147881.fb2
Какое значение для теории происхождения химических элементов имеет открытие новых необычных объектов во Вселенной, излучающих громадные количества энергии, в частности квазаров?
Эта проблема принадлежит к числу еще не решенных вопросов современной астрофизики. Существует довольно распространенная точка зрения, согласно которой для решения всех вопросов, связанных с происхождением элементов, достаточно рассмотрения процессов, происходящих в звездах. Что же касается космических процессов катастрофического характера (в частности, взрывных явлений), то они здесь ничем помочь не могут.
Однако я не согласен с подобной точкой зрения. Дело в том, что за последнее время накопился ряд данных, заставляющих предположить, что мы знаем еще далеко не все космические процессы, ответственные за фактически наблюдаемое распределение химических элементов во Вселенной. Вот хотя бы "проблема гелия". Согласно теории расширяющейся "горячей" Вселенной, в космических объектах должно содержаться не меньше 25 - 30 процентов гелия. Данные же астрономических наблюдений дают более низкое число - не больше 20 процентов. Известны отдельные звезды, в которых содержание гелия еще значительно ниже. С другой стороны, привести к почти полному разрушению гелия термоядерные процессы не могут. В связи с этим возникает подозрение, что в дозвездной стадии существования материи, теорию которой развивает В. А. Амбарцумян, могли происходить не термоядерные процессы, а процессы, связанные с очень высокой концентрацией электромагнитной энергии, способные приводить к разрушению гелия.
Вторая проблема - это "проблема дейтерия", тяжелого водорода. Дело в том, что в "земном" водороде содержится около одной шеститысячной доли дейтерия. Как известно, водород - самый распространенный химический элемент во Вселенной. Однако содержание в нем дейтерия пока еще точно неизвестно. Но если оно совпадает с тем, что мы наблюдаем в земных условиях, возникает трудноразрешимая задача. Ведь при термоядерных реакциях в недрах звезд дейтерий очень быстро уничтожается, "выгорает". Между тем одна шеститысячная - это очень высокий процент содержания дейтерия в водороде. И если химические элементы образуются исключительно при термоядерных реакциях в звездах, то совершенно непонятно, как эти реакции могли обеспечить столь высокий процент.
Правда, высказывается предположение, что "земной" дейтерий образовался в результате так называемых холодных плазменных процессов в процессе образования Солнечной системы и, следовательно, его должно быть больше, чем вообще в космосе. Однако подобная гипотеза имеет много уязвимых мест. В частности, в реакции, о которой идет речь, должны принимать весьма существенное участие так называемые тепловые нейтроны. Но если бы таких нейтронов в период формирования Земли действительно было много, то некоторые редкоземельные элементы, поглощая их, должны были бы исчезнуть. А они существуют...
Так что есть основания ожидать, что и во Вселенной процент содержания дейтерия в водороде приближается к одной шеститысячной. Если наблюдения покажут, что это в самом деле, так, мы получим весьма убедительное свидетельство в пользу того, что химические элементы образуются не только при термоядерных реакциях в звездах, но и в результате плазменных процессов - холодного ускорения частиц.
Какую же роль во всем этом играют квазары?
Как известно, квазары являются источником очень мощного радиоизлучения. Согласно современным физическим представлениям, оно возникает при движении релятивистских электронов в мощных магнитных полях (так называемое синхротронное радиоизлучение). Однако в мощных магнитных полях могут ускоряться не только электроны, но и атомные ядра. А значит, создаются условия для холодных ядерных реакций.
Существует ли связь между изучением термоядерных, процессов во Вселенной и исследованиями физиков по управляемым термоядерным реакциям?
Исторически эти проблемы связаны между собой очень тесно. Ведь сама мысль о возможности земного технического применения термоядерных реакций возникла в результате изучения источников звездной энергии. На первых порах физики, работавшие в этой области, широко пользовались в качестве исходных данных количественными закономерностями, выведенными при изучении термоядерных реакций в звездах. Однако в дальнейшем эти две области исследований - наука о звездной плазме и об управляемых термоядерных реакциях - довольно сильно разошлись.
Дело в том, что существенно различается физика этих процессов. В звездах плазма удерживается мощной силой тяготения. В искусственных же условиях подобным методом воспользоваться нельзя, так как для этого потребовались бы гравитационные силы, в сотни раз превосходящие силу тяготения Земли. Земная физика пошла другими путями для удержания плазмы, она, например, стремится использовать электромагнитное поле [В последние годы ведутся исследования и в другом направлении: изучается возможность возбуждения термоядерной реакции в высокотемпературной плазме с помощью лазерного облучения. - Ред.].
Более общий вопрос: считаете ли вы, что все основные физические законы уже открыты и любое новое явление может быть объяснено с их помощью?
Конечно нет! Такому предположению противоречит хотя бы то обстоятельство, что физики непрерывно открывают все новые и новые элементарные частицы, общая полная теория которых пока не построена.
Это ответ на ваш вопрос, так сказать, с точки зрения эксперимента. Если же взглянуть на дело с точки зрения теории, то во всяком случае современная физическая теория не может считаться внутренне замкнутой. Существует теория, описывающая квантовые явления, но не включающая гравитации, и гравитационная теория, не включающая квантовых явлений [В настоящее время теоретики много работают над созданием квантовой гравитационной теории. Ее рвз-работка - одна из центральных проблем современной физики и астрофизики. - Ред.].
Как, по вашему мнению, должно сказаться на мировоззрении современного человека то обстоятельство, что развитие фундаментальных физических представлений все еще совершается вопреки здравому смыслу?
По существу, так было всегда. Вспомните хотя бы историю с антиподами. Разве легко было в свое время нашим предкам привыкнуть к мысли о том, что где-то на другой стороне Земли люди ходят "вниз головой"? Разве это не противоречило здравому смыслу того времени?
Разница состоит лишь в том, что сейчас наука развивается быстрее и потому приходится гораздо чаще, чем прежде, приспосабливаться к новым идеям.
Я хотел бы подчеркнуть следующее. Идеалисты, как объективные, так и субъективные, считают, что все законы природы заложены в некоем духе мировом или в духе данного индивидуума. Но если бы дело действительно обстояло так, то в любых самых экстравагантных законах природы мы не должны были бы видеть ничего противного нашему здравому смыслу. То обстоятельство, что науки, и в первую очередь физика элементарных частиц, все чаще открывают законы и закономерности, вступающие во все большие противоречия со здравым смыслом, на мой взгляд, является одним из самых убедительных аргументов против религиозно-идеалистической точки зрения. Это свидетельствует о том, что сознание формируется под влиянием внешнего мира, а не наоборот.
Какие идеи в современной теоретической физике, на ваш взгляд, представляются наиболее интересными?
Лично мне весьма импонирует идея так называемых квазичастиц. Как известно, современная теоретическая физика исходит из идеи квантово-волнового дуализма. Элементарная частица рассматривается либо как частица, либо как волновой процесс. С другой стороны, любой волновой процесс можно "прокванто-вать", то есть разложить на частицы. Именно так в физике появились "частицы" света - фотоны, "частицы" тяготения - гравитоны и т. п.
В то же время любой вообще физический процесс может быть представлен как волновой, а следовательно, и проквантован. В этом смысле можно говорить о звуковых "частицах" - фононах, о плазменных "частицах" - плазмонах и т. д. Рассмотрение подобных "частиц" или, лучше сказать, квазичастиц имеет важное значение. Во-первых, оно лишает элементарные частицы их особых привилегий и позволяет взглянуть на разнородные физические явления с единой точки зрения. Во-вторых, изучение свойств квазичастиц имеет для современной физики ничуть не меньшее значение, чем исследование свойств элементарных частиц.
В связи с квазичастицами я хотел бы подчеркнуть еще одно, как мне представляется, чрезвычайно важное обстоятельство. Быть может, самая великая революция в физике состоит в том, что современная наука приходит к пониманию того факта, что не всегда сложное построено из более простого. Атом, разумеется, сложнее электронов и протонов, из которых он построен. Однако, проникая еще дальше в глубь атомного ядра, мы обнаруживаем, что там все обстоит еще значительно сложнее. И приходим к поразительному выводу: может быть, простое строится из сложного.
В поисках единой теории
На вопросы отвечает
доктор физико-математических наук
В. С. Барашенков
Каково, на ваш взгляд, современное состояние теории элементарных частиц?
После некоторого периода кажущегося застоя в этом разделе современной физики произошел серьезный сдвиг. В частности, в области теории идут исследования проблемы объединения различных известных типов взаимодействия, в первую очередь слабых и электромагнитных, а также сильных. И делается все это на очень глубоком - кварковом уровне. Однако теоретических моделей, описывающих мир элементарных частиц, пока еще слишком много, и в настоящее время трудно какой-либо из них отдать предпочтение.
Важное значение для дальнейшего развития наших представлений об элементарных частицах будет иметь недавнее открытие так называемых пси-частиц, обладающих необычными свойствами. Хотя теоретические предпосылки, допускающие наличие в природе подобных частиц, существовали, само их экспериментальное обнаружение явилось все же довольно неожиданным.
С другой стороны, открытия новых частиц стали важным аргументом в пользу гипотезы кварков. Дело в том, что без этой гипотезы было бы очень трудно объяснить свойства частиц. Более того, существование пси-частиц подтвердило, что кварков должно быть не три, а четыре. К тому же мы сейчас знаем, что каждый из этих кварков имеет три различных "цвета".
Кстати, хотел бы заметить, что мысль о существовании трехцветных кварков еще несколько лет назад была высказана известным советским физиком-теоретиком академиком Н. И. Богомоловым. Теперь она получила убедительные подтверждения.
Какое место занимает теория элементарных частиц в современном естествознании?
Наряду с астрофизикой она всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. Так, она подводит нас к новым представлениям о том, что такое элементарность.
Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем - от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим здравым смыслом, согласно которому целое всегда больше любой из составляющих его частей.
Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Например, протон на очень короткое время распадается (диссоциирует) на протон и пи-мезон, а каждый пи-мезон на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, о простом и сложном, а следовательно, теряет смысл и привычное для нас представление об элементарности. Появилась идея "прекварков" - еще более фундаментальных частиц, из которых состоят сами кварки.
Пожалуй, наиболее поражающим воображение обстоятельством является постепенно открывающаяся нам все более глубокая взаимосвязь между микропроцессами и макроскопическими явлениями, в том числе явлениями космического порядка. Становится все более ясно, что многие важные свойства космических объектов определяются в конечном счете свойствами микрочастиц.
Как известно, одним из основных положений материалистической диалектики является утверждение о всеобщей взаимосвязи явлений природы. Взаимосвязь микро- и макропроцессов - одно из конкретных выражений этой связи. В качестве объектов, где связь микро и макро реально проявляется, можно привести черные дыры с радиусом 10-13 сантиметров. Их масса должна составлять 108 тонн. Экспериментальное обнаружение таких удивительных объектов - одна из интереснейших задач современной физики.
Чего вы ждете в ближайшем будущем от теории элементарных частиц?
Прежде всего построения единой теории сильных, слабых и электромагнитных взаимодействий. Кроме того, должна быть понята природа кварков и получен ответ на вопрос, почему их не удается наблюдать. Не исключена возможность, что кварки представляют собой особый тип образований, которые могут существовать только в совокупности и которые принципиально невозможно разделить.
Весьма интересных результатов можно ожидать и от дальнейшего изучения нейтрино, играющего очень важную роль в слабых взаимодействиях.
Нуждается ли, по вашему мнению, современная теория элементарных частиц в каких-то принципиально новых идеях?
Экспериментальных данных в этой области сейчас очень много, немало и непонятного. Не исключено, что стараниями теоретиков удастся преодолеть существующие трудности и объяснить экспериментальный материал, не прибегая к каким-то принципиально новым представлениям. Но могут потребоваться и совершенно новые идеи, в том числе и весьма необычные.
Считаете ли вы, что развитие теории элементарных частиц ведет к открытию "все более странного мира"?
Это и в самом деле так. Теория элементарных частиц ведет все дальше от наглядных представлений, она обрастает все более сложными математическими и другими образами, у которых нет аналогий в непосредственно окружающем нас мире.
С другой стороны, новые, непривычные понятия - непривычные даже для физика - постепенно осваиваются, входят в обиход и незаметно становятся привычными. Один из физиков как-то привел показательный пример. Когда он был молодым, в Физическом институте Академии наук однажды обсуждался вопрос о потенциальном барьере для альфа-частиц. И докладчик, чтобы сделать для присутствующих это новое тогда понятие более наглядным, сравнил этот барьер со слоем Хэ-висайда, ионизированным слоем земной атмосферы, отражающим короткие радиоволны. А спустя несколько лет - это было уже в послевоенные годы - этому же физику пришлось стать свидетелем того, как один студент, объясняя другому, что такое слой Хэвисайда, сравнил его с потенциальным барьером для альфа-частиц.
Таким образом, по мере развития науки и освоения новых знаний происходит своеобразная переоценка ценностей. Совершается непрерывный процесс открытия и в то же время освоения "все более странного мира".
Если уж мы заговорили о "странном мире" элементарных частиц, то невольно возникает вопрос о так называемых сверхсветовых частицах, или тахионах. По этой проблеме в последние годы публикуется множество работ. Хотелось бы знать ваше мнение на этот счет.
Проблема, бесспорно, увлекательная. Само предположение о возможности существования сверхсветовых частиц не может не поражать воображение. Но если взглянуть на дело с чисто физической точки зрения, то окажется, что гипотеза.о существовании тахионов не противоречит специальной теории относительности. И даже не только не противоречит, а, наоборот, делает эту теорию более симметричной и внутренне согласованной, распространяя ее на мир, лежащий за световым барьером. Таким образом, гипотеза тахионов может быть верной или неверной, но она очень естественно вписывается в специальную теорию относительности, создавая цельную замкнутую картину. Разумеется, справедливость этой гипотезы может доказать только эксперимент.
Но, как известно, одним из основных положений специальной теории относительности является утверждение о предельном характере скорости света. Нет ли тут противоречия с предположением о существовании сверхсветовых частиц?