147215.fb2 Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию книги . Страница 19

Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию книги . Страница 19

Первый результат, по-видимому, получил директор Дерптской обсерватории Василий Яковлевич Струве[79] (1793–1864), определивший параллакс Веги (α Лиры) в 1837 году. Это была прецизионная работа — параллакс оказался немногим больше десятой доли угловой секунды (современное значение 0,123).

Заметно большие параллаксы были получены в 1838 году немецким астрономом Фридрихом Вильгельмом Бесселем (1784–1846) для 61 Лебедя и английским астрономом Томасом Гендерсоном (1798–1844), наблюдавшим в Южной Африке? Центавра[80].

Вега и α Центавра — четвертая и пятая среди самых ярких звезд, а 61 Лебедя — очень быстрая звезда, чье собственное движение можно зарегистрировать невооруженным глазом (5,22 в год)[81]. Это и давало предварительные основания числить данные звезды среди ближайших к Солнцу.

Бессель первым сообщил о своем открытии, но, как и Гендерсон, опубликовал его в 1839 году, а Струве — даже в 1840 г.

Из этих измерений впервые возникла надежная абсолютная шкала межзвездных расстояний. Оказалось, что ближайшая из звезд находится на расстоянии, которое свет преодолевает за 4,28 года (это так называемая Проксима Центавра с параллаксом 0,762, относящаяся к тройной системе Центавра).

Зная расстояния, можно было вводить абсолютные звездные величины, определяемые как блеск звезды, отнесенной от наблюдателя ровно на 10 парсеков:

М = m + 5–5 lg R, где расстояние R дано в парсеках.

Из сопоставления разных звезд вытекало, что Солнце ничем особым не выделяется даже среди ближайших соседей. Его светимость в 3 раза больше, чем у? Центавра, но, например, светимость Сириуса в 22 раза превосходит солнечную.

К сожалению, метод тригонометрических параллаксов работает до расстояний порядка 30 парсеков, поскольку надежные измерения параллакса отдельной звезды можно вести с точностью, не превышающей 0,03. Далее необходимо учитывать параллаксы, относящиеся к звездным скоплениям, — это дает достаточно надежные результаты для расстояний в 10–20 раз больших.

Следующее расширение масштаба связано с переходом к расстояниям порядка размера Галактики (20–30 килопарсеков), а также к межгалактическим расстояниям в миллионы и десятки миллионов парсеков и космологическим миллиарды парсеков. И здесь потребовались новые приемы измерения.

Необходимость смены методов при переходе к иным масштабам не должна вызывать удивление. Нельзя, пользуясь одной и той же метровой линейкой, одинаково хорошо измерять объем комнаты, молекулы и галактики. Каждая область требует своего подхода — важна лишь стыковка с исходным метром. Поэтому естественно, что метод тригонометрических параллаксов, хорошо приспособленный для определения размеров в ограниченной околоземной окрестности — от Луны до не слишком далеких звезд, перестает работать там, где угловые измерения становятся ненадежны[82]. Основную роль начинают играть иные стандарты — звезды с хорошо выраженной зависимостью между периодом пульсаций и светимостью (цефеиды) и, наконец, самые общие свойства источников излучения (допплер-эффект). На этих методах мы немного остановимся в следующих разделах — они оказались ключом к открытию крупнейших космических структур.

Что же касается звезд — здесь астрономы шаг за шагом изыскивали возможности определения важнейших параметров.

Не так уж хитро, хотя и крайне ограниченно, удавалось измерять массы. В этой задаче срабатывали те же методы, которые были найдены при исследовании планет Солнечной системы. Если для двойной звезды удавалось оценить орбиту каждой компоненты и период обращения, то дальше включались обычные математические методы небесной механики, и массы вычислялись из системы уравнений. Другое дело, что ситуация, когда известно расстояние до двойной звезды, и ее компоненты достаточно разнесены для четкого выделения орбитального движения, встречается весьма редко. В большинстве случаев приходится прибегать к косвенным методам, дающим очень приближенные оценки. К сожалению, до сих пор вообще не существует прямого метода определения массы одинокой звезды — здесь приходится давать чисто аналоговую оценку, сопоставляя объект со звездами того же цвета и спектрального класса.

Немалые трудности встретились и при измерении звездных радиусов. Лишь для близких звезд можно напрямую определить угловой размер диска, причем основано это на весьма тонких оптических методах. В 1890 году американский физик-экспериментатор Альберт Абрахам Майкельсон (1852–1931) предложил использовать для астрономических целей интерферометр. Идея сводилась к следующему. Свет от точечного источника, проходя сквозь пару щелей, создает на расположенном сзади экране характерную интерференционную картину красивый узор из ярких и темных линий. Однако если источник обладает неисчезающим угловым размером, то при определенном расстоянии между щелями эта картина разрушается. Зная это расстояние и длину волны света, можно оценить и угловой диаметр звезды, после чего, используя известное расстояние до звезды и простые правила тригонометрии, найти ее радиус.

Другая возможность существует для затменных двойных звезд. Если удается определить орбитальные скорости компонент, то радиусы неплохо оцениваются просто по длительности затмений. Удобство метода кроется в том, что радиусы иногда измеряются даже без предварительного выяснения расстояния до звезды. Наконец, в связи с развитием теории теплового излучения появился еще один очень общий, хотя и не слишком точный, метод расчета радиусов — по известной светимости и эффективной температуре звезды оценивалась площадь ее поверхности.

Хотя масса и радиус, бесспорно, очень важные характеристики звезды, центральной в наблюдательном отношении характеристикой является ее энергетическая активность. Главное, что можно извлечь из наблюдений, — это количество и качество звездного излучения, то есть светимость звезды и ее спектральный тип.

Классификация по видимому блеску предполагала, что яркость звезд, отстоящих друг от друга на 5 звездных величин, отличается ровно в 100 раз[83]. Яркость определяется потоком излучения — количеством энергии, которое в единицу времени попадает на единичную площадку сферы, которой мысленно окружают звезду. Зная радиус этой сферы г (расстояние от наблюдателя до звезды) и поток излучения, можно по простой формуле найти светимость: L = 4πr2F.

Классификация становилась все детальней. Звезды различаются не только по блеску, но и по виду спектра, что было открыто еще Фраунгофером. Итальянский астроном, директор Римской обсерватории Пьетро Анджело Секки (1818–1878), первым обратил внимание на связь между цветом звезд и их спектром. В работах периода 1863–1868 годов он разделил звезды на 4 группы по их спектральным особенностям (типичным линиям поглощения), характеризуя каждую группу определенным цветом: белым, желтым, оранжевым и красным.

Обилие спектральных портретов, полученных к концу 19 века, вызвало потребность в более подробном описании. В двух публикациях 1889 и 1897 годов директор Гарвардской обсерватории американец Эдвард Чарльз Пикеринг (1846–1919) предложил удобные буквенные обозначения для каждого класса, а впоследствии каждый класс был разбит на 10 групп, нумеруемых цифрами от 0 до 9. Последовательность классов, принятая ныне, задается буквами О, В, A, F, G, К, М[84]. Солнце по этой схеме относится к классу G2, Сириус — А1.

Для класса G характерны, например, сильно выраженные спектральные линии кальция и сравнительно ослабляющиеся при переходе от G0 к G9 линии водорода. Поэтому, зарегистрировав эти особенности в спектре какой-то звезды, мы можем полагать, что она довольно близка по свойствам к Солнцу.

Важную роль сыграла цветовая классификация, поскольку звезды по-разному излучают в различных диапазонах длин волн. Цвет можно довольно точно задавать количественно, применяя соответствующие оптические фильтры. Видимые звездные величины дополнительно различают по тому, сквозь какой фильтр они наблюдаются. Соответствующие индексы: R (красный), V (желтый, или визуальный, в основном соответствующий восприятию нормальным человеческим глазом), pg (фотографический, соответствующий данным на фотопластинках), В (голубой), U (ультрафиолетовый) присоединяются к указанию видимой или абсолютной звездной величины. Численная оценка показателя цвета делается по разности величин звезды, полученных в голубом и желтом фильтрах (так называемый B-V показатель). Это позволяет довольно точно включить звезду в один из спектральных классов.

Спектральные исследования открыли путь к определению эффективной температуры звездных поверхностей, точнее, верхних слоев звездной атмосферы. Оказалось, что спектральные классы содержат и своеобразную температурную классификацию звезд. Самые горячие — звезды класса О имеют поверхностные температуры порядка 30–40 тыс. градусов, самые холодные относятся к классу М, и их температура заключена в интервале 2,5–4 тыс. градусов.

Эта связь оказалась далеко не единственной. Вдоль последовательности спектральных классов — от М к А — возрастают массы, радиусы и светимости звезд. Это обстоятельство довольно легко усмотреть из диаграмм, где по оси абсцисс отложены спектральные классы (обычно от А до М) или показатели цвета, а по оси ординат — интересующая нас величина, например, масса или светимость.

Видимо, впервые использовал такую возможность датский астроном Эйнар Герцшпрунг (1873–1967), установивший в 1905 году зависимость между абсолютной звездной величиной и спектральным классом. Очень важный результат Герцшпрунга — разделение звезд по классам светимости на карликов и гигантов. Дело в том, что звезды одного и того же спектрального класса могут обладать чрезвычайно различной (в тысячи раз!) светимостью. При одинаковой температуре поверхности объяснить это можно только очень большим различием в радиусах. Предварительный отсев особо крупных и очень малых звезд позволил увидеть довольно четкую зависимость для обычного звездного населения[85]. Идея Герцшпрунга была развита директором обсерватории Принстонского университета в США Генри Норрисом Ресселом (1877–1957), который тщательно проанализировал диаграмму «спектр — абсолютная звездная величина», впоследствии названную диаграммой Герцшпрунга — Рессела.

Положение звезды на диаграмме такого типа оказалось не просто наглядной и удобной формой записи информации о ее состоянии. Рессел догадался, что перед ним какая-то эволюционная последовательность. Звезда, сжимаясь под действием гравитации, разогревается, путешествуя по верхнему краю диаграммы от области красных гигантов до класса О главной последовательности. Затем она спускается в диагональном направлении по главной последовательности, проходя фазу, в которой находится сейчас желтый карлик — Солнце, фазу красных карликов и, наконец, превращается в невидимый выгоревший объект. Такова была одна из первых попыток создать модель звездной эволюции. Для ее успеха не хватало еще многих данных, необходимых представлений об энергетических запасах звезд.

Диаграмма Герцшпрунга-Рессела

В 19 веке был найден правильный ответ на вопрос о поджигающем механизме. Им оказалось гравитационное сжатие звезды. Но что и как горит? Почему звезда светит так долго?

Обычные химические реакции не позволяли дать разумных оценок звездного возраста. И только прорыв физики в область атомных ядер открыл дорогу новым идеям звездной энергетики.

Источником долгожительства ярких звезд оказались термоядерные реакции, в которых достаточно медленно синтезируются все более тяжелые элементы при колоссальном выделении энергии. Анализ этих реакций и привел к современной картине звездной эволюции, которую мы обсудим во II части книги.

Звездная экзотика

Однако открытием и классификацией более или менее обычного звездного населения дело не ограничилось. Уже в период зарождения эволюционной картины космоса — где-то во времена Лапласа проскальзывали идеи о небесных телах, непохожих на известные планеты и звезды. Ведь если звезды рождаются и умирают, их начальные и конечные состояния должны весьма отличаться от Солнца.

Первый шаг в этом направлении был сделан Фридрихом Бесселем, который в 1844 году провел тонкий анализ положений Сириуса и установил, что эта звезда связана с каким-то невидимым спутником. Картина выглядела так, что яркий Сириус А вместе с довольно массивным Сириусом В образуют двойную систему, обращающуюся вокруг общего центра тяжести с периодом порядка 50 лет. Масса спутника примерно равна массе Солнца, и поэтому его нельзя было считать планетой — скорее, речь шла о погасшей звезде. В 1862 году американскому астроному Олвину Грэхэму Кларку (1832–1897) удалось разрешить двойную систему Сириуса. Оказалось, что Сириус В — звездочка примерно 7 величины[86], но ее цвет вовсе не свидетельствовал об угасании. Имея светимость почти в 100 раз меньше солнечной, эта звезда была раскалена добела, вместо того чтобы демонстрировать положенный темно-красный оттенок. В 1914 году американец Уолтер Сидней Адаме (1876–1956) проанализировал спектральный портрет звездной пары, и стало ясно, что обе звезды — А и В принадлежат к одному спектральному классу А, а их поверхностная температура порядка 10 000 К. Так состоялось открытие белых карликов.

Необычность Сириуса В заключалась в его малых размерах. Только очень малой площадью поверхности можно было объяснить столь малую светимость при температуре, почти в 2 раза превышающей температуру поверхности Солнца. Но отсюда следовало, что плотность белого карлика очень велика — примерно в 100 000 раз больше средней плотности нашего центрального светила.

Объекты такого рода с довольно разными массами и радиусами, но очень высокими плотностями порядка 104–106 г/см3 были обнаружены во множестве. А бурное развитие атомной физики в 10- 20-х годах позволило объяснить их существование вполне естественным образом.

Оказалось, что вещество, из которого состоит белый карлик, находится в необычном состоянии. Грубо говоря, для нормальной плотной упаковки атомов массой 10–24 г и размером 10-8 см характерна плотность порядка 10–24/(10-8)3 =1 г/см3. При достаточно большом давлении, возникающем при сжатии звезды, атомная структура разрушается, электроны образуют особый так называемый вырожденный газ. Характерным размером теперь уже является не радиус электронной орбиты, а квантовый (комптоновский) радиус электрона ((e = ћ /meс = 3,86.10–11 см). Получается картина, в которой плотно упакованы уже не атомы, а электроны, а ядра (например, протоны) как бы вжаты в электронный объем. Отсюда и характерная плотность белых карликов: (~ 10–24/(4.10–11)3 ~107 г/см3. Более точные оценки дают несколько меньшую величину, но в целом ситуация именно такова. Этим достижения астрономов и физиков не ограничились. Открытие в 1932 году нейтрона и немедленно последовавшее создание модели атомного ядра (микрообъекта, состоящего из компактно упакованных протонов и нейтронов) открыло путь к анализу еще более концентрированного звездного вещества. В самом деле, не может ли звезда при гораздо больших давлениях переходить в фазу гигантского атомного ядра с плотной упаковкой ядерных частиц?

Такая идея проскользнула в небольшой заметке советского физика-теоретика Льва Давидовича Ландау (1908–1968) в связи с поиском удовлетворительной гипотезы о звездных источниках энергии. Заметка была опубликована в 1932 году, и автор не знал еще об открытии нейтрона.

Конкретное и впоследствии оправдавшееся предсказание объектов нового типа сделали через 2 года американские астрономы Вальтер Бааде и Фриц Цвикки. Оценивая энергетику вспышек Сверхновых звезд, они пришли к гипотезе, что «…Сверхновая представляет собой переходную стадию от обычной звезды к нейтронной, состоящей главным образом из нейтронов».

Еще до конца 30-х годов вырисовалась довольно четкая модель. Дальнейшее сжатие белокарликового вещества приводит к тому, что электроны, как бы вдавливаясь в объем протонов, вступают с последними в реакцию, известную как обратный? — распад (р + е- > n +?). Происходит своеобразная нейтронизация атомных ядер, а избыток энергии излучается в виде нейтрино. Нейтроны слипаются в гигантское ядро, а огромный гравитационный потенциал как бы запирает канал прямого? — распада (n > р + е- +?), то есть образуется вполне стабильный сгусток нейтронного вещества. Характерный размер теперь уже порядка комптоновского радиуса нейтрона ((n = ћ /mnс = 2,1.10–14 см) и соответствующая ему характерная плотность — порядка ядерной (1014 -1015 г/см3). Радиус нейтронной звезды с массой порядка М€ должен быть не более 10–20 км. Оставалось только обнаружить такой объект, и самое любопытное, что фактически это и было сделано Вальтером Бааде и Рудольфом Лео Минковским еще в 30-е годы. Исследуя Крабовидную туманность — след Сверхновой, вспыхнувшей в 1054 году, — они отождествили одну из слабых звездочек с нейтронной, то есть, по гипотезе Бааде Цвикки, — с остатком взрыва. Спектр ее был весьма необычен, он не содержал линий поглощения и излучения, характерных для звезд главной последовательности. Казалось бы, тут и счастливый финал короткой истории. Но вышло все гораздо забавней — как раз факт регистрации звезды оптическими методами и послужил причиной недоверия к сути открытия. Дело в том, что стандартный механизм теплового излучения при обнаруженной светимости звезды Бааде — Минковского (выше L() требовал совершенно чудовищных поверхностных температур (что-то около 1013 К), иначе звезда не могла бы давать в оптическом диапазоне наблюдаемой яркости. Это и не удивительно — ведь площадь излучающей поверхности нейтронной звезды примерно в миллиард раз меньше площади Солнца.

Под впечатлением оценок такого рода звезда Бааде-Минковского на 3 десятилетия перешла в разряд несколько загадочных объектов — до нетеплового импульсного механизма ее излучения теоретикам дойти не удалось. И между первым и вторым этапом открытия нейтронных звезд пролегла полоса, связанная с серьезнейшим экспериментальным и теоретическим перевооружением астрономии.

В первую очередь речь идет о выходе наблюдений в радиодиапазон. До поры до времени астроном ограничивался обзором неба в интервале отпущенного ему природой зрения[87]. Оптическая картина, как говорится, въелась нам в кровь, но это не значит, что другие участки спектра, недоступные напрямую человеческим органам чувств, содержат менее интересную и полезную информацию. К началу 20 века было ясно, что в принципе Вселенная должна светиться всеми частями электромагнитного спектра, а несколько позднее удалось установить, что Земля обстреливается еще и потоками энергичных элементарных частиц и атомных ядер — космическими лучами.

Между тем, старт радиоастрономии выглядел крайне скромно и был связан с исследованием помех во вполне земных передачах. В 1931 году американский инженер Карл Янский установил, что, по крайней мере, часть помех на волне 14,6 м имеет чисто космическую природу. Небосвод оказался довольно сильным источником радиосигналов, но в то время этот замечательный факт не вызвал особого энтузиазма. Диапазон сантиметровых и дециметровых волн не был технически разработан и не привлекал внимания астрономов.

Ситуация резко изменилась в связи с созданием к началу второй мировой войны радиолокационной системы противовоздушной обороны. Огромные средства, брошенные на решение этой жизненно важной задачи, преобразовали микроволновую радиотехнику настолько, что уже к середине 40-х годов можно было довольно уверенно создавать радиокарты неба.

Выяснилось, что Солнце и другие звезды являются интенсивными генераторами микроволнового излучения, радиоволны может испускать также межзвездная среда. Более того, радиокарты во многом не похожи на то, что мы привыкли видеть на картах оптических. Мощнейшие радиоисточники могут быть практически невидимы в обычном свете, и наоборот, яркие оптические объекты — ничем не выделяться в радиодиапазоне.

Новый «орган чувств» позволил вписать в историю астрономии много славных страниц — о некоторых я еще упомяну. Быть может, самая любопытная из них связана со вторым — на этот раз окончательным — открытием нейтронных звезд, и на ней мы сосредоточим внимание.

Открытие это произошло в какой-то степени случайно, во всяком случае, как и первое предсказание нейтронных звезд, оно появилось в качестве побочного результата в исследовательской программе, ставящей иную цель. В 1967 году группа кембриджских астрономов во главе с Энтони Хьюишем приступила на новом радиотелескопе к изучению очень важной проблемы мерцания в диапазоне λ = 3,7 м. Они хотели установить характер колебаний потока радиоизлучения, обусловленных межзвездной средой, и обзавелись весьма чувствительной аппаратурой, которая позволяла хорошо разрешать сигналы во времени.

В конце лета практикантка Хьюиша Хоселин Белл, внимательно просмотрев ленты с записью сигналов, установила, что на случайный шум накладываются четкие периодические всплески. Этот эффект привлек внимание всей группы, и вскоре выяснилось, что наземные помехи тут ни при чем — источник всплесков находится на небе, причем на вполне определенном его участке. К концу осени существование космического радиоисточника с периодом около 4/3 с подтвердилось. Так был открыт первый пульсар СР1919 (Cambridge Pulsar с прямым восхождением 19 часов 19 минут), а через некоторое время еще три аналогичных объекта.

О первоначальном замешательстве в связи с этим открытием свидетельствует тот факт, что все четыре пульсара были закодированы как LGM1, LGM2 и т. д. (от Little Green Men — буквально «зеленые человечки»), иными словами, группа Хьюиша с немалой вероятностью допускала, что получено сообщение от внеземной цивилизации. Образ — дань модной традиции, согласно которой экипажи летающих тарелок, о которых ходило немало слухов (и ходит до сих пор!), состоят из каких-то небольших зеленых существ. Однако после публикации первой заметки в феврале 1968 года (журнал «Nature») туман быстро рассеялся. Открытия Кембриджской группы были подтверждены другими радиообсерваториями, до конца 1968 года поступили сообщения о добром десятке других пульсаров. В 1969 году выяснилось, что пульсаром является и звезда Бааде — Минковского в Крабовидной туманности.

Природу исходного удивления понять не так уж сложно. Астрономические объекты, способные изменять свое состояние в целом за 1 секунду, — явление, по крайней мере, странное. Они должны иметь очень малые размеры и, с этой точки зрения, похожи на какие-то искусственные сооружения. Единственный выход — считать, что объект со светимостью звездного уровня и малым радиусом (порядка 10 км) представляет собой настоящую нейтронную звезду.

Сначала думали, что всплески излучения действительно обусловлены пульсацией нейтронной звезды. Теория позволяла объяснить такой моделью периоды до 1–2 секунд, но в том же Крабе пульсар PSR0531 + 21 продемонстрировал период 0,033 с, что потребовало совершенно новых идей по поводу механизма излучения.

Пульсар представляет собой быстро вращающуюся нейтронную звезду с чрезвычайно сильным (до 1012 Гаусс) магнитным полем. Излучение концентрируется вблизи магнитных полюсов, которые и носятся вокруг оси вращения с определенным периодом. Можно сказать, что с наблюдаемыми пульсарами нам повезло — эти импульсные маяки удачно сориентированы относительно Солнечной системы.

Модель пульсара