147215.fb2 Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию книги . Страница 25

Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию книги . Страница 25

Другое менее надежное указание получено в связи с исследованием 14 импульсных рентгеновских источников с резким, в течение секунд, изменением спектра. Некоторые из них (MX 0513-40, 3 U 1820-30 и А 1850-08) надежно соотнесены с шаровыми скоплениями (NGC-1851, NGC-6625, NGC-6712, соответственно). В этом случае довольно правдоподобно, что в центре каждого из шаровых скоплений находится очень массивная черная дыра (М). Однако пока такое объяснение остается не более чем интересной гипотезой, мы еще не достаточно ясно представляем себе законы коллективной эволюции звезд в плотных скоплениях, а также механизм формирования суперзвезд в сотни раз массивней Солнца на космогонической стадии. Есть также указания на присутствие черной дыры с М ~ 4 106 М в центре нашей Галактики, а в центре галактики М 87 — даже с М ~ 5.109 М!.

Если же говорить о надеждах, то черные дыры представляются чем-то очень широко распространенным во Вселенной. По идее, они должны встречаться часто и на весьма различных уровнях. В этом плане особо подозрительны ядра галактик и центры шаровых скоплений — места, где в условиях высокой концентрации вещества «сам Бог велел» создаваться сильным гравитационным полям и суперзвездам грандиозного масштаба.

В связи с этим обратим внимание вот на какие обстоятельства. Почему Лапласу пришлось изобретать монстр в 60 миллионов солнечных масс? Ответ прост. В его время представления о структуре вещества были развиты слабо, и он вряд ли мог представить себе космические объекты с плотностью атомного ядра — то, чем свободно оперировали теоретики 30-х годов 20 века, современники становления ядерной физики. Тем не менее, вплоть до открытия белых карликов и пульсаров в реальное существование сверхплотных звезд верили не слишком охотно.

Что же касается черных дыр — сейчас их высокой плотностью трудно кого-нибудь удивить. Само образование черных дыр с массой порядка 10 М как возможной конечной стадии звездной эволюции теперь тоже не представляется чем-то из ряда вон выходящим.

Весьма вероятно, что ближайшие годы принесут окончательное открытие сверхмассивных дыр с относительно небольшой плотностью и массами от нескольких сот до миллиардов М, и лапласовские монстры станут чем-то привычным. Это откроет путь к решению проблемы коллективной эволюции звездных скоплений самого разного масштаба. Действительно, трудно поверить, что в плотных шаровых скоплениях и тем более в галактических ядрах каждая звезда могла бы рождаться и умирать совершенно индивидуально, никак не связываясь с судьбой ассоциации. Именно эта связь и должна во многих случаях приводить к появлению разномасштабных черных дыр с огромными массами. Один из важных гипотетических вариантов такого рода — присутствие гигантских черных дыр в ядрах квазаров, что пока дает едва ли не единственный путь к объяснению их фантастической светимости.

Казалось бы, все в порядке, остается только активно вести расширение круга наблюдений по более или менее ясной схеме.

Но тут-то как раз произошло интереснейшее уточнение самой схемы, если можно так выразиться, состоялось третье теоретическое рождение черных дыр.

В 1974 году английский теоретик С. Хокинг опубликовал в журнале «Nature» («Природа») небольшую заметку с интригующим вопросом в заголовке «Взрывы черных дыр?». Это положило начало, пожалуй, самому впечатляющему астрофизическому буму 70-х годов.

Идея Хокинга была довольно проста. Как бы ни самоизолировалась черная дыра, она всегда связана с вакуумом элементарных частиц. Процессы вблизи ее поверхности идут с характерным временем tg ~ Rg/c = 2GM/c3, и они вызывают рождение частиц с энергией E ~  ћωg  ~ ћ/ tg — характерная собственная частота черной дыры как бы резонирует с частотами вакуума, вышибая из него реальные частицы. Более наглядно можно пояснить ситуацию так: черная дыра способна удержать объекты с размером l «Rg, но не излучение с длинами волн λ r Rg, которое как бы выдавливается из черной дыры в силу соотношения неопределенностей[121]».

Отсюда следовало, что черная дыра вовсе не мертва. С точки зрения квантовой теории, она должна излучать во внешнее пространство радиоволны, свет и даже тяжелые элементарные частицы — все, что допустимо ее размерами и энергетическими возможностями. Излучая, черная дыра разогревается, теряет массу, и конечная стадия ее испарения должна выглядеть как взрыв. Законы эволюции черной дыры, следующие из хокинговской модели, очень наглядно записываются с использованием планковских масштабов (М — масса черной дыры):

Светимость: L ~ LP (mР/M)2

Температура: Т ~ TP (mР/M) 

Плотность: ½ ~ ½P (mР/M)2

Время жизни: τ ~ M/L ~ tP (mР/M)3 » 3.1017 (M (г)/1015)3 с

Отсюда хорошо видно, что эффект хокинговского излучения несущественен для обычных черных дыр типа Лебедя X–I, чья температура порядка 108 К, а время испарения сильно превышает возраст Вселенной (τ ~ 1074 с!). Тем более, практически незаметна квантовая эволюция гипотетических дыр-гигантов.

Забавные дырочки размером около 1 миллиметра, но с довольно солидной массой (М ~ 1027 г) и колоссальной плотностью (½ ~ 2,5.1030 г/см3) могли бы имитировать наблюдаемый фон теплового излучения с температурой в несколько градусов Кельвина. Однако чтобы вытеснить модель космологического реликтового излучения, следовало бы предположить, что малютки существуют в изобилии и распределены в пространстве крайне равномерно по всем направлениям. Неясно также их происхождение.

Наибольший интерес с самого начала вызвали, конечно, черные дыры с массами М~1015 г. Ведь они способны полностью испариться за известный космологический период, и в современную эпоху какая-то их часть должна взрываться, выбрасывая чрезвычайно жесткое излучение.

В связи с такими мини-дырами возродился интерес к идее советских астрофизиков Я. Б. Зельдовича и И. Д. Новикова, которые еще в 1967 году предсказывали, что наряду с черными дырами, возникающими космогоническим путем, то есть за счет эволюции звезд, могут существовать и так называемые первичные дыры, образующиеся на ранних стадиях космологической эволюции.

Дело в том, что вещество распределено равномерно лишь в среднем, в некоторых же областях пространства оно могло концентрироваться, а часть этих концентраций — коллапсировать до состояния черных дыр, даже в очень горячей обстановке самых ранних мгновений. Поэтому не исключено, что образование каких-то астрофизических структур — разумеется, совсем необычного типа — началось задолго до появления галактик и звезд первого поколения.

Представления такого рода способны оказать серьезнейшее влияние на астрофизические и космологические концепции. Во-первых, на повестку дня ставится задача о космических объектах исключительно малых размеров и высоких плотностей. Вообще возникает любопытный вопрос: чем ограничена снизу масса звездоподобных объектов, если процесс их образования отодвигается ко все более ранним моментам? Не играет ли роль такого ограничителя, скажем, планковская масса? С другой стороны, первичные мини-объекты могли бы дать полезнейшую информацию о структуре очень ранней Вселенной — был ли это лишь сугубо однородный кипящий бульон из элементарных частиц, или на фоне в среднем равномерного распределения возникали и гибли весьма нетривиальные миры, интересные ничуть не менее ныне наблюдаемых звезд и галактик[122]. И еще один важный вопрос: каково влияние реликтовых неоднородностей на формирование более крупных космических структур?

Более детальный анализ модели испарения и наблюдаемых данных пока не привел к обнаружению черных мини-дыр с массами от 109 до 1015 г. Это указывает на довольно малую их концентрацию (видимо, не более 104 мини-дыр в одном кубическом парсеке). Не исключено также, что мы не слишком ясно представляем себе завершающую стадию их испарения[123].

Идеи квантовой эволюции черных дыр хорошо подчеркнули неизбежность изменения теории гравитации в планковской области. Из условия, что светимость объекта не может превысить LP, автоматически следует, что его масса не может стать меньше mP, а плотность — больше ½P

Ограничения такого рода, разумеется, имеют лишь качественное значение, поскольку сама модель Хокинга не предназначена для оценок в планковской области. Беда в том, что при подходе к планковской области всякий газ ультрарелятивистских частиц (или излучение, рассматриваемое как газ) должен терять свою идеальность. При столь высокой концентрации важную роль начинают играть гравитационные взаимодействия между отдельными частицами. Не исключено, что именно такое все нарастающее взаимодействие сильно меняет характер поведения черной дыры при М (mP, и она завершает свою эволюцию относительно спокойно и перестает излучать[124]. Интересно, не есть ли мини-дыра тот самый объект, который ближе всего (хотя и на исключительно короткое время) подходит к абсолютному пределу светимости? Не является ли конечным состоянием мини-дыры планкеон — объект с М ~ mP и эффективным размером порядка lP? Не закрывает ли планкеон Сингулярности, которая неизбежно обнажается в хокинговской модели при полном испарении дыры?[125]

Пока нельзя ответить на все эти вопросы, но ясно, что если удастся обосновать нечто, напоминающее планкеонный финиш испаряющихся черных дыр, то появится сильнейший аргумент в пользу квантовой блокады космологической Сингулярности. Возможно, начальное состояние Вселенной (как и конечное состояние для внутренней эволюции черной дыры) станет с современной точки зрения чем-то крайне экзотическим, но, скорее всего, и физически более осмысленным.

Гравитационные волны

180-летнюю историю черных дыр все-таки можно назвать историей со счастливым концом — сейчас они считаются экспериментально обнаруженными объектами. Зато с гравитационными волнами — явлением, представляющим феноменальный интерес, ситуация выглядит значительно сложней и, пожалуй, драматичней.

Следует подчеркнуть, что теория гравитации с самого начала развивалась как сугубо статическая. Закон Ньютона фиксировал вид силы, действующей между двумя массами на определенном расстоянии, и не касался иных задач. После создания специальной теории относительности стало ясно, что любое взаимодействие должно распространиться с конечной скоростью, не превышающей с. Это следовало отнести и к гравитации. Отсюда немедленно вытекала идея об особом переносчике тяготения — гравитационном поле и конкретном проявлении этого поля в форме гравитационных волн.

Предсказание таких волн — одно из первых и почти очевидных следствий эйнштейновской общей теории относительности. Гравитационные волны появляются в простейшем линейном приближении этой теории в качестве решений, во многом похожих на то, что известно из электродинамики. Оставалось только обнаружить новые волны экспериментально и получше их использовать. Впереди маячили блестящие перспективы генерации тяготения в иные миры, дистанционного управления кривизной пространства-времени…

Эти перспективы маячат до сих пор, реализовавшись пока лишь на страницах научной фантастики. И вот почему так получилось.

Уравнения Эйнштейна очень сложны и в отличие от уравнений максвелловской электродинамики нелинейны. Поэтому получить физически прозрачное точное решение для гравитационной волны нелегко, трудно даже определить однозначный критерий ее существования и, тем более, дать полную постановку задачи на излучение. Более того, длительное время мнения теоретиков колебались между безусловным признанием реальности этих волн и полным ее отрицанием.

Несколько определенней выглядит ситуация с заведомо слабыми гравитационными волнами, которые представляются чем-то вроде небольшой колебательной ряби на фоне данной геометрической структуры пространства-времени (чаще всего плоского или соответствующего фридмановским моделям). Физический анализ здесь много проще, но приближения есть приближения, оценки их пригодности тоже очень непростое дело.

Разумеется, все рассуждения крайне сократились бы, заготовь природа какой-то источник, доступный прямому и достаточно простому эксперименту. Именно в его отсутствии кроется главная причина всех трудностей. Слишком мал поток энергии, который могут давать более или менее понятные источники гравитационных волн.

Для системы Солнце-Юпитер излучаемая мощность достигает всего несколько сотен ватт, а длина волны около 2 парсеков! Гораздо сильней излучают тесные системы двойных звезд — их гравитационная светимость достигает 2.1025 Ватт, то есть нескольких процентов от общей светимости Солнца (L » 3,8.1026 Вт). Юпитер близок, но дает слишком малую мощность, двойные звезды неплохо излучают гравитационные волны, но, увы, далеки поток от конкретной пары вряд ли доступен регистрации. Общий поток гравитационного излучения 20 миллионов двойных звезд Галактики вблизи поверхности Земли не превышает 10–10 Вт/м2 (попробуйте уловить 1 Ватт мощности, рассеянный по площадке со стороной 100 км!).

Наряду с такими стационарными излучателями большую роль могут играть импульсные вспышки, связанные с внезапным сближением и даже столкновениями звезд в скоплениях и, особенно, в центральных областях галактик. Например, при прямом столкновении двух звезд типа Солнца около 1/800 части их суммарной массы может выделиться в импульс гравитационного излучения — за очень небольшое время выделится до 4,5.1044 Дж энергии. Гораздо эффективней двойных звезд должны испускать гравитационные волны такие космические объекты, как пульсары, квазары и черные дыры. При не слишком сильных допущениях гравитационная светимость несколько деформированной вращающейся нейтронной звезды может достигать 1031 Вт, то есть порядка пятой части общей светимости.

Еще более впечатляющая картина вырисовывается при взрывах квазаров, гравитационная светимость которых квадратично зависит от мощности взрыва Р: Lg ~ (G/c5) Р2.

Для взрыва с характерным энерговыделением 1052 Джоулей за время порядка 3-х лет гравитационная светимость достигает 1038 Ватт. Это, пожалуй, превышает полную светимость звезд обычной Галактики.

Другой не менее эффектный механизм мощнейшего гравитационного импульса — слияние черных дыр, когда в излучение переходит около 30 % их суммарной массы.

Кроме анализа таких астрофизических источников в настоящее время ведется активный поиск излучателей земного (желательно даже лабораторного) масштаба — от несимметричных взрывов атомных бомб и сверхмощных лазерных импульсов до обычных вращающихся стержней и пульсирующих оболочек. Разумеется, чисто лабораторный эксперимент во многих отношениях удобней. Он дает возможность более подробного изучения явлений за счет регулировки параметров источника. С астрофизическими объектами в этом плане пока мы бессильны — звезды излучают «когда им хочется и так, как можется», не слишком считаясь с нашими интересами. С другой стороны, все до сих пор изученные методы искусственной генерации страдают общим недостатком: они ведут к очень ограниченным мощностям. В этой связи было бы очень любопытно поискать пути к усилению гравитационного излучения за счет каких-то когерентных систем излучателей — в духе лазерного эффекта в оптике. К сожалению, аналогия повисает здесь над ущельями многих и многих неясностей.

Убедившись в том, что гравитационное излучение способно возникнуть во многих ситуациях, обратимся теперь к несколько драматической истории его открытия. Дело в том, что уже в 1969 году американский физик Дж. Вебер опубликовал сообщение о регистрации новых волн.

В качестве детектора Вебер использовал полутораметровый алюминиевый цилиндр радиусом 30 см и массой в полторы тонны. Цилиндр максимально изолировался от случайных воздействий — его подвешивали в вакуумной камере на проволочных креплениях. Собственные колебания цилиндра с частотой 1661 Герц после возбуждения затухали примерно за 10 секунд, то есть он успевал совершить до 100 тысяч колебаний. Чувствительность детектора была столь велика, что он мог регистрировать сокращение длины порядка 10–15 см. Механические колебания, вызванные каким-то внешним импульсом, преобразовывались в электрические сигналы специальными пьезоэлектрическими датчиками, укрепленными посреди цилиндра. Совершенно такая же регистрирующая система была смонтирована почти за 1000 км от основной лаборатории[126].

Вскоре после начала опытов Вебер отметил, что в обоих цилиндрах в среднем раз в две недели одновременно возникают колебания, и никаких причин, кроме возможной регистрации искомых волн, для этих колебаний не видно. Более того, Вебер рассчитал местонахождение источника излучения где-то в центре Галактики.

Публикация результатов прозвучала сенсационно и в то же время вполне реалистически: в неизбежность этого открытия верили более полувека. Трудно назвать хоть одно физическое явление, к открытию которого физики были бы морально готовы в такой степени.

Но очень быстро наступил более пессимистический момент. Теоретики сообразили, что поток излучения, зарегистрированный приборами Вебера (10-3 — 10-1 Bт/см2), слишком велик — необходимо еще придумать источник, способный к столь активной генерации. Если бы центр Галактики излучал именно так, то он попросту целиком высветился бы в форме гравитационных волн примерно за 10 миллионов лет, что в 1000 раз меньше минимально допустимого возраста Галактики.

Так родилась любопытнейшая проблема — что именно зарегистрировано в опытах Вебера? По этому поводу формулировались самые разные гипотезы, но окончательной ясности так и нет.

Ясно только, что официальное открытие гравитационных волн еще не состоялось. Вебер сделал шаг в нужном направлении, но его данные пока нельзя интерпретировать так, как хотелось бы. Тем более, что прокатившаяся по всему миру «гравитационно-волновая лихорадка», сопровождавшаяся еще более прецизионными измерениями, дала обескураживающие результаты. Ни одна лаборатория не смогла воспроизвести нечто даже близко напоминающее веберовские достижения.

Остается надеяться, что проблема обнаружения гравитационных волн все-таки не перейдет по наследству в 21 столетие. Для ее решения прилагаются очень серьезные усилия. И даже небольшая вероятность положительного результата вполне их окупает.

Дело в том, что гравитационные волны с большой степенью вероятности могут послужить ключом к решению фундаментальнейших задач — от физики элементарных частиц до космологии.

Реликтовые гравитационные волны должны нести информацию о самых ранних эпохах космологической эволюции. Из-за слабости взаимодействия гравитационные волны очень рано отрываются от остальных видов материи, и с их помощью мы смогли бы заглянуть едва ли не в Сингулярность, во всяком случае, по современным представлениям, ни один иной реликт не способен напрямую рассказать о состоянии Вселенной в планковскую эру t ~ tP. Таким образом, они дают абсолютный хронологический зонд, несут на себе отпечаток самой ранней истории, включая Первовзрыв.

Распространяясь в космическом пространстве, гравитационные волны опять-таки из-за предельно слабого взаимодействия с веществом способны настолько глубоко проникать вовнутрь плотных небесных тел, насколько это вообще возможно. Гравитационная астрономия выявила бы такие детали строения Вселенной, которые, видимо, никакими иными путями не добыть. Особо важно в этом отношении зондирование самых активных областей — ядер галактик и квазаров, которые практически недоступны наблюдению иными средствами. Между тем, там спрятаны наиболее мощные энергетические источники. Гравитационная карта неба должна весьма радикально отличаться от электромагнитной, полученной в диапазоне оптических и радиоволновых наблюдений. И возможно, мы пока совсем поверхностно оцениваем общую светимость ряда объектов — как раз в гравитационной области они и могут оказаться особенно яркими. Трудно избежать и предположения о том, что только наблюдения гравитационного излучения откроют путь к области экстремально высоких светимостей, близких к планковскому пределу LP.

Наконец, очень важно, что, исследуя гравитационные волны, мы вплотную подошли бы к решению задачи квантования гравитации. Опыт работы в области электродинамики подсказывает, что именно через волновую теорию проще всего прорваться к обнаружению корпускулярной структуры поля. В электродинамике этот процесс привел к теории фотонов. При квантовании гравитационного поля, казалось бы, должны проявляться особые частицы — гравитоны.

Теоретики изобрели их сразу же, как только были получены соответствующие решения волновых уравнений слабого гравитационного поля. Работа эта шла по аналогии с квантовой электродинамикой, но, к сожалению, без соответствующей экспериментальной основы.