить в то, что «слаб человек и от нас ничего не зависит — прошлые причины породили нынешнее настоящее и мостят дорогу в неизбежное будущее…»
В прошлом обзоре рассказывалось о бурной дискуссии по поводу того, что скорость движения потока нейтрино оказалась больше скорости света. Первые сообщения о регистрации мюонных нейтрино, движущихся со сверхсветовой скоростью, появились 23 сентября 2011 года. Тогда удалось установить (эксперимент группы OPERA), что нейтрино из CERN приходят в Гран-Сассо в среднем на 60 наносекунд раньше расчетного времени. Получалось, что частицы движутся с 1,0000248 световой скорости. И вот 8 июня 2012 года информационный портал «Лента. Ру» сообщил, что в этой дискуссии поставлена точка (http://www.lenta.ru/news/2012/06/08/cern/): CERN официально опроверг информацию о сверхсветовых нейтрино.
По словам Серджио Бертолуччи, директора по исследованиям CERN, данные о сверхсветовых скоростях частиц стали результатом ошибки эксперимента, которую удалось обнаружить благодаря данным «конкурирующих» с OPERA экспериментов — Borexino, ICARUS и LVD. Во всех четырех экспериментах измерялись времена прибытия нейтринных пучков.
За несколько последних месяцев появилось большое количество разных объяснений удивительного явления, как теоретических, так и связанных с практической реализацией эксперимента. В частности, французские и итальянские астрофизики выдвигали гипотезу о том, что «сверхсветовые нейтрино» могут объяснить наблюдаемые свойства загадочных гамма-всплесков (http://lenta.ru/news/2011/09/27/grb/).
На самом же деле все оказалось просто: оптико-волоконный кабель от приемника GPS был плохо соединен с компьютером. Между тем, расчеты времени прохождения сигнала по кабелю очень чувствительные к таким, казалось бы, маловажным деталям. Когда сугубо технический недосмотр исправили, физики заново вычислили, за какое время оптический сигнал проходил по кабелю — это время оказалось меньше на те самые 60 наносекунд!
http://lenta.ru/news/2012/02/23/neutrino/
Большой интерес научного сообщества вызвала дискуссия об истории главного открытия современной астрофизики — расширения Вселенной.
Как известно, в 1917 году Альберт Эйнштейн вывел из своих фундаментальных уравнений общей теории относительности решение для статической модели. В 1922 году российский физик Александр Фридман обнаружил, что уравнения Эйнштейна допускают динамическую Вселенную, однако он не связывал это открытие с астрономическими наблюдениями. За исключением Эйнштейна, который не считал динамические решения физически состоятельными, никто не обратил внимания на работы Фридмана. И только в 1927 году еще один выдающийся теоретик — бельгийский ученый и католический священник Жорж Лемэтр — также нашел нестационарное решение уравнений Эйнштейна. Если Фридман исследовал эти уравнения с чисто математических позиций, без каких-либо попыток связать их со свойствами реальной Вселенной, то совершенно независимая работа Лемэтра, напротив, была прямо вдохновлена идеей установления этих свойств в самом практическом смысле.
Лемэтр не только предложил решение (намного более ясное с физической точки зрения), в котором теоретически был сформулирован закон расширения Вселенной, но и проанализировал данные, полученные из наблюдений Эдвина Хаббла 1926 года о расстояниях до внегалактических объектов и данные Алана Слайфера по красным смещениям линий в спектрах галактик. С помощью этих данных Лемэтр впервые получил численную оценку коэффициента пропорциональности между скоростью удаления галактики и расстоянием до нее. Позже этот коэффициент получил название «параметр Хаббла».
Тем временем к 1929 году выдающийся американский астроном Эдвин Хаббл, проведя многочисленные тщательные измерения расстояний до галактик и их радиальных скоростей, сформулировал знаменитый закон, носящий его имя. Этот закон гласит, что подавляющее большинство галактик удаляется от нас, причем скорость удаления галактики пропорциональна расстоянию до нее. Такой вывод был сделан на основании эффекта смещения спектральных линий света, приходящего от галактик; этот эффект принято называть «красным смещением», а его связь с радиальной скоростью первоначально связывали с эффектом Доплера. Об этой связи первым написал сам Лемэтр в своей статье, хотя фактически из его анализа следовал иной (не кинематический) механизм явления — теперь его связывают со «старением» фотонов в процессе расширения Вселенной. Мы еще вернемся позже к обсуждению этого вопроса.