147215.fb2 Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию книги . Страница 22

Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию книги . Страница 22

Большой вклад в разработку идеи межпланетных полетов внес француз Робер Эно-Пельтри (1881–1957), создатель первого самолета-моноплана. Он первым приступил к разработке моделей оптимальных траекторий движения космического аппарата и схем испытания топливных смесей. Заглядывая в далекое будущее космонавтики, Эно-Пельтри построил теорию движения релятивистской ракеты и выдвинул идею использования ядерных двигателей.

В СССР Фридрих Артурович Цандер (1887–1933) и Сергей Павлович Королев (1906–1966) в 1931 году организуют знаменитый ГИРД — Группу по изучению реактивного движения, где проводятся успешные испытания ряда двигателей, и через 2 года стартует первая советская ЖРД-ракета ГИРД-09. В том же 1933 году ГИРД сливается с тихомировской гидродинамической лабораторией в Ракетный научно-исследовательский институт (РНИИ), организацию, заложившую глубокие теоретические и экспериментальные основы будущих советских космических программ.

В Германии начинают экспериментировать с реактивными аппаратами Герман Оберт (р. 1894), сумевший в 20-х годах независимо повторить результаты Циолковского, и Вернер фон Браун (1912–1977).

В 30-е годы проблемы создания ракет начинают переходить в более практическую плоскость. Этому в немалой степени способствовал интерес военных — реактивные снаряды стали рассматриваться как потенциально эффективное средство ведения боевых действий, идущее на смену традиционной ствольной артиллерии, или, во всяком случае, как средство, способное решать те задачи, которые не под силу артиллерии и авиации. Это не слишком приятная полоса в истории создания космической техники, но она имела место и объективно обеспечила приток в эту сферу огромных финансовых, интеллектуальных и промышленных ресурсов. Как говорится, из песни слова не выкинешь, не отбросишь и того, что первая ракета дальнего действия Фау-2 была создана Вернером фон Брауном в 1944 году в военно-исследовательском центре Пенемюнде с целью переломить ход второй мировой войны и предотвратить разгром фашистских режимов. Страшно подумать о том, что немецкие ученые-ядерщики могли проявить не меньшую патриотическую инициативу и снабдить пресловутые Фау соответствующими зарядами…

В течение первого послевоенного десятилетия были разработаны достаточно мощные двигатели, эффективные топливно-окислительные смеси и надежные системы управления. Баллистические ракеты поднялись на сотни километров, и стало ясно, что рубежи первой и второй космической скорости вполне преодолимы.

4 октября 1957 года (дата, практически совпадающая со столетием рождения Циолковского) — начало космической эры. В этот день на орбиту был выведен первый советский искусственный спутник Земли. Этот сравнительно скромный аппарат — шар радиусом 29 см и массой 83,6 кг, начиненный радиоаппаратурой и двигавшийся на высотах от 228 до 947 км, — настоящий подвиг коллектива, возглавляемого Королевым, организатором и руководителем первых советских космических программ.

Примерно через месяц на орбиту вышел второй советский ИСЗ, который стал и первым биологическим спутником — на его борту находилась собака Лайка. Это был необходимый этап для осуществления выхода человека в космическое пространство.

Этот важнейший шаг был сделан 12 апреля 1961 года, когда на орбиту ИСЗ вышел корабль «Восток-1», пилотируемый Юрием Алексеевичем Гагариным (1934–1968). За 108 минут исторического полета человечество вслед за советским космонавтом перешагнуло порог неведомого, порог древней мечты.

А 21 июля 1969 года первым ступил на поверхность Луны американский космонавт Нейл Армстронг (р. 1930), пробывший вне лунной кабины 8476 секунд — почти 2,5 часа[102].

Таковы, на мой взгляд, 4 важнейшие вехи космической эры. На самом деле и между отмеченными здесь достижениями и после них были получены замечательные результаты.

Советские и американские аппараты осуществляли посадку не только на Луне, но и на Марсе и на Венере. «Маринер-10» подходил к Меркурию, «Луна-1» стала первым искусственным спутником Солнца, «Пионер-10» прошел вблизи Юпитера и, передав на Землю важную информацию, впервые отправился в межзвездное путешествие, унося на борту золотую табличку, на которой записаны сведения о нашей планете — своеобразную визитную карточку землян, предназначенную неведомой инопланетной цивилизации. Вслед за ним устремились «Пионер-11», 1-й и 2-й «Вояджеры», чтобы собрать информацию о Юпитере, Сатурне, Уране, Нептуне и тоже унести послания землян за пределы Солнечной системы.

Недалек тот час, когда люди отправятся на ближайшие планеты. Для этого прежде всего отрабатывается длительное пребывание человека в условиях корабля и в открытом космосе. Ведь при полете, скажем, к Марсу — а он и является реальной очередной целью высадки — не отделаешься 1–2 неделями, речь пойдет о годах. Исследования, связанные с длительным пребыванием космонавтов вне Земли, активно ведутся, и их результаты — особенно это касается многомесячных работ на советских орбитальных станциях — весьма обнадеживают.

Разумеется, такая программа, как полет экипажа на Марс, не решится в ближайший год-два. Стоимость марсианского проекта раза в 3 выше, чем лунного, то есть программы высадки людей на Луну «Аполлон», стоившей порядка 30 миллиардов долларов. Не исключено, что для марсианской трассы придется ввести в действие космические корабли с ядерно-плазменными двигателями. Но так или иначе марсианский вариант может осуществиться уже на рубеже 20-21-го столетий.

Можно было бы еще многое сказать о блестящих результатах космонавтики и о дерзких проектах вполне обозримого будущего. Все это в какой-то степени укладывается в образную формулу, содержащуюся в знаменитых словах Нейла Армстронга: «На Луне мы походили на пятилетних мальчишек в кондитерской лавке. У нас разбежались глаза, надо было сделать так много». Эта формула неплохо передает ощущение колоссально расширившегося мира, ощущение людей начала космической эры.

Попробуем определить главные итоги этого раздела.

Выход в космическое пространство открыл путь к мощному рывку астрономии в новые спектральные диапазоны, к наблюдениям, которые ранее не были доступны из-за атмосферы, непроницаемой для многих типов излучения. Это уже принесло ряд выдающихся результатов — от открытия рентгеновских источников до недавнего обнаружения заплутонового кольца (вероятней всего, второго астероидного пояса Солнечной системы) с помощью инфракрасного телескопа, установленного на спутнике.

Открылся путь и к непосредственному, контактному исследованию небесных тел. Это уже оказало заметное влияние на космогонические модели и потребовало перестройки теории планет.

По значимости появление космических обсерваторий — событие не меньшего масштаба, чем создание в 17 веке обсерваторий телескопических, открывших нам совершенно новую Вселенную. Ясно, что в ближайшее время круг достижений заметно расширится. На очереди грандиозные проекты стационарных внеземных обсерваторий и телескопов с базой космического масштаба, которые позволят разглядеть тончайшие детали строения Вселенной — от планет у ближайших звезд до структуры квазаров, а главное — увидеть много неожиданного, обитающего пока в пограничье астрофизических моделей и самой смелой фантастики. Не исключено, что не столь уж далекие потомки будут с уважительным трепетом читать о тех «допотопных временах», когда телескопы были ограничены толстой земной атмосферой и люди азартно обсуждали проблему марсианских каналов, не имея возможности слетать на одну из ближайших планет и как следует покопаться на ее поверхности. Но ведь и мы, уже сделав шаг в постгалилееву эпоху, с немного ироническим сыновним почтением взираем на труды и гипотезы классиков дотелескопической астрономии… Именно эту новую эпоху пророчествовал Циолковский в 1912 году: «Только с момента применения реактивных приборов начнется новая великая эра в астрономии эпоха более пристального изучения неба».

Выход в космос заставляет по-новому взглянуть на проблему взаимодействия человека с Вселенной. Мы стоим на пороге создания искусственных конструкций космического масштаба, то есть реорганизации больших участков космического пространства по своему усмотрению. Как и во имя чего это осуществлять? Ограничится ли наша экспансия Солнечной системой или надо готовить идейную основу для прорыва в иные звездные миры? Выход в масштабы межзвездных и галактических порядков — крайне нетривиальная проблема, и на ее решение нельзя механически опрокидывать опыт освоения ближайших космических окрестностей. Даже вездесущие и всеопережающие фантасты решились повторить вольтеровские идеи совсем недавно — лишь в 1928 году («Космический жаворонок» Эдварда Смита и «Сталкивающиеся светила» Эдмонда Гамильтона).

Для того чтобы в сколь-нибудь обозримом будущем последовали и реальные попытки такого рода, нужна особая сверхзадача, скорее всего, не сводящаяся к завоеванию дополнительного жизненного пространства для землян. Станет ли такой сверхзадачей эволюционное расщепление земной цивилизации и Контакт с цивилизациями внеземными — попытка включить человечество в единую систему космической культуры?

Обсуждение этих глубоких проблем мы отложим до последних глав книги. А сейчас хотелось бы подвести некоторые итоги I части — исторического обзора взглядов на Вселенную.

Итоги путешествия

На этом мы в основном завершаем путешествие в прошлое космологических представлений. Небольшие исторические экскурсы придется использовать и в следующих частях, но они добавят к пройденному не так уж много.

По пути наверняка кое-что упущено. Сотнями интересных фактов и десятками имен можно было бы дополнить рассказ о развитии астрономии, не говоря уж о совсем фрагментарно поданной картине общеисторического фона. Однако, пытаясь объять необъятное, мы, вероятней всего, понесли бы еще большие потери.

Главное, что следовало извлечь из путешествия по далеким временам, крупномасштабная картина эволюции модели Вселенной. Отталкиваясь от простенькой, но неплохо соответствующей наблюдаемому миру схемы трех типов мышления: магико-тотемического, религиозного и научного, мы сумели отыскать нечто полезное — выяснилось, что указанные типы образуют эволюционную цепочку. Эта цепочка выстраивалась в сильной взаимосвязи со взглядами на Вселенную. Три заместивших друг друга картины устройства космоса, конечно, отражают изменение типов мышления, но и являются сильнейшими стимулами такого изменения. Крупнейшие исторически зафиксированные переходы от магии к религии и от религии к науке сопровождались появлением принципиально новых точек зрения на небо и небесные явления. Но эти переходы в значительной степени и совершались «через небо». Общий вывод, связанный с данным подходом, выглядит так. Новые типы мышления возникают благодаря качественному усложнению их носителей — социальных структур, что в свою очередь происходит за счет освоения новых рубежей практики. Мышление по характеру фиксируемых им образов социоморфно. Другое дело, что в конкретных условиях разные элементы социальной практики представлены по-разному.

В доступных историческому исследованию рамках мы сразу сталкиваемся с социоморфностью мышления, а через это и с социоморфностью модели Вселенной.

Тотем австралийского аборигена или бушмена, символ локальной группы образ, бесспорно, социоморфный. Человек в какой-то степени лучше воспринимает свой род, чем себя индивидуально. Правила поведения относительно тотема (по сути, неявные законы поведения человека в обществе) крайне далеки от современной логики, но объективно полезны.

Однако тотему, как и любым внешним факторам, разрешается своевольничать как угодно — нет предписанных общих законов. Сообразно с этим за любым явлением может угадываться совершенно особый механизм поэтому отсутствуют законы, стягивающие сколь-нибудь широкий круг явлений окружающего мира.

В обществах с развитой иерархической структурой социоморфизм космических представлений просматривается довольно легко. Пантеон всегда выглядит, как царский двор во главе с более или менее своевольным монархом. Суть не в его тотемном образе Солнца или Пернатого Змея, или антропоморфности в духе Мардука или Зевса, суть в системе отношений богов между собой и с людьми. Образец Римской империи с ее весьма совершенной для античности юриспруденцией и могучей централизованной властью в слиянии с монотеизмом христианства, а потом ислама стал основой модели бога-императора, абсолютного самодержца, ни с кем не делящего свою власть, но снабдившего Вселенную (свою империю) системой абсолютных законов. Познавать их и восторженно им подчиняться — такова была установка христианской и мусульманской церквей, сулящая весьма практические блага и моральное удовлетворение. Эта установка и определила уровень развитого религиозного мышления, можно сказать, главное его направление[103].

В эру научного мировоззрения Вселенную стали изучать прежде всего как гигантскую машину с мощной энергетикой. Объективные законы ее функционирования — так называемые законы природы[104], подлежащие экспериментальному обнаружению и теоретической привязке ко всей системе знаний, стали символом нового мировоззрения.

Может показаться, что социоморфизм такого рода неполноценен техносфера представляет собой лишь подсистему любой социальной структуры. Пытливый читатель сумеет сформулировать вопросы: а не соответствует ли наш уровень чему-то вроде фетишизма этой подсистемы? А где же место человека, вообще мыслящего социального организма?

И все это вообще-то правда. Мы действительно фетишизируем машины, а до недавних пор и не стеснялись рекламировать такой подход, развивая мифы о мыслящем венце мироздания, вооружающемся все более мощной техникой, о безграничном покорении природы и неисчерпаемых ресурсах всего и повсюду.

Мы пытались навязать познанию внесоциальные критерии, когда оно вышло на особо опасный и необычайно стремительный вираж, пытались, вроде бы отвергая примитивные теистические доктрины, но все-таки наивно полагая, что чья-то мудрая рука остановит нас за секунду до последнего смертоносного эксперимента… Сейчас хорошо видно, что розовой магии безграничностей и неисчерпаемостей приходит конец. Когда развитие техносферы достигло уровня, угрожающего существованию социальных организмов и между прочим самой техносферы в масштабах планеты, неизбежно вступают в игру мощнейшие социальные силы, которые должны перехватить управление выходящими из-под контроля факторами. Другого варианта просто нет, если предполагать долгосрочную и успешную эволюцию человечества более важной целью, чем удовлетворение имперских притязаний или чистого любопытства.

В связи с этим отмеченную неполноценность социоморфизма на уровне научного мировоззрения можно считать временным явлением. Вселенная (а в частности Земля и ее окрестности) должна выглядеть не просто суперавтоматом, но и системой, пригодной для существования хотя бы земной цивилизации и созданной ею культуры, более того, системой, искусственно регулируемой в тех или иных масштабах.

Наконец придется осознать и тот общий факт, что мы видим Вселенную сквозь линзу именно земной социальной практики в самом широком смысле, включая сюда и биосоциальный уровень нашего развития и соответствующие этому уровню технические структуры. Это дает лишь одну из возможных систем отсчета, и нельзя приписывать именно нашей системе уникальную объективность видения мира. Иначе никогда не удастся всерьез поставить и решить такую грандиозную проблему, как Контакт с внеземными цивилизациями. В силу иной социокультурной и даже биологической конституции наши будущие партнеры могут иметь совершенно иные представления по поводу одних и тех же событий, вовсе не совпадающие с представлениями земной науки. Не отказавшись от геоцентризма своего мировоззрения, мы попросту не сумеем их понять. И именно такая цель — понимание в масштабах Контакта — послужит маяком для попыток последовательного выяснения социоморфной природы наших знаний.

Так и вырисовывается круг задач для дальнейших глав этой книги. В III части мы попробуем заглянуть в картину Вселенной, соответствующую уровню Контакта, а ближайшая задача — ознакомиться с некоторыми современными моделями космологии и астрофизики.

Часть II: Космологический сценарий

Глава 7: Вокруг большого взрыва

Как жаль, что Господь не посоветовался

со мною, когда он творил Вселенную!

Он, может быть, установил бы в ней

более простой и разумный порядок.

Альфонс Кастильский Мудрый

Осторожно на повороте!

Сейчас сюжет этой книги делает довольно резкий поворот. До сих пор мы более или менее неспешно путешествовали по истории космических взглядов. Пора переходить к тому, ради чего это делалось, — к изложению современной точки зрения на эволюцию Вселенной. Мы попробуем сначала построить достаточно последовательную картину так называемой стандартной или эталонной модели эволюции, а лишь потом уйти в обсуждение тех или иных дискуссионных моментов.

В процессе ознакомления с последующим материалом стоит иногда заглядывать в приложения — особенно это касается элементарных частиц. И, конечно, хочется верить, что терпеливый читатель преодолеет некоторую жестокость текста ближайших глав.

Итак, к делу!

Стандартная модель

В промежутке от 15 до 20 миллиардов лет назад с первоначальным состоянием Вселенной — будем называть его Сингулярностью — что-то произошло. Пространство и заполняющая его материя как бы вырвались из точки и стали расширяться. Такое явление иногда называют Первовзрывом, или Большим Взрывом[105]. Этот красивый образ математически оправдан тем, что в нулевой момент времени плотность материи становится бесконечной[106] (½(t) = 3/32πGt2), но его нельзя слишком прямо ассоциировать с обычным взрывом заряда в пространстве. Здесь расширяется именно все пространство Вселенной, а в наблюдательном отношении это выглядит как разбегание вещества, увеличение расстояний между любой парой точек.

Двухмерный аналог картины расширения вселенной (в замкнутой модели)

Все точки заштрихованной области, ограниченной горизонтом, могут быть связаны с наблюдателем А световыми сигналами.

То, что происходило до Сингулярности, непосредственно в ней и примерно вплоть до 10-7-10-5 с, относится — точнее, до недавних пор относилось! — к области более или менее свободного полета мысли. По истечении одной десятимиллионной доли секунды можно рисовать довольно конкретные картинки. Вещество очень высокой плотности находится в состоянии весьма горячего (Т ~ 1014 К) «супа» из кварков, лептонов и фотонов, которые движутся как частицы идеального газа со световыми скоростями.

Когда температура падает до 1012 К (t ~10-5 с), плотность вещества становится порядка той, которая характерна для атомных ядер и адронов. Вероятно, где-то на этом этапе и протекает образование адронов — кварки отходят друг от друга на предельно большие средние расстояния и поневоле сливаются в адронные структуры.

Начиная с этого момента, можно определенно говорить о горячей смеси адронов, лептонов и фотонов, причем последние довольно долгое время играют основную роль.

Через 200 секунд после Первовзрыва температура падает до миллиарда градусов, средняя кинетическая энергия частиц уже невелика — ее не хватает для рождения лептонных пар, а тем более адронов. Теперь протоны и нейтроны могут объединяться в простейшие составные ядра дейтерия, не рискуя немедленно развалиться в слишком горячей среде. Начинается эра нуклеосинтеза.

Дейтерий сам по себе очень нестабилен, но в результате столкновений с протонами и нейтронами он может превращаться в гелий-3 или в тритий. В свою очередь, гелий-3 подбирает нейтрон, а тритий — протон, образуя весьма стабильные ядра обычного гелия-4. За несколько последующих минут практически все нейтроны расходуются на гелиосинтез или распадаются (бета-распад: (n " p + e-+ ν). Завершается аннигиляция античастиц.