148394.fb2
Как установили испытания, проведенные ВНИИ химических средств защиты растений и Институтом физиологии растений имени К. А. Тимирязева АН СССР, применение картолина позволяет собирать неплохой урожай при неблагоприятных погодных условиях.
Картолин - уникальный регулятор роста. В отличие от знаменитого стимулятора роста растений ТУРа, столь распространенного в нашем сельском хозяйстве, при нормальной, погодной ситуации, картолин не влияет на развитие растения. Он приходит на помощь растению только в критические моменты и так отлаживает биологический механизм, что растение оказывается способно не только противостоять всем невзгодам, но дать хороший урожай.
И если сегодня в адрес гербицидов (вся "вина" которых в безграмотном их применении) мы слышим множество упреков, то с помощью картолина погубленное нерадивым земледельцем поле вновь можно возродшь.
Дело в том, что картолин вызывает активное деление клеток растений только при стрессовых обстоятельствах, тогда как весьма распространенные в мире цитокинипы (кпнез - деление) действуют по тому же принципу, но в нормальных и, более того, в благоприятных условиях роста.
Это вещество синтезировано впервые и обещает земледельцам самые заманчивые перспективы. Например, в зонах рискованного земледелия внесение не более полкилограмма препарата на гектар гарантирует стабильный урожай. А ведь большая часть нашей пахотной земли как раз и находится в зоне рискованного земледелия.
К тому же, что совсем немаловажно, картолпн дешев.
Ориентировочная цепа одного килограмма препарата не превышает 10 рублей.
МХТИ совместно с Всесоюзным научно-исследовательским институтом гербицидов и регуляторов роста растений разработал промышленный способ производства этого препарата, и ограничений в его выпуске может не быть.
Дело, как говорится, за внедрением. На выставке в Минвузе, где препарат был представлен, красноречивая надпись достаточно убедительно взывала об этом: заинтересованные организации могут обращаться непосредственно к разработчикам.
Химия сегодня широко "простирает руки свои", и предметом ее опеки становятся различные области знаний. Взять хотя бы медицину. В нее уже давно и прочно вошли и отлично себя зарекомендовали искусственные клапаны сердца, синтетические кровеносные сосуды. Они сделаны из силаплена силоксановой резины, которую получают вулканизацией кремнийорганических соединений.
Реакция осуществляется с помощью катализатора - вещества, повышающего скорость химической реакции.
Но катализатор вулканизации - в данном случае органические перекисные соединения - мы по довольно дорогой цене закупаем за рубежом. Работы по созданию отечественного катализатора, не уступающего по своим качествам импортному, велись в стране несколькими научно-исследовательскими институтами, а результативными оказались усилия двух кафедр Московского института юнкон химической технологии имени М. В. Ломоносова:
Редких и рассеянных элементов и Синтеза элеменгоорганических и неорганических полимеров, создавших катализатор на основе комплексных соединений.
То, что этот катализатор по многим параметрам превосходит импортный, очевидно уже сегодня. Во-первых, он растворим в кремншюрганических соединениях, а значит, равномерно распределяется по вулканизуемой массе, и потребуется его меньше. Во-вторых, его воздействие на вулканизуемую массу очень мягкое, и она становится эластичной, очень легко размягчается при нагревании. В результате обработка полученной массы значительно улучшается, а резина в итоге выходит прочнее.
У этой работы есть и еще одно важное достоинство:
нужные количества катализаторов столь невелики, что их легко нарабатывает кафедра Редких и рассеянных элементов MPITXT.
В общем, уже сегодня появилась реальная возможность отказаться от зарубежного катализатора, полностью обеспечив потребности страны в силаплене за счет собственных резервов.
Эта научная разработка открывает возможность решения и еще более многоплановой социальной задачи, ведь с внедрением в отечественную медицину искусственных клапанов сердца, магистральных кровеносных сосудов, кардиомассажеров, желудочно-кишечных зондов и так далее связаны победы над многими заболеваниями, считавшимися прежде неизлечимыми. Л что может быть дороже здоровья человека?
Отечественная химия и химическая технология давно и очень многопланово трудятся на здравоохранение. Вот уж поистине - народная жатва в данном случае на медицинской ниве все ощутимее чувствует, сколь обилен научный посев, совершенный в разное время и разными поколениями отечественных химиков. Причем, на "алтарь" здравоохранения работают сегодня и фундаментальная и прикладные науки, нередко, при решении крупнейших, глобальных проблем, объединяя свои усилия.
Взять хотя бы такую большую и социально важную проблему, как борьба с травматизмом. Казалось бы, какое отношение имеет химия к ее решению? Оказывается, самое непосредственное. Помню, как-то в одном из архивов я обратил внимание на совсем небольшую заметку, опубликованную на страницах "Журнала военного хозяйства" от 15 августа 1922 года. А написана она была Михаилом Ивановичем Калининым - одним из самых авторитетных людей Советского государства, в .то время председателя ВЦИК. Народ любовно называл товарища М. И. Калинина сначала Всероссийским, а затем, после образования СССР, - Всесоюзным старостой.
Что же волновало Всероссийского старосту в тяжелейшие для молодой Советской Республики времена, какая забота заставила его взяться за перо в дни напряженной борьбы с интервенцией, разрухой, голодом? Оказывается, политически остро стоявший тогда вопрос о борьбе с инвалидностью.
"...Голодный крестьянин, - писал М. Калинин, - ждет помощи от Советской власти. Безработный рабочий требует работы, они оба обращают свои надежды на рабоче-крестьянское правительство... Но все эти упреки ничто по сравнению с упреками, которые я получаю от красных инвалидов гражданской войны. Ежедневно 1-2 десятка инвалидов посещают мою приемную, у всех один основной вопрос: "Помогите. - Я имею право на помощь от Советской Республики".
Голод заслонил от рабочих, крестьян, Советского правительства этих прекрасных мучеников. У меня один ответ: подождите до осени, дайте пережить остроту голода, Советская власть не забудет, не оставит, сделает все, что в ее силах, для своих красных героев..."
И страна, Советская власть не забыли их. Еще в 1921 году в Москве был организован Лечебно-протезный институт (ныне всемирно известный институт травматологии и ортопедии - ЦИТО), а в 1923 году - Институт скорой помощи имени Н. В. Склифосовского.
Отечественная ортопедия и травматология располагает сегодня, в том числе и благодаря химии, широчайшими возможностями. Тысячам людей медицина вернула здоровье благодаря эндопротезам (внутренним протезам), суставам из металла или полимеров, консервации костей. Успешно развиваются методы микрохирургии л приживления кисти, пальцев, целой руки. Еще недавно казавшиеся роком самые тяжкие заболевания, такие, например, как опухоли костей, сегодня в большинстве случаев не только не приводят к смерти, но и к ампутации конечности. Такому больному пораженный сустав заменяют консервантом, сохраненным при непосредственном участии химии. А как это важно, особенно если речь идет о ребенке, только вступающем в жизнь, попятно любому, даже очень далекому от проблем травматологии человеку. Пройдет время, донорская кость ассимилируется организмом и станет его собственной неотъемлемой частью.
Донорскую кость можно заменить и полимерной.
Правда, создать идеально совместимый с человеческим организмом полимер вряд ли удастся в ближайшее время. Еще в 1960 году академиком В. А. Каргиным была высказана мысль о том, что биосовместимым можно считать полимер, вводимый в организм на ограниченное время для выполнения какой-то конкретной лечебной задачи и который затем разрушается и заменяется вновь образованными тканями. Блестящее предположение ученого подтверждено практикой. И полимеры все решительней проникают в медицину.
В Институте химии высокомолекулярных соединений Академии наук Украинской ССР созданием медицинских полимерных материалов занимается коллектив, возглавляемый профессором Т. 3. Липатовой. Сущность предложенного учеными метода в том, что полимер вводят в тот или иной орган в виде пломбы или клеевого шва, искусственного клапана пли сосуда с учетом биологической активности среды и характера нагрузки, воздействующей на протез. С учетом этих важнейших факторов и разрабатывается состав и структура полимерного материала, его делают сплошным или пористым, в виде сетки и т. п. Но чтобы подобрать материал, оптимальный для данных условий, необходимо иметь возможно более полное представление о характере взаимодействия биологической среды с полимером, и успехи в этой важной области значительны. В настоящее время стало возможным даже регулировать срок рассасывания полимера в организме.
Полиуретановый клей КЛ-3 является представителем именно такого рода материалов и предназначен для наложения на различные раны. Его авторы ученые Института туберкулеза и грудной хирургии Минздрава УССР сегодня с успехом применяют этот материал для закрытия бронхиальных свищей, а в киевской городской больнице No 3 - при закрытии кишечных свищей. Характерной особенностью клея КЛ-3 является то, что при отвердении он вспенивается и увеличивается в объеме.
Этим и достигается достаточная плотность закрытия отверстия. Если же в состав клея ввести катализатор, то можно регулировать время затвердения от нескольких секунд до нескольких минут.
Используется этот клей и при лечении такой, к сожалению, весьма распространенной болезни, как язва желудка. Оказалось, что лечение возможно в амбулаторных условиях и без операционного вмешательства. В Тернопольском медицинском институте впервые начали накладывать клей непосредственно на язву через тубус гастроскопа.
Широкое применение нашел КЛ-3 и при урологических операциях, и в челюстно-лицевой хирургии. Этот препарат используется уже и за пределами СССР.
В частности, в Чехословакии при пластике мозговых свищей и трепанационных отверстий. В последнее время чехословацкие хирурги применили его при лечении злокачественных опухолей головного мозга, для обеспечения высокой местной концентрации лекарства, подавляющего рост опухоли. Для этого из клея изготовляют пломбу, в наполнитель которой входит лечебный препарат.
В Москве, в Институте сердечно-сосудистой хирургии имени А. Н. Бакулева успешно проводится изучение возможностей применения полимерных материалов для создания искусственных кровеносных сосудов. Было обнаружено, что наиболее устойчивыми к образованию тромбов являются полимеры, поверхность которых обработана гипаритом или гидрогелями. Однако важное значение для решений этих задач имеют не только химические, но и физические свойства материала. Тромбообразование определяется, кроме всего прочего, еще и условиями смачивания поверхности кровью, адсорбцией (адсорбция концентрирование вещества из объема фаз на поверхности раздела между ними, например, из жидкости на поверхность твердого тела) белков крови на внутренней поверхности сосуда. Важнейшую роль при этом играет шероховатость поверхности полимерного материала. Она в значительной степени влияет и на структуру потока крови в полимерном кровеносном сосуде.
Для создания полноценных протезов необходимо прежде всего знать механические свойства живых тканей, например, деформируемость, прочность и т. д. Этими проблемами занимается Институт механики полимеров Академии наук Латвийской ССР.
Одним словом, представители многочисленных Школ и направлений отечественной химии самым активным образом участвуют в решении важнейших проблем медицины, используя при этом все богатства обильной научной нивы.
И только факты...
В одно из своих посещений родных мест довелось мне проезжать свинокомплекс "Искра". Предприятие это на Рязанщине известно, пользуется заслуженной славой п в области, и за ее пределами. Здесь давно решены многие социальные проблемы, над которыми другие еще бьются: стабильность кадров, прекрасное жилье для рабочих, посменный труд. И отлаженный производственный цикл. В поселке, где живут рабочие комплекса, многоэтажные дома со всеми удобствами, общеобразовательная и музыкальная школы, прекрасный Дворец культуры, спортивный зал. Магазин, прачечная, гостиница - все свое, все добротно и современно. Но вот беда: время от времени душная, смрадная волна накатывается на жилой массив. Это ветер доносит зловоние с навозонакопителей, отравляя людям настроение и жизнь. Последнюю, впрочем, не только им. В местной речушке из-за сбросов свинокомплекса давно перевелась рыба, водившаяся в ней прежде, пропали лягушки, исчезли птицы в округе. Мертвая в буквальном смысле река опоясывает поселок свинокомплекса "Искра", по берегам ее умирают деревья. Так и хочется миновать, проехать побыстрее это гиблое место.
Между тем, если по-хозяйски подойти к проблеме, решить вопрос утилизации свиного навоза можно и должно. Разумеется, самим работникам сельского хозяйства его не осилить. Здесь нужна действенная помощь науки. Нисколько не сомневаюсь в том, что рязанским научно-исследовательским институтам ото дело оказалось бы под силу, займись они им по-настоящему. Да и к чужому опыту не грех обратиться, например, латвийского Института микробиологии имени Августа Кирхенштейна, с успехом применяющего для утилизации отходов, скапливающихся на крупных животноводческих предприятиях, специальную культуру термофильных анаэробных, метанопродуцирующих бактерий. Расшифровываются эти довольно загадочные слова несложно: бактерии, не нуждающиеся для поддержания процесса жизнедеятельности в кислороде. Зачем же нужны такие бактерии?
Чтобы превратить органические вещества биологических отходов в метан. Никаких секретов в таком методе утилизации смердящих отходов того же свинокомплекса здесь нет. Людям моего поколения этот "секрет" известен еще со школьной скамьи. Да и поколениям помоложе, вероятно, помнится несложный опыт, предписываемый учебниками естествознания: взять пробирку, собрать в нее пузырьки газа, выделяющегося со дна зарастающего водоема, поджечь его - над пробиркой вспыхнет язычок пламени. Это горит метан - болотный газ. Его продуцировали из органических остатков специальные бактерии. К помощи этих бактерий и обратились латышские ученые, разрабатывая методы утилизации и продуцирования свиного навоза.
В ферментаторе - аппарате для выращивания бактерий, с их помощью производят природный газ при температуре 50-55 градусов. Такой подогрев необходим, чтобы погибли болезнетворные организмы, содержащиеся в органических остатках, и разрушились дурно пахнущие вещества. Полученный биологический газ - дешевое высокоэкономичное топливо, а главное, источник его неиссякаем: пока существует комплекс, производство газа не прекратится. Не знаю, хватило бы произведенного таким образом газа для отопления такого большого поселка, как "Искра", но энергетические нужды самого комплекса вполне могли бы быть компенсированы за этот счет.
Установка по производству биогаза, разработанная и изготовленная институтом имени Августа Кирхенштейна специально для свинокомплекса совхоза "Огре", дает до 300 кубометров метана в сутки. Не так-то и мало.
По крайней мере, эквивалентной теплотворной способностью обладают сто литров бензина. Установка работает несколько лет и вполне подтвердила свою практичность:
все отходы свинокомплекса утилизированы, исчезло зловоние, возродилась природа. И все потому, что в латвийском институте микробиологии нашлись в свое время инициативные люди. Проблема-то не из сложных, ее наверняка могли бы решить и в Рязани, и в других областях и краях страны.
Я не зря начал разговор об охране окружающей среды с такого животрепещущего вопроса, как утилизация навоза крупных животноводческих ферм. И не только свиноводческих.
Если не обратить на него серьезного внимания сейчас, со временем эта проблема способна превратиться просто в угрожающую. Ведь число крупных животноводческих комплексов будет увеличиваться из года в год.
Это определено задачами Продовольственной программы.
И не надо думать, что защита окружающей среды от отходов предприятий, специализирующихся на откорме сельскохозяйственных животных, вырастает в серьезную проблему только в нашей стране. Отнюдь... Решение этого вопроса затрагивает почти все страны, и он является общеглобальной, общечеловеческой проблемой, при решении продовольственных вопросов и охраны окружающей среды.
Первый, как известно, зависит от интенсификации сельскохозяйственного производства, в том числе животноводства, все решительнее переходящего на промышленные методы откорма скота и птицы. Решение экологической проблемы, предусматривающее защиту природы от негативных последствий человеческой деятельности, уже сегодня обязывает людей знать, какой опасности подвергают они себя и свой дом - планету Земля.