148689.fb2 Телескопы для любителей астрономии - читать онлайн бесплатно полную версию книги . Страница 29

Телескопы для любителей астрономии - читать онлайн бесплатно полную версию книги . Страница 29

На рис. 81 дана фотография патрульного астрографа, построенного в клубе им. Максутова. Фокусное расстояние объектива не должно превышать 100-- 135 мм, иначе масса аппарата окажется велика. Однако если вместо подшипников скольжения, в которых вращается главная ось часового механизма, установить шарикоподшипники, а всю монтировку хорошо сбалансировать, то можно применить и 200-миллиметровый объектив. С такими объективами можно получить замечательные фотографии крупных туманностей и скоплений. Применив высокочувствительные пленки, можно получить изображения звезд до 13--14-й звездной величины. Если же на фотоаппарате стоит "штатный" объектив с фокусным расстоянием 40--50 мм, то на фотографиях получатся большие области неба и звезды до 10--11-й звездной величины. Эти объективы интересны для поиска новых звезд, фотографирования астероидов, переменных звезд, составления фотографических атласов неба. Нужно только помнить, что обычные фотообъективы имеют на краю поля зрения плохие изображения, поэтому надо использовать примерно 50--70% площади кадра. КАМЕРА ШМИДТА

Там, где необходимы большие поля зрения, описанный астрограф незаменим. Однако, когда мы хотим получать фотографию туманности, звездного скопления, галактики или кометы в большом масштабе, необходим астрограф с большим фокусным расстоянием. В качестве такого астрографа можно применить малоформатную камеру с объективами типа "Таир-3", "МТО-500", "МТО-1000", укрепленную на трубе телескопа, снабженного часовым механизмом или хотя бы микрометренными винтами по обеим осям. К сожалению, эти объективы имеют малое относительное отверстие и, следовательно, малую светосилу. Поэтому даже для получения сравнительно ярких протяженных

объектов требуется выдержки порядка часа и более.

Можно получить гораздо большее относительное отверстие с единственной оптической деталью -- сферическим зеркалом, перед которым установлена кассета с пленкой. К сожалению, полевые аберрации сильно портят изображения сразу вне оптической оси зеркала.

Рис. 82. Схема камеры Шмидта и конструкция кассеты.

а) Камера Шмидта, б) кассета. 1 -- барабан, 2--фокусировочный винт. 3 -растяжки, 4 -- магнитное кольцо, 5--выпуклое дно кассеты, 6 -- фотопленка, 7 -- прижимное кольцо, 8 -- крышка, 9 -- склейки эпоксидной смолой.

Вот если бы каждая точка фокальной поверхности оказалась на оси зеркала! На первый взгляд это явный абсурд. Но это только на первый взгляд. Эстонский оптик Бернард Шмидт, работая в Гамбургской обсерватории, изобрел систему, где это условие выполнено. В центре кривизны сферического зеркала он установил диафрагму, которая на 30--40% меньше диаметра зеркала. Рассмотрим, как действует эта система (Рис. 82).

Пучок света, идущий от звезды, падает на зеркало точно вдоль оси симметрии зеркала и диафрагмы, значит этот пучок центральный и после отражения от участка 1 зеркала он упадет на пленку в точке а. Разумеется, что ни комы, ни астигматизма не возникнет, так как пучок центральный. Рассмотрим пучок от другой звезды, падающий на участок 2 зеркала и отражающийся относительно своей оси симметрии в точку b на пленке. Центр диафрагмы, центр освещенного пучком участка зеркала 2 и изображение точки лежат точно на оси симметрии этого пучка, следовательно, и здесь не возникнут краевые аберрации кома и астигматизм. Можно рассмотреть любой, не срезанный краем сферического зеркала пучок, и все они окажутся совершенно равноправными друг перед другом. Следовательно, ни кома, ни астигматизм не возникнут в пределах пленки на участках от точки b до точки с. В действительности и за пределами этого участка кома не возникнет, но освещенность пленки начнет падать и тем больше, чем сильнее будут срезаться краем зеркала очень наклонные пучки.

Итак, грамотно разместив перед простым зеркалом диафрагму, Б. Шмидт сумел создать камеру, свободную сразу от хроматической аберрации, комы и астигматизма. Остается неисправленной сферическая аберрация. На первый взгляд достаточно заменить сферическое зеркало на параболическое и можно свести к нулю и сферическую аберрацию, но на самом деле это не так, потому, что параболоид имеет различную кривизну на разных зонах. Поэтому падающие на края зеркала пучки не будут равноправными с центральным пучком, и здесь возникнут аберрации.

Чтобы устранить сферическую аберрацию, Б. Шмидт установил в диафрагме специальную линзу -- отрицательную на крайних зонах и положительную в центре. Изготовление этой линзы не по силам начинающим любителям, но у нас есть еще одно средство, позволяющее сильно снизить сферическую аберрацию этой камеры: надо уменьшить относительное отверстие. Расчеты показывают, что если относительное отверстие такой упрощенной камеры Шмидта с действующим отверстием 100 мм не будет превышать 1/2,8, то пятно изображения звезды будет иметь допустимый диаметр -- около 0,1 мм. Это относительное от

верстие в 1,6 раза больше, чем у "Таира-3", а светосила больше в 2,5 раза. Значит, для съемки одного и того же объекта с нашей камерой потребуется в 2,5 раза меньшая выдержка, чем с "Таиром", а выигрыш по сравнению с "МТО-500" и "МТО-1000" составит соответственно 8 и 12 раз! Там, где "Таиру-3" потребуется выдержка в 45 минут (туманность Ориона, напри

Т а б л и ц а 15

Действующее отверстие (диаметр диафрагмы),

мм

Предельное фокусное расстояние, мм

Длина камеры, мм

Диаметр сферического зеркала, мм

Диаметр поля зрения

Относительное отверстие

мм

градусы

70

165

330

115

23

7,3

1/2,4

80

200

400

130

27

6,9

1/2,5

100

280

560

165

33

6,1

1/2,8

120

370

740

200

40

5,6

1/3,1

150