147215.fb2
Еще наглядней процесс усложнения структуры в теории.
Когда мы говорим о триумфе ньютоновской системы в 19 веке, то надо понимать, что у самого Ньютона задавалась лишь принципиальная структура подхода к задачам небесной механики, проиллюстрированная очень простыми и сильно идеализированными моделями.
Истинное движение планет гораздо сложней, чем это следует из Кеплеровых законов, прежде всего потому, что Солнечная система состоит из многих взаимодействующих тел. Аналитически точно решить систему уравнений для многих планет невозможно — уже задача трех тел составляет крупную проблему (едва ли не самостоятельный раздел механики). Поэтому для учета дополнительных влияний на данную планету требуется немалое искусство — ведь истинная орбита, которую с превеликой точностью определяют астрономы, представляет собой, строго говоря, очень сложную волнистую кривую, и ее лишь приближенно можно считать эллипсом.
Трудности в расчете орбиты Урана выглядят еще безобидно по сравнению с теми сюрпризами, которые поднесла астрономам 18 века старая добрая Луна. В значительной степени именно на описании движения Луны создавались и оттачивались мощные методы небесной механики — теория возмущений.
Интенсивное развитие ньютоновской теории началось именно с этого в середине 18-го века. В работах блестящих математиков французской школы Алекси Клеро (1713–1765) и Жана Лерона д'Аламбера (1717–1783) родились корректные методы учета относительно слабых воздействий. Их работы по теории взаимного возмущения планетных орбит обусловили настоящее подтверждение ньютоновского закона тяготения. До того отклонение от строгой эллиптичности движения на равных правах рассматривалось как возможное нарушение этого закона.
Почти сразу же вслед за первой весьма удачной моделью движения Луны, построенной Клеро к 1751 году, появилась еще более точная модель, основные идеи которой использовались впоследствии для всей небесной механики.
Автор этой модели Леонард Эйлер (1707–1783), уникально результативный ученый, сыгравший выдающуюся роль в становлении научных исследований сразу двух стран — России и Германии. 20-летним юношей Эйлер приехал в Петербург по приглашению столичной Академии наук и художеств. В 1741 году Эйлер, завоевавший уже мировой авторитет в науке, приглашается Фридрихом П для организации работ в Берлинской академии. Однако связи с Петербургом он не терял и через четверть века возвратился на свою научную родину. В 1756 году Петербургская академия присудила ему премию именно за работу по теории движения Луны.
Главное достижение Эйлера заключалось в разработке так называемого метода оскулирующих элементов. Эллипс, по которому должен двигаться одинокий спутник центрального тела, принимается за основу, но элементы, характеризующие эту фигуру (эксцентриситет и т. д.), считаются теперь переменными. В их периодическом изменении и сказывается влияние других тел Солнечной системы. Иными словами, поправки к идеальному кеплерову движению приобрели теперь ясный и наглядный смысл.
На рубеже 18-19-х веков серьезных успехов в создании методов обработки астрономических данных добивается немецкий математик Карл Фридрих Гаусс (1777–1855). Его интересует задача о восстановлении параметров орбиты по данным наблюдений. Совокупности точек, которые получают наблюдатели и теоретики, никогда полностью не совпадают, и возникает проблема — какую именно совокупность теоретически вычисленных точек предпочесть, какая из них наилучшим образом соответствует совокупности экспериментальной. Гаусс получил решение, строго обосновав так называемый метод наименьших квадратов. Лучшей оказывалась та теоретическая кривая, для которой сумма квадратов отклонений от наблюдаемых значений принимает наименьшее значение. Этот метод положен в основу всей техники обработки экспериментальных данных в различных областях науки.
Интерес Гаусса к задаче реконструкции орбит обострился после открытия астероидов, когда соответствующие вычисления «стали на поток». В 1809 году в своей «Теории движения небесных тел» он доказал, что для полного определения элементов эллиптической орбиты необходимо как минимум 3 наблюдения.
Гаусс первым обратил внимание на описание кривых поверхностей независимо от конкретной системы координат. Размышления об этом и обширная работа по составлению геодезических карт привели его уже в 1818 году к идеям неевклидовой геометрии, сыгравшей впоследствии огромную роль в построении современной теории гравитации. К сожалению, он всячески избегал любой формы публикации этих идей и, в конце концов, добился своего создателями неевклидовой геометрии стали Лобачевский, Больяи и Риман. И на своем памятнике Гаусс велел выбить правильный 17-угольник — задачу его построения с помощью циркуля и линейки великий геометр считал лучшим своим достижением…
В стройное здание, основанное на немногих общих принципах, превратил ньютоновскую механику французский математик Жозеф Луи Лагранж (1763–1813). Развивая идеи Эйлера, он добился чрезвычайно прозрачного описания планетных движений. Вселенная, считал Лагранж, должна описываться простейшим образом, и эта простота непосредственно отражается в законах механики. Эти законы он воспринимал как нечто объективное, заложенное в самой природе, и отсюда возникал механицизм как мировоззрение.
Но по-настоящему попытался превратить ньютоновскую картину Вселенной в мировоззренческую систему французский математик и физик Пьер Симон Лаплас (1749–1827), сын нормандского крестьянина, человек очень интересной судьбы.
Рано приобщившись к идеям французского просветительства, Лаплас в определенной степени пошел дальше традиционных деистических взглядов и стал атеистом. Годы расцвета его деятельности приходятся на бурный период истории Франции — Великую революцию, консульство, наполеоновскую империю и реставрацию. Его положение и взгляды эволюционизируют от события к событию. Он приветствует восстание и защищает республиканские взгляды, при Наполеоне становится даже министром внутренних дел (!)[71], потом — вице-председателем сената, получает графский титул. Падение императора застает его сторонником реставрации, и Бурбоны, в свою очередь, жалуют ему титул маркиза и пэра Франции…
Но главное, разумеется, не эти колебания, а воистину титаническая работа Лапласа по созданию 5-томной «Небесной механики», где картина Солнечной системы получила до мельчайших деталей ясное и красивое оформление.
Лаплас сделал очень важный шаг не только в создании моделей движения Луны и планет. Он показал, что Солнечная система — устойчивое образование и может существовать, по крайней мере, миллионы лет. Баланс гравитационных сил таков, что все параметры планетных орбит могут меняться лишь в довольно узких пределах. Отсюда следовало, что никакого внешнего вмешательства для периодического восстановления равновесия просто не требуется. Тем самым одна из ролей, которую Ньютон отводил Богу — текущий ремонт вселенской машины, оказалась излишней.
Лаплас впервые блестяще обосновал тот факт, что все крупные небесные тела должны иметь более или менее схожую форму немного сплющенной из-за вращения сферы. Эта проблема была связана с из ряда вон выходящим явлением — кольцами Сатурна, которые выглядели весьма искусственным образованием на фоне других объектов Солнечной системы[72]. Лаплас показал, что кольца не могут быть единым твердым телом, а должны состоять из огромного числа небольших камней и пыли. Загадка превратилась в естественное явление — кольца стали рассматривать как плотную группу спутников Сатурна, некоторым образом аналогичную астероидному кольцу Солнечной системы. Теперь расчищался путь для сугубо научной постановки вопроса о происхождении Солнца и планет.
Проблеме происхождения Солнечной системы повезло гораздо меньше, чем проблеме ее строения. Тому есть множество объективных причин. Но главная та, что движения Солнца, Луны и планет наблюдались систематически на протяжении тысячелетий и играли значительную роль в человеческой практике. Космогоническая же задача всегда существенно выходила за рамки этой практики — ни одна звезда или планета в окрестностях Земли (к счастью для нас!) не рождалась. Периоды обращения всех доурановых планет вполне умещаются в масштаб одной человеческой жизни, космогонические же масштабы совсем иные — миллиарды лет. Поэтому получилось так, что на протяжении почти всей своей истории человек воспринимал свою планету и небесные тела как некие данности, во всяком случае, не допускал возможности естественного их образования.
Космогоническая проблема так или иначе решалась во многих мифологических системах. Мы имели возможность убедиться, что мотивы творения Земли, неба, звезд и т. п. встречались у древних очень часто. Этот интерес восходит, на самом деле, к типично первобытному приему объяснения любого предмета или явления способом его изготовления. Функциональное назначение вещи как бы сливается с этим способом, они неразрывно составляют ее суть. В этом сказывалась необходимая активность человека в создании орудий труда, в общении с полезными или опасными элементами окружающего мира. Сколь-нибудь развитые космогонические мифы, видимо, возникают на ранних этапах становления религиозного типа мышления, когда интеллектуальный мир начинает заселяться богами. Для создания таких грандиозных объектов наблюдаемого мира, как небо и земля, требовались аналоги человека, но в соответствующих масштабах могущества. Боги и сыграли роль этих аналогов. Вероятно, с этим связана и попытка построения календаря на предельно большие сроки — от начала до конца мира. Но наблюдательных данных собственно космогонического характера под этими моделями не было.
В христианскую эпоху вплоть до Возрождения, когда доминировала теистическая мысль о непосредственном руководстве каждым небесным движением, проблемы вообще как бы не существовало — считалось самоочевидным, что Солнечную систему, Землю, человека Творец создал сразу в наблюдаемом виде. С античными идеями в духе Анаксимандра боролись беспощадно, как с прямым противоречием тексту Библии.
Деизм, конечно, расшатывал эту традицию, но, как мы видели, формирование науки шло, прежде всего, по пути исследования явлений, доступных прямому наблюдению. Античность же не дала будущей космогонии первотолчок мысли, аналогичный гениальной гелиоцентрической гипотезе Аристарха в смысле связи с наблюдаемым миром. Интерес к структуре явно опережал интерес к генезису. Усмотреть же в строении Солнечной системы отпечатки ее эволюции было не так-то просто.
В Новое Время к идеям Кузанца о единой природе космических тел и наблюдательным данным Галилея по этому поводу добавилась антично-натурфилософская, по сути, гипотеза Рене Декарта, с которой и начинается история научной космогонии.
Декарт, пытавшийся объяснить своими вихрями невидимых мельчайших частиц природу взаимодействия планет, не ограничился описанием структуры Солнечной системы. В «Началах философии», опубликованных в 1644 году, он выдвинул идею естественного формирования планет из сгустившихся вихрей. Три основных элемента — огонь, воздух и земля[73]- естественно распределяются за счет вытеснения более легких вихрей к периферии. Накопление тяжелых землистых атомов ведет к уплотнению вихря и формированию твердой планеты, над которой в виде атмосферы накапливается более легкий воздух.
Нельзя не отметить, что при всей своей умозрительности гипотеза Декарта была на редкость красива и необычна.
Как и вся концепция вихрей, лежащая несколько в стороне от общего пути, эта гипотеза подверглась уничтожающей критике со стороны Ньютона и его последователей, то есть людей, определивших лицо науки своего времени. И как говорится, с водой едва не был выплеснут ребенок.
Ньютон считал, что регулируемая тяготением Солнечная система — продукт деятельности Творца. В этом он исходил из преувеличенной оценки неустойчивости системы, где возмущения со временем приводят якобы к резкому нарушению орбит. Кому же, кроме Творца, восстанавливать обычный порядок? За подобную идею его едко высмеивал Лейбниц, справедливо полагая, что Ньютон унижает Творца, низводя его до уровня плохого часовщика, не способного как следует смонтировать свои уникальные часы…
Объективным в Ньютоновой критике оказалось то, что в его времена (а тем более в годы создания Декартовых «Начал») было преждевременно ставить космогоническую проблему на повестку дня — во всяком случае, ставить ее в том духе, как в Ньютоновых «Началах» ставилась проблема описания движения планет. Потребовалось еще немало времени — примерно половина 18 столетия, чтобы в закон всемирного тяготения поверили по-настоящему, осознали, что с помощью точных математических уравнений можно рассчитывать положение небесных тел в далеком прошлом и в далеком будущем. И только после этого наука оказалась готова к первичной разработке колоссальной идеи о возможности описания естественной эволюции объектов — не только их движения, что было прямо доказано, но и их формирования. Здесь фактически лежат истоки величайшей революции уже в научном мировоззрении — впервые зародились подозрения, что можно познать не только движение готовых материальных тел, но и законы их естественного развития, то есть сами тела становились как бы переменными во времени процессами.
Разумеется, влияние самого передового тогда раздела науки — небесной механики — в этом пункте огромно. Но немалую роль играли и иные направления исследований.
В 1669 году датчанин Нильс Стенсен (1638–1686), врач и естествоиспытатель, работавший во Флоренции, впервые объясняет строение геологического среза последовательностью событий, относящихся к различным эпохам.
В 18 веке происходит подлинное зарождение эволюционных концепций, связанное прежде всего с работами директора Парижского ботанического сада Жоржа Луи Леклерка Бюффона (1707–1788), создателя грандиозной 36-томной «Естественной истории», где он впервые попытался дать единую картину развития Земли, растительного и животного мира, настаивая на изменчивости видов.
В 1749 году в «Теории Земли» Бюффон прямо говорит о нашей планете, как об эволюционизирующем объекте и даже определяет ее возраст примерно в 70 тыс. лет[74]. Он же выдвинул гипотезу о происхождении Земли из сгустка солнечной материи, вырванного внезапным ударом гигантской кометы. Эта первая модель в ряду так называемых «катастрофических теорий» находилась в оппозиции к картезианской картине, но важно было то, что возникновение планеты объяснялось здесь вполне естественной причиной.
Картезианская же космогоническая идея вспыхнула на новом более высоком уровне во «Всеобщей естественной истории и теории неба», изданной в 1755 году молодым немецким ученым Иммануилом Кантом (1724–1804), впоследствии выдающимся философом. Кант предположил, что Солнечная система развивается из туманности[75] — пылевой материи, первоначально рассеянной по всему ее объему. Туманность, вращаясь как целое вокруг центрального сгустка (будущего Солнца), постепенно конденсируется в отдельные планеты, которые тоже образуют как бы центры небольших туманностей, развивающихся в спутники. Очень интересно, что Кант увидел своеобразную иерархию таких процессов — планетные туманности выступают у него как относительно сконденсированные элементы галактического облака, а то, в свою очередь, как элемент еще большей туманности. Это было глубоким предчувствием лишь через много десятилетий установленной структуры Вселенной. Кант довел возраст Солнечной системы до миллионов лет.
Такая же точка зрения была блестяще развита в лапласовском 2-томном труде «Изложение картины мира» (1796). Не останавливаясь на причине, приводящей туманность во вращение[76], Лаплас показал, что это вращение совместно с силами тяготения в принципе способно привести к образованию планет. Сжатие туманности под действием гравитации ведет к ускорению вращения и сплющиванию всего облака. В дальнейшем начинается сброс вещества с очень быстро вращающегося экватора, и это вещество периодически выплескивается в форме газопылевых колец, которые, в свою очередь, конденсируются в планеты.
Таким образом, к началу 19-го века возникло представление, что принципиально проблема строения и эволюции Солнечной системы решена в рамках ньютоновой механики. Оно поддерживалось и гершелевским открытием многочисленных туманностей — многие из них казались зародышами буквально на глазах образующихся планетных систем.
Отсюда понятна и сильная переоценка уровня и состояния науки, именуемая лапласовским детерминизмом.
Сам Лаплас восторженно писал: «Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями легчайших атомов: не осталось бы ничего, что было бы для него недостоверно, и будущее так же, как прошедшее, предстало бы перед его взором. Ум человеческий в совершенстве, которое он сумел придать астрономии, дает нам представление о слабом наброске того разума».
Иными словами, если записать полную систему уравнений Ньютона для всех тел Вселенной, учитывая все силы взаимодействия между ними и задавая начальные скорости и положения этих тел в какой-то момент времени, то никаких тайн не останется — все они будут заключаться в решениях этой грандиозной суперсистемы. «Бог» Лапласа — это просто некий суперкомпьютер, способный ее решить.
Разумеется, Лаплас и его современники понимали, что полная реализация этой программы — фантастика, но развитие науки все-таки мыслилось в ее рамках. Небесная механика становится общепризнанным лидером естествознания, нормируя своим образцом другие области.
«Правильность, которую обнаруживает нам астрономия, — пишет Лаплас, без всякого сомнения, имеет место во всех явлениях. Кривая, описанная молекулой воздуха или пара, определена так же точно, как и орбиты планет; разницу между ними делает только наше незнание».
Библейский творец остался в лапласовской Вселенной безработным. Ньютон думал, что Бог хоть несколько тысяч лет назад совершил доброе дело по строительству Солнечной системы. Лапласу он вообще не нужен — за рьяными деистами он оставляет право домысливать какие-то первотолчки. Единственно кому он готов молиться — тому самому Разуму, который справился бы с решением суперсистемы…
Небулярная картина Канта — Лапласа удерживала свои позиции до начала 20 века. Она в немалой степени стимулировала развитие общего эволюционного учения и в то же время накладывала на него отпечаток детерминистских иллюзий. Процесс освобождения от них и до сих пор не совсем завершен.
В 1809 году появляется «Философия зоологии» Жана Батиста Пьера Ламарка (1744–1829), где впервые формулируется целостная эволюционная теория живых организмов, идея образования растительного и животного мира из неорганической природы. Несмотря на некоторые наивные выводы и явную дань механистическим идеалам, Ламарк заложил настоящую основу для блистательного взлета биологии в последующее столетие. Его работа — как бы мост между Пьером Беллоном (1517–1574), впервые сопоставившим скелеты человека и других позвоночных, Карлом Линнеем (1707–1778), включившим человека в отряд приматов, и дарвиновской теорией происхождения видов.
В середине 19 века эволюционная теория испытывает взлет, связанный с работами Чарльза Дарвина (1809–1882), Альфреда Рассела Уоллеса (1823–1913) и Томаса Гексли (1825–1895). Человек окончательно входит в естественную систематику мира, не требуя особого акта творения и окончательно лишая Творца каких-либо функций.
Однако главный урок интенсивно развивающейся биологии был принят и понят не сразу. Ведь биология столкнула ученых с рассмотрением сверхсложных систем, требующих совсем иного подхода, чем системы механические. Физика до сих пор усваивает этот урок.
Кроме всего прочего, теория естественного отбора предъявляла существенно иные требования к оценке возраста Вселенной. Очень медленный процесс биоэволюции не мог бы так далеко зайти на планете, существующей сотни тысяч и даже миллионы лет. Счет подошел к миллиардам! В этом плане биология как бы подтверждала те выводы, которые стали складываться к середине 19 века в области геологических исследований.
В недрах Земли обнаружилось явное расслоение по различным очень длительным эпохам, когда на планете царили совсем иные виды животных и растений, иной была и минеральная структура. Для постепенного возникновения этих слоев требовались сроки в тысячи раз больше тех, которые предписывались небулярной моделью.
Общая геологическая картина была построена Джеймсом Хаттоном (1726–1797) в «Теории Земли» (1785) и Чарльзом Лайеллом (1797–1875) в его трехтомных «Основах геологии», опубликованных в начале 30-х годов прошлого века. Развитая ими теория геологической эволюции, основанная на идее постепенного формирования слоев осадочных пород и земного рельефа, напрямую приводила к заключению об огромных сроках существования Земли. Живо интересовавшийся биологическими проблемами Лайелл опубликовал в 1836 году книгу «Геологические доказательства древности человека», послужившую важным подспорьем для последующего становления дарвиновской теории.
Так во взаимодействии наук формировалось представление о меняющихся космических мирах. Роль здесь биологии и бурно пошедшей в рост с середины 19 века теории эволюции социальных структур во многом еще постигается. Их связь с астропроблемами будет обсуждаться в 3-й части этой книги.
Но в обсуждении современных этапов открытия Вселенной совершенно особую роль играет взаимодействие астрономии с физикой. С этого мы и начнем следующую главу.