146840.fb2 Наш коллега - робот - читать онлайн бесплатно полную версию книги . Страница 10

Наш коллега - робот - читать онлайн бесплатно полную версию книги . Страница 10

Принцип действия датчика заключается в акустической локации пространства вблизи захвата. Посланные датчиком ультразвуковые импульсы отражаются от ближайшего предмета, и измерение времени между посылкой импульса и приходом отраженного сигнала позволяет со сравнительно большой точностью судить о расстоянии от предмета до захвата. Особенностью такого устройства является применение в качестве излучателя п приемника одного и того же обратимого преобразователя, разработанного специально для этих целей и представляющего собой разновидность конденсаторного микрофона.

Ультразвуковые датчики, помимо измерения расстояния, позволяют решать и более хитрые задачи, например, точного наведения оси схвата на предмет. Если на каждом пальце схвата поместить по одинаковому датчику, то они образуют уже два глаза - "симметричную стереопару", и при равенстве расстояний обоих датчиков до детали происходит совмещение оси схвата с осью предмета. Это полезное свойство применимо, однако, лишь для предметов правильной формы.

К сожалению, ультразвуковые датчики обладают ограниченной способностью для обнаружения микроскопически малых тел, что связано с относительно большой длиной ультразвуковых волн.

Существует подход, при котором воздушную струю можно использовать подобно пучр:у света. Этот датчик можно применять как своеобразный бесконтактный выключатель. Таким образом, можно измерять расстояние, превышающее диаметр сопла примерно в пятьдесят раз.

При измерении расстояния до движущихся объектов получаются несколько завышенные значения вследствие завихрений воздуха вокруг самих объектов. Чувствительность струйных датчиков может быть даже выше, чем оптических.

Тактильные, оптические, ультразвуковые, струйные- это лишь малая толика используемых датчиков робота. Так же, как схваты, чувства робота ориентированы на тип производимой работы. Кое-где достаточно осязания, в другом процессе не обойтись без примитивного зрения, в третьем - нужны "нежные струи" воздушных датчиков. Иногда необходим и инфракрасный локатор, весьма перспективно и лазерное "зрение". Если писать обо всем подробно, то каждое из перспективных направлений очувствления заслужило бы по отдельной книжке. Нам же не терпится посмотреть на очувствленного робота.

В особом конструкторском бюро технической кибернетики Ленинградского политехнического института имени М. И. Калинина проводят экспериментальную проверку возможностей промышленных роботов, оснащенных целой гаммой чувствительных датчиков.

Захват одного из роботов представляет собой лапу с двумя пальцами, на внешней поверхности которых расположено целое поле тактильных датчиков, представляющих собой подпружиненные металлические пластины. Набор датчиков выполнен в виде "рыбьей чешуи", что позволяет покрыть всю поверхность пальца, практически без нечувствительных зон. На каждом пальце размещено по 12 таких датчиков, так что прикосновение к любому участку поверхности пальца приводит к замыканию соответствующего контакта, связанного с подвижной пластиной датчика, и информация о месте прикосновения передается в систему управления роботом.

Кроме контактных тактильных датчиков осязания, на пальцах захвата размещены двенадцать светолокационных датчиков, которые сигнализируют о приближении захвата к предмету на расстоянии двух-трех сантиметров. Они расположены на концах пальцев, на боковой и торцевой поверхностях.

Так как работа светолокационного датчика основана на обнаружении светового потока, отраженного от предмета, то для исключения влияния внешнего освещения на работу датчика используется специальным образом модулированный по интенсивности световой поток.

В процессе работы робота возникает необходимость получать сведения не только о приближении или прикосновении к предмету, но и о наличии предмета внутри захвата между пальцами. Для этого на внутренней поверхности пальцев размещены еще четыре фотодатчика, работающих не на отраженном свете, а на прямом просвечивании межпальцевого пространства. Они позволяют контролировать наличие предмета между губками, а также ориентировочно судить о положении предмета по количеству перекрываемых лучей. Столь мощное очувствление дает роботу второго поколения невиданные доселе возможности поиска предметов, нежного обращения с деталями, сборки разнообразных и непростых конструкций. Для примера перечислим операции, выполняемые двуруким роботом второго поколения с тактильным очувствлением, который был разработан с целью исследования методов координированного управления двумя руками при их совместной работе. Робот выполняет следующие операции:

- перемещение предметов, которые нельзя взять одной рукой, обеими руками с переворотом в процессе перемещения;

- перенос трех деталей прямоугольной формы, при этом средняя удерживается благодаря силе сжатия со стороны боковых;

- сверление ручным коловоротом; одна рука нажимает коловорот, а вторая вращает его;

- вычерчивание линий по лекалу, удерживаемому другой рукой;

- свинчивание болта и гайки; одна рука держит гайку, а другая головку болта и вращает ее, перехватывая;

- сборка узла из двух деталей, соединяемых болтом и гайкой, и др.

Все эти процессы обеспечиваются тонкой координацией действий обеих рук робота по сигналам тактильных датчиков. При этом в процессе выполнения одна рука выполняет роль ведущей, а вторая отслеживает ее положение.

Этот метод управления, названный авторами методом вертуального эталона, как раз и исследовался на разработанном роботе.

КАК МЫ ВИДИМ ТО, ЧТО МЫ ВИДИМ

Органом зрения мы издавна привыкли считать глаз.

Однако, чтобы установить истину, нам придется отказаться от этого заблуждения. Человек видит отнюдь не глазами. А чем же, спросит недоуменный читатель, датчиками, что ли? Нет, человек видит мозгом! Действительно, глаз участвует в процессе видения, однако распознавание зрительных картин настолько тонкий и интеллектуальный процесс, что сказать "мы видим глазами" так же наивно, как "мы говорим языком".

Посмотрите вокруг. Мы видим разноцветные пятна на пестром фоне, и только мозг сообщает нам, что это деревья, дома и осенняя листва на мостовой.

Чтобы научиться видеть, человек затрачивает несколько лет жизни. Рассмотреть фотографию не так-то просто, нужно научиться воспринимать цветное объемное изображение в виде плоскостного предмета, заполненного серо-белыми пятнышками. Индейцу одного из американских племен показали фотографию животного, которое он встречал каждый день, - лошади. Он увидел в изображении нечто таинственное и бесконечно далекое от данного животного.

"Из всех органов чувств, связывающих наше сознание с внешним миром, зрение является важнейшим, ибо оно дает 80-90 процентов информации об окружающей нас действительности, - говорит заведующая кафедрой глазных болезней Новосибирского медицинского института, доцент Н. Орлова. - Где бы мы ни были - у себя дома, на улице, на рабочем месте, на отдыхе, - весь период бодрствования человек совершает колоссальную зрительную работу. Он рассматривает форму и детали предмета - это центральное зрение; ориентируется в пространстве - это периферическое зрение; воспринимает различную освещенность - светоощущение; распознает спектральный состав света, что создает впечатление многоцветности мира; фокусирует рассматриваемый объект; определяет расстояние до предметов и между ними, что дает впечатление глубины, стереоскопичности. И все это одномоментно и связно - воистину неоценимая деятельность. Глаза приспособлены к видению даже при ничтожно слабом свете - ночью. Кроме того, глаз, как и сердце, успевает отдохнуть в процессе работы, во время коротких миганий".

Как научить робота "видеть"? У нас нет нужды приделывать ему "голову с глазами". Глаз мы можем поместить, например, на потолке, а затем сообщать роботу название и форму детали, и он будет собирать их.

В другом варианте мы могли бы поместить глаз робота ему на "ладонь".

Допустим, что при сварке различных конструкций робог должен помещать их металлические части в разные положения. Если его "глаз" расположен на "ладони", автомат сам сможет "видеть", где именно и как должна происходить сварка. Есть проект робота - упаковщика шоколада. Сейчас на обычной шоколадной фабрике работницы сидят за столом, а перед ними движется поток пустых коробок. Шоколадки подаются конвейерной линией. Работницы укладывают их в коробки по две штуки в секунду. Планируется установить у линии два небольших манипулятора и телекамеру. Камера будет сообщать манипуляторам, что делать их "пальцам" для укладки шоколадок. В данном случае у манипуляторов есть некое зачаточное "зрение". Но это крайне упрощенный случай - темные шоколадки на светлом фоне. Если сказать такому роботу: "Прошу тебя пойти и собрать букет белых лилий", для него невозможно было бы выполнить столь сложный приказ.

До настоящего времени оснащение зрением какоголибо устройства из металла требовало талантов поистине нечеловеческих. Однако усовершенствование технологии компьютеров радикальным образом изменило ситуацию. Разработка видеосистем для роботов началась с создания телекамер. Изображение объекта превращается в тысячи точек, из которых состоит телевизионное изображение. Эти черные и белые точки вводятся в ЭВМ, управляющую роботом, в виде цифровой информации в двоичном коде (0,1). Черную точку отображает единица, белую - ноль. Изображение предмета преобразуется в электронной памяти компьютера в серию нолей и единиц. Теперь робот может "увидеть" предмет, то есть сравнить его цифровую кодограмму с набором цифр, хранящихся в памяти, и "узнать" его, то есть определить, к классу каких объектов он относится.

Там, где нули переходят в единицы, компьютер отмечает силуэт объекта и его ориентацию. После этого он немедленно вычисляет многие из его характеристик, например площадь, периметр, диаметр и т. д., и сравнивает их с характеристиками объекта, хранящимися в его памяти. Когда ЭВМ отыщет в своей памяти подобный набор цифр, робот узнает, что же он видит перед собой.

Сказав на электронном языке "агаЬ, он даст команду своим "пальцам" сделать с предметом то, что нужно, например схватить за край, поднять и перевернуть.

Поскольку робот не может различать многочисленные оттенки серого цвета, необходимо высококонтрастное освещение, а как его осуществить для изделий, движущихся на сборочном конвейере?

Сейчас разрабатываются более совершенные системы, которые будут различать много оттенков яркости.

Создаются приборы, способные формировать изображение с помощью так называемой "серой шкалы", где яркость может быть выражена в диапазоне величин от О до 15 или даже от 0 до 255. С такими "способностями" компьютер сможет различить малейшие изменения яркости и обеспечить точное опознавание объектов. Однако системы с "серой шкалой" столь сложны, что время распознавания даже для мощной ЭВМ оказывается очень большим. Если имеется сотня уровней "серости" в широком поле зрения, то для распознавания образца компьютер должен выполнить огромное количество вычислений, и чем беспорядочней и хаотичней "сцена",тем сложнее задача ЭВМ. Таким образом, будущее систем со "прением" зависит как от продолжающегося прогресса в компьютерной технике, так и от создания лучших устройств распознавания.

Однако, чтобы быть таким же эффективным, как человеческий глаз, "глаз" робота должен опираться па соответствующий интеллект компьютера, который работает в миллион раз быстрее, чем любой из современных.

И хотя некоторым ученым это не кажется фантастнчным, особенно учитывая головокружительный прогресс микроэлектроники, даже современное состояние вычислительной техники позволяет делать весьма оптимистические прогнозы. В конце концов робот может "видеть" гораздо лучше человека и сегодня, ведь человеческому глазу доступна для восприятия лишь оптическая часть спектра электромагнитных волн. А соответствующее электронное устройство свободно от биологических ограничений, его можно сделать чувствительным к инфракрасным и ультрафиолетовым лучам. К электронному глазу можно подключить радар или сонар, он сможет видеть в темноте и при сверхъярком свете в печи телескопически или микроскопически, фиксировать процессы, проистекающие или очень быстро, или чересчур медленно. Тогда станет возможным то, что "и не снилось" зрению человека, например спектрографический анализ вещества объекта путем простого "осматривания".

На очувствленном роботе Токийского университета проводятся эксперименты с движущимися предметами.

Робот оснащен подсистемой "визуального очувствления", или, попросту говоря, зрения на телекамере. Это позволяет ему весьма точно определять координаты предмета. Управляющее устройство -на базе микрокомпьютера осуществляет пересчет из системы координат рабочей зоны в систему координат манипулятора и вырабатывает управляющее воздействие на приводы манипулятора. Управление осуществляется в так называемом реальном времени.

Вот по рабочему полю катится шарик. Робот сможет захватить его и аккуратно опустить в движущийся по транспортеру стаканчик. Для облегчения визуального контроля все предметы, за которыми наблюдает глаз робота: шарик, стаканчик, схват робота, - окрашены контрастной ярко-белой по отношению к серому фону краской. А вот другой эксперимент, в котором робот ловко бросает шары в специальную коробку, расположенную в полутора метрах. Под конец робот выполняет ряд явно рекламных манипуляций: зажигает спичку и даже играет на ксилофоне.

СЕМЬ РАЗ ОТМЕРЬ

Роботы второго поколения, оснащенные мощными "чувствами", открыли совершенно новую область применения роботов - контроль. Робот-контролер с успехом заменяет человека на столь трудоемкой и нудной операции. Появились даже специальные профессионально ориентированные роботы, так называемые измерительные центры. Кисть руки такого робота оснащена системой щупов, тоненьких чувствительных пальчиков, которые, перемещаясь по измеряемой поверхности, могут передавать в мозг робота сверхточную информацию по всем размерам и параметрам ощупываемой кривой. Способ замера без остановки щупа - измерения "в полете" - позволяет быстро и точно контролировать форму и размеры любой замысловатой конфигурации.

Такой робот представляет собой, как правило, массивное основание, исключающее вибрацию и другие помехи, влияющие на точность измерения и величественную портальную конструкцию, обеспечивающую идеальный доступ ко всем точкам детали.

К измерительной головке может подсоединяться до пяти наконечников-щупов, выставленных в разных направлениях.

Результаты измерений вводятся в ЭВМ, обрабатываются и представляются пользователю на экране дисплея. Кроме того, широкая гамма специальных программ позволяет использовать этот робот с большой универсальностью. Здесь и программы специальных геометрических расчетов, программы расчета допусков и припусков, программы автоматического программирования под данную деталь станков с ЧПУ и др.

Главное роботическое свойство этого измерительного центра - это гибкость. Его можно запрограммировать на деталь любой формы и размера, задать требуемую точность и допустимую скорость измерения, научить сообщать о всех отклонениях в измеряемой детали и даже управлять станками с ЧПУ по корректировке положения режущих инструментов. Использование такого робота на выборочном контроле формы автомобильных кузовов позволило сократить эту операцию с нескольких дней до нескольких часов. Однако, естественно, одним ощупыванием дело контроля не исчерпывается. Вот еще два примера.

На одном автозаводе создана система с применением робота, который как бы "вынюхивает" отверстия в кузове нового автомобиля. Рабочие вводят в машину под давлением небольшое количество гелия, а переносимые роботом по определенным траекториям датчики улавливают любую утечку газа, которая может произойти оттого, что плохо сварены швы или неплотно прилегают двери и окна. Это самый совершенный тест, которого можно добиться в условиях современной технологии, да и той, которая появится в ближайшем будущем. Чтобы обеспечить такую четкую работу, раньше конвейер должен был всегда останавливаться перед роботом, а кузов находиться в определенном положении.

На заводе эту проблему решили по-новому, следующим образом: один из старых конвейеров был модернизирован так, что специальные устройства фиксируют автомобили с точностью до 1,5 миллиметра. В результате такого преобразования роботы впервые используются на постоянно двигающемся конвейере, при этом роботов "заставляют" работать с большой точностью.

К профессиям промышленных очувствленных роботов недавно добавилась еще одна - дегустатор питьевой воды. В Берлине сейчас установлены шесть таких роботов, которые через определенные промежутки времени берут из водопроводной сети пробы воды и в считанные секунды проводят ее анализ. Данные анализа тут же сообщаются на центральный диспетчерский пункт водного хозяйства столицы ГДР.

Как мы уже говорили, роботы первого поколения не умеют "брать" заготовки, лежащие в беспорядке, "навалом", специальная же укладка деталей в определенном порядке - операция ручная, она снижает общий уровень производительности труда. Кроме того, в используемой для этого специальной таре с ячейками детали, как правило, должны укладываться в один слой, а это требует увеличения тары и объемов складов.

Вот если бы можно было поставить перед роботом ту же тару, которой пользуются на заводе! Для этого, однако, надо решить довольно сложную задачу распознавания образов - "узнавания" - и последующего ориентирования деталей. Экспериментальные "умные" роботы справляются с этой работой хорошо, однако до "прописки" в цехе им еще далеко. Производственную деталь вообще распознать трудно: она может быть покрыта грязью и окалиной, по-разному освещаться, неожиданно бликовать. Правда, производство - это не совсем неупорядоченная система. Во-первых, здесь оперируют деталями, часто имеющими достаточно правильную форму, во-вторых, мы вправе потребовать введения некоторых элементов порядка, которые хотя и будут носить частный характер, однако могут привести к резкому упрощению задачи.