147760.fb2 Путевые заметки Рассеянного Магистра (Рассеянный Магистр - 2) - читать онлайн бесплатно полную версию книги . Страница 7

Путевые заметки Рассеянного Магистра (Рассеянный Магистр - 2) - читать онлайн бесплатно полную версию книги . Страница 7

Вскоре мы пристали к берегу и увидели вход в пещеру. Сами понимаете, что мы туда вошли, и Единичка чуть не расшибла лоб об огромный сталагмит, свешивавшийся с высокого свода. Этих сталагмитов здесь было видимо-невидимо. Они свисали, как ледяные сосульки с крыши. Мы спустились еще ниже и увидели интереснейшую коллекцию всевозможных окаменелостей, скелетов, черепов...

У одного черепа мы с Единичкой, как всегда, заспорили. Я сказал, что это череп андертальца, Единичка уверяла, что нет, не андертальца. Вот спорщица! Откуда ей знать, андерталец это или нет? Я рассердился и увел ее в другой грот, где экспонировалось все, что относится к самой древней эре нашей Земли, к так называемой кайнозойской эре. Эра эта, в свою очередь, как я узнал, разделяется еще на периоды - третичный период, четвертичный период. И, представьте себе, в самом конце этого четвертичного периода - то есть миллионы лет назад! - жили такие же люди, как и мы с вами. Они не только были похожи на нас как две капли воды, но даже платья носили такие же. Чудеса! Как сказал герой Шекспира Гамлет: "Есть многое на свете, друг Горацио, что и не снилось вашим мудрецам!"

При выходе из пещеры к нам подошли какие-то молодые люди и повели на игры, устроенные по случаю полнолуния. Одна игра мне поначалу очень понравилась.

На земле вычерчивались два больших круга - Луна и Солнце. Окружности делили отметинами на шесть равных отрезков (по 60 градусов каждый). У одной из отметин на каждой окружности ставили столб с флажком: на Луне с изображением Луны, на Солнце, сами понимаете, с изображением Солнца.

Игра эта напоминала считалку, и участвовали в ней шесть человек - все под номерами, как олимпийские бегуны. Игроки размещались по ходу часовой стрелки на окружности Луны, причем игрок номер 1 становился у столба, а остальные, то есть второй, третий, четвертый, пятый и шестой, занимали места у следующих отметин. Судья отсчитывал пальцем третьего игрока, тот немедленно перебегал с Луны на Солнце и занимал место у столба. Судья снова отсчитывал третьего игрока после выбывшего: на сей раз это был игрок номер 6. Тот тоже переселялся с Луны на Солнце и становился у следующей после столба отметины, отсчитывая ее опять-таки по ходу часовой стрелки. А судья продолжал ходить по кругу и отсчитывать каждого третьего. Так продолжалось до тех пор, пока все обитатели Луны не оказались на Солнце. Только здесь они стояли уже в другом порядке: не 1, 2, 3, 4, 5 и 6, а 3, 6, 4, 2, 5 и 1.

Теперь судья таким же способом, то есть отсчитывая каждого третьего от столба, стал переселять игроков обратно с Солнца на Луну, потом снова с Луны на Солнце, потом опять с Солнца на Луну и так далее и тому подобное. Мне это, признаться, порядком наскучило, и я поинтересовался, до каких пор несчастных будут гонять туда-обратно.

- А до тех пор, - сказали мне, - пока игроки не расположатся в первоначальном порядке, то есть 1, 2, 3, 4, 5 и 6...

Так вот в чем дело! Стало быть, речь идет о перестановках! Ну нет, с меня довольно! Ведь я-то знаю, сколько перестановок можно сделать из шести чисел: семьсот двадцать! Ни больше, ни меньше! И я, предварительно извинившись, ретировался. А Единичка осталась, но вскоре тоже присоединилась ко мне, вскользь заметив, что эту игру следовало бы назвать "Упрямая пятерка". При чем тут пятерка? Уж эта мне Единичка! Всегда сболтнет что-нибудь неподходящее. Хорошо еще, что я-то догадался промолчать, и мы тотчас двинулись дальше.

Вскоре я увидел мальчика, дремавшего возле огромного чана с орехами, предназначенными для участников сегодняшних игр. Мальчик сонным голосом объяснил, что каждые пятнадцать минут сюда привозят новую партию орехов. При этом всякий раз насыпают в чан ровно столько, сколько там уже есть. Допустим, сначала в чане было 10 орехов. Через пятнадцать минут туда насыпали столько же, и орехов стало уже двадцать. Еще через пятнадцать минут их уже оказалось сорок, и так далее.

Бедный ребенок! Сидит уже больше суток, а чан пока что наполнился только на одну четверть. Долго ему придется ждать, пока чан наполнится доверху!

Единичка, однако, заявила, что ждать не так уж долго, как мне кажется, и, несмотря на мои протесты, упросила остаться всего на полчасика. И вот мы сидим и ждем у моря погоды. Подождите немного и вы - до следующего сообщения.

ТРИНАДЦАТОЕ ЗАСЕДАНИЕ КРМ

намечено было провести в школьном спортзале, но преподаватель физкультуры, узнав, что шестой член нашего клуба - существо собачьей породы, запротестовал. Пришлось взять грех на душу и пообещать ему, что Пончик будет вести себя смирно и вежливо, хоть особой уверенности в этом ни у кого из нас не было. Словно в благодарность за поручительство, Пончик и впрямь был тих, как мышка. Всем на удивление, он залаял всего один раз, и то, когда смолчать было бы невмоготу и немому.

Встреча наша началась с небольшой разминки. Ребята поиграли в баскетбол: Сева и Нулик против Тани и Олега. Матч, который судили мы с Пончиком, окончился вничью, после чего первым обсуждение начал президент: ему опять не терпелось высказаться по географическим вопросам...

- Озеро Чад очень мелководно, - зачастил он без знаков препинания, глубина его в среднем около полутора метров, поэтому нечего было Магистру ожидать мощного теплохода плоскодонка самое милое дело для такого озера а шест ему дали не затем чтобы грести а чтобы отталкиваться от дна и никаких навигационных приборов на плоскодонке не бывает а насчет символа дружбы передаю слово другому оратору потому что ничего об этом не знаю... Уф!

Нулик брякнулся на скамью и долго еще "отдышивался", прислушиваясь к выступлению Тани.

- Напомню, - сказала она, - что дно плоскодонки имело форму правильного пятиугольника, и Единичка верно поступила, вычертив на нем диагонали. Ведь у нее получилась пятиконечная звезда! А это и есть пифагоров символ дружбы.

- Выходит, пятиконечная звезда считалась символом дружбы и в древности, а не только в наше время! - удивился Сева.

- Выходит. Звезда у пифагорейцев была чем-то вроде талисмана, которым одаривали друзей. Однажды некий пифагореец, скитаясь где-то далеко от родины, заболел. Какой-то добрый человек приютил его в своем доме и ухаживал за ним до самой его кончины. Перед смертью больной посоветовал хозяину нарисовать на своем жилище пятиконечную звезду. Несколько лет спустя попал в эту страну другой пифагореец. Увидав дом с пятиконечной звездой на стене, он тотчас понял, что здесь побывал его собрат-пифагореец, и щедро отблагодарил заботливого хозяина.

- Но почему Пифагор выбрал именно этот символ? - спросил Нулик.

- А потому, что считал эту фигуру удивительной. Она и впрямь удивительна. Неспроста Единичка, вычерчивая ее, все время приговаривала: "Ай да золото!"

- Может быть, у плоскодонки было золотое дно? - предположил Нулик.

- Да нет, дно было баобабовым, а вот свойства пятиконечной звезды и в самом деле чистое золото. Это и подметил Пифагор.

Таня разложила на полу большой чертеж с изображением правильного пятиугольника. Внутри пятиугольника она провела пять диагоналей, которые образовали пятиконечную звезду с вершинами в точках A, B, C, D и E.

Склонившись над чертежом, ребята пристально вглядывались в фигуру.

- Ой, - закричал Нулик, - что я заметил! Внутри звезды еще пятиугольник, а в нем еще звезда. И так без конца...

- А если б ты был еще внимательней, - сказала Таня, - то заметил бы, что диагонали большого пятиугольника делят угол при его вершинах на три угла, каждый из которых равен 36 градусам.

- Выходит, угол при вершине пятиугольника равен 108 градусам, - подсчитал Нулик.

- А сумма пяти углов звезды - 180, - сообразил Сева. - Совсем как у треугольника. Действительно замечательная фигура!

- Это что! - возразила Таня. - Самое замечательное свойство звезды впереди. Рассмотрим какую-нибудь из ее сторон, то есть диагональ пятиугольника, - вот хотя бы диагональ AD. Диагональ эту в точке m пересекает другая, EB, которая делит AD на две части: меньшую Am и большую mD.

Нулик вопросительно вскинул брови: - Ну и что?

- А то, что меньший отрезок Am так относится к большему mD, как этот больший сам относится ко всей стороне AD.

Am:mD = mD:AD.

- Но отсюда вытекает, что mD^2=Am*AD, - подсчитал Сева, - то есть больший отрезок стороны есть среднее геометрическое между всей стороной и ее меньшей частью.

- Очень хорошо, - одобрила Таня. - Это и называется разделить сторону AD в среднем и крайнем отношениях. Сева хлопнул себя по лбу:

- Так вот о чем говорила Единичка! Только при чем здесь все-таки золото?

- А при том, что такое деление Пифагор и его последователи называли золотым делением или золотым сечением.

- Такую пропорцию называли еще божественной, - добавил Олег.

- Как раз об этом я и хотела сказать. Древние широко использовали божественную пропорцию в искусстве. Они проверяли ею красоту человеческого тела и признавали его идеальным лишь тогда, когда соотношения отдельных его частей подчинялись закону золотого сечения.

Таня извлекла из портфеля фотографию, испещренную горизонтальными линиями.

- Вот статуя Аполлона Бельведерского, который, как известно, считается идеалом человеческой красоты. Все пропорции этой фигуры, все ее соотношения, строго соответствуют золотому сечению: верхняя и нижняя части торса, ноги, руки...

- Чего нельзя сказать о Магистре, - сокрушенно вздохнул Сева. - Единичке очень не понравились его пропорции. Видно, далеко ему до Аполлона...

- Да и тебе не близко, - сказала Таня, критически оглядев Севу.

- Золотому сечению соответствовали и пропорции греческих зданий, торопливо сказал Олег, чтобы прекратить неприятную пикировку. - Оттого они и до сих пор остаются для нас образцом красоты и гармонии.

- И все это придумал Пифагор, - заключил Нулик. - Силен!

- Пифагор, конечно, силен, - подтвердил я, - но справедливости ради надо сказать, что золотое сечение было известно еще в Древнем Вавилоне. Да и вообще правило это выдумано не человеком, а самой природой. Пифагор только подметил его. И здесь время вспомнить о засушенной веточке, которую так расхваливала Единичка.

- У-у-у, - протянул Нулик, - а я думал, она это просто так...

- Пора бы уже заметить, что Единичка ничего не говорит просто так. Посмотрите-ка на эту веточку. Нет, это не Единичкина, а моя. Но взгляните, как расположены на ней листья. Попробуйте измерить расстояния между ними.

Сева порылся в кармане (а там чего-чего только нет!), извлек сантиметр и принялся за измерение.

- Между первым листом и третьим, считая снизу, - 20 миллиметров, между первым и вторым - 12, 5.