149455.fb2 Электронные системы охраны - читать онлайн бесплатно полную версию книги . Страница 23

Электронные системы охраны - читать онлайн бесплатно полную версию книги . Страница 23

Оптические свойства

Если вы представляете себе физические свойства света, то свойства МКВ-излучения для вас почти уже ясны.

Сверхвысокочастотные волны движутся по прямой - значит, между передатчиком и приемником должна быть открытая прямая линия; микроволны можно отражать, преломлять и фокусировать.

Проникающая способность

Понятие проникающей способности впервые появилось в нашем с вами словаре при обсуждении различных видов электромагнитной энергии. Но с ней стоит разобраться поглубже, чтобы квалифицированно противопоставлять, сравнивать и применять МКВ и ультразвуковые приборы в конкретных практических ситуациях. Ключевым моментом является то, что МКВизлучение проникает через все, кроме металла. То, насколько это влияет на систему сигнализации, зависит от плотности и толщины слоя неметалла. Например, кирпичная стена поглощает большую часть энергии МКВ-излучения, и происходящее за этой преградой не вызывает срабатывания системы - особенно если принять во внимание оптические свойства луча, и пучок отводится от стены. Однако для МКВ-излучения "не существует" деревянных дверей, стекол, панелей из ДСП. Именно поэтому использование МКВ-датчика вблизи окна может стать источником большого числа ложных тревог.

Ультразвук может проникать через тонкие листы бумаги и пластика, но не более того.

Для запоминания и применения в последующей работе сведений о проникающей способности микроволнового излучения подойдет следующая мнемоническая формула: микроволны пронизывают неметаллические материалы благодаря своей высокой скорости, но металлическая "броня" им не по зубам. Ультразвук же, подобно кавалеристу, идет своей медленной леткой походкой и не может пробить никаких стен.

Принцип работы

Что бы вы сказали о том, что летучая мышь знает едва ли не больше всех нас о пространственном распознавании и определении в воздухе координат людей и препятствий. Лично для меня в работе по созданию радаров этот крылатый зверек всегда был источником вдохновения. То, что летучая мышь использует ультразвук интересно, но не принципиально. С тем же успехом она могла бы пользоваться и микроволновым излучением.

Летучая мышь настолько совершенно ориентируется в пространстве, что пытавшимся добиться таких же результатов инженерам-конструкторам приходилось довольствоваться их простейшими подобиями, дальнейшее совершенствование которых затруднялось их дороговизной и лавинообразным ростом технологических сложностей.

Кое-что еще о допплеровском эффекте

Если дело того стоит, то летучая мышь может пролететь в полной темноте через дыру не шире размаха ее крыльев. Чтобы выполнить такой трюк, она должна своей сложной радарной измерительной системой определить точный угол сдвига своего тела в стороны, скорость, расстояние до отверстия и его ширину. Для определения скорости летучая мышь использует допплеровский эффект, а для измерения дистанции и направления различные виды этих животных пользуются амплитудной или частотной модуляцией ультразвука, а также их комбинацией.

К счастью, для систем сигнализации не важна скорость или направление движения нарушителя. Достаточно знать, что он в помещении и движется к охраняемому объекту. Следовательно, из арсенала летучей мыши можно позаимствовать лишь допплеровский эффект.

Стоит также обратить внимание на то, что в случае летучей мыши отверстие стоит на месте, а движется источник ультразвука. В системах сигнализации все наоборот. Допплеровский эффект одинаково работает в обоих случаях, так как он фиксирует относительное движение.

Радарное обнаружение

В главах 4 и 15 уже говорилось, что в радарах приемник и передатчик расположены рядом, и сигнал в требуемом направлении излучается постоянно. Все, что попадается на пути луча, отражает часть его энергии на приемник в виде эха. Если объект стоит на месте, частота волны эха не изменится. МКВ-датчик будет игнорировать такой отраженный сигнал даже при сильных перемещениях воздуха в отличие от ультразвукового детектора.

Если объект движется, и это, к примеру, нарушитель, проникший в комнату, частота сигнала-эха будет отличаться от частоты исходного импульса. На основе этой информации приемник включит систему сигнализации.

Дифракционный метод обнаружения

Поскольку перемещения воздуха для микроволнового излучения не помеха, то вполне разумно использовать дифракционный метод в МКВ-системах сигнализации. То, что таких систем мало, связано, видимо, с существовавшей в ранних моделях МКВ-детекторов проблемы "мертвых зон", уже описанной в главе 15. Если же добавить еще один-два приемника и придать таким образом разносторонность системе приема, то в наших руках будет весьма эффективное средство защиты складских помещений.

В главе 19 мы вновь возвратимся к проблеме "мертвых зон" или, иначе говоря, ситуаций, когда поднимается ложная тревога из-за потери сигнала на приемнике. Такие ситуации вполне могут возникнуть в микроволновых заграждениях по периметру вне помещения.

Уловки обнаружения

Для МКВ нарушитель - не что иное, как сосуд с водой: вода прекрасно отражает микроволновое излучение, особенно если она не совсем чистая. Следовательно, несмотря на глубокое проникновение излучения в тело микроволновый радар не смотрит "сквозь" нарушителя, а реагирует на него.

Надежность и контроль за ложными тревогами

Многое из того, что было сказано в главе 15 о способах избежания ложных тревог, относится и к микроволновым радарам. Что особенно важно электронные системы обработки сигналов в обоих случаях практически совпадают.

Проблема в том, что типичный допплеровский сдвиг частот в популярном у конструкторов диапазоне волн длиной около 3 см совпадает с пульсацией тока в системе питания - 5060 или 100-120 герц. Избежать этой трудности можно, снабдив детектор качественным стабилизатором тока. Но такое устройство и обеспечение его долговременной надежной работы - тоже конструкторская задача высокой сложности. Кроме того, диод Ганна, используемый для генерации МКВ, к сожалению, не очень эффективен. Разрушение термического контакта между диодом и металлической оболочкой резонатора может привести к перегреву и последующему отказу покрытия. Преодолеть малую эффективность системы можно, используя недавно открытые источники микроволновой энергии, такие, как полевые транзисторы на базе арсенида галлия (тиристоры).

Проблем со стабилизацией частоты тока и эффективностью источника излучения можно избежать при переходе из диапазона волн 3 см в диапазон 12 см. Такая мера учетверяет размеры допплеровского сдвига и уводит его от частоты пульсаций тока в сети питания. Кроме того, волны длиной 12 см очень эффективно генерируются транзисторами, впаянными в схему, что снижает риск перегрева. Остальные достоинства диапазона 12 см обсуждаются ниже.

Формирование пучка

Соображения цены столь важны для создателей систем сигнализации, что они, как правило, стараются применять в своих конструкциях компоненты, уже опробованные в других областях техники. Ультразвуковой диск - излучатель изначально создавался для приборов дистанционного управления телевизорами. Лишь по счастливой случайности было обнаружено, что его конический пучок с углом расхождения около 60 градусов весьма подходит для эффективного перекрытия пространства и снижает процент ложных тревог в системах сигнализации.

Точно так же наиболее разработанным в других областях техники оказалось микроволновое оборудование с длиной волны в 3 см. Вместо проводов электромагнитная энергия подобной частоты могла передаваться по трубчатым волноводам. Такие волноводы производились в большом количестве, и когда стало очевидно, что пучок трехсантиметровых волн, входящих через открытый конец трубки с размерами 2,5 х 1,25 см имеет угловые параметры 60 х 120 градусов, была принята именно такая конструкция без всяких "антенн" и формирующих насадок. Вы можете спросить, какие размеры каким соответствуют, и я вам отвечу: 2,5 см - 60-ти градусам, а 1,25 см - 120 или наоборот.

Пожалуй, ответ проще всего представить себе в виде ряби на поверхности емкости с водой. Подобная аналогия уже использовалась в 1801 году Томасом Янгом для объяснения поведения волн света. Если вы посмотрите на поверхность воды так, под определенным углом, вы увидите, что поперек емкости установлена перегородка с небольшим отверстием в ней. Всколыхнув воду, вы заметите, что волны равномерно движутся к отверстию, но проходя через него, они начинают быстро расходиться под большим углом. Если в перегородке оставлено широкое отверстие, и те же самые волны свободно через него проходят, лишь немного расходясь. Чем больше будет отверстие, тем меньше угол расхождения. Следовательно, соответствие размеров пучка и волновода, указанные выше, имеет смысл, хотя и кажется странным.

Если вы начинаете улавливать важность длины волны для ультразвука и МКВ, то запомните такую формулу: чем больше сечение выходного отверстия в одной из плоскостей - если его исчислять в количестве укладывающихся длин волн, - тем меньше угол расхождения и угловое сечение пучка.

Получая на выходе волновода слишком широкий пучок МКВ-излучения, мы можем снабдить его специальной насадкой, называемой "рупор". Не имеет смысла углубляться в детали конструкции этих насадок, но о них полезно помнить следующее:

1) угловые размеры пучка обратно пропорциональны 1 размерам отверстия волновода. Следовательно, чтобы уменьшить угол с 80 до 20 градусов, нам понадобится увеличить одну из сторон отверстия в 4 раза;

2) угловые размеры пучка прямо пропорциональны длине волны. Это значит, что если нам известны ожидаемые размеры пучка для данного отверстия при длине волны в 9 см, то эти размеры уменьшатся втрое при переходе в диапазон 3 см.

Схемы перекрытия пространства детектором

Желая узнать, сможет ли радар, установленный в конкретном месте, обнаружить нарушителя во всех положениях в пределах защищаемого пространства, мы задаем вопрос: "А какова схема перекрытия пространства у этого радара?"

Хотя эти схемы в действительности трехмерны, на бумаге их придется изобразить в двух измерениях. Следовательно, получится две картинки. Одна из них показывает сечение пучка в горизонтальной плоскости, а другая - в вертикальной. Эти схемы в трехмерном изображении обычно напоминают грушу или яблоко с "черенком" у радара и противоположной стороны у границы обнаружения.

Размеры зоны перекрытия обычно можно рассчитать, исходя из ширины пучка, но его форму можно установить лишь на практике. Практические испытания обычно состоят из медленных прогулок по охраняемому помещению и нанесению на карту позиций, в которых радар срабатывает. Если приходится принимать во внимание возможность избежать обнаружения путем замедленного движения, расчеты зоны проводятся при наименьшей возможной скорости передвижения. Полезно также испытать радар на обнаружение нарушителя, пытающегося соблюдать одну и ту же дистанцию от источника МКВ-излучения. Таким образом вы удостоверитесь, что система срабатывает при самом минимальном допплеровском сдвиге. Если при испытании на очень малых скоростях выявляются проблемы в работе системы, возможно, стоит позаимствовать некоторые принципы пассивного инфракрасного обнаружения. Вертикальное сечение зоны перекрытия можно установить, поставив радар на бок и замерив его так же, как и горизонтальный - передвижением.

В следующем разделе мы обсудим интересное применение зон перекрытия для создания наружных радарных систем.

Наружные радарные системы

При рассмотрении типов зон перекрытия подчеркивалось, что для испытаний необходимо участие человека. Практически невозможно создать манекен, чьи отражающие характеристики в МКВ-диапазоне совпадают с человеческими. Манекен не способен также имитировать всю гамму добавочных частот отраженного излучения, возникающего при движении конечностей, а она крайне важна для прибора, работающего на допплеровском принципе. Чем меньше рост нарушителя, тем меньше мощность эха и дистанция надежного обнаружения. На близком расстоянии радар обнаруживает все. Поэтому близко летящая птица также способна вызвать ложную тревогу. Методы исчисления зон перекрытия могут сослужить, таким образом, хорошую службу при создании радара, малочувствительного к наружным помехам.

Основным доводом в пользу создания зоны необычной формы служит то, что если цель (птица) не "высвечивается" передатчиком, то на приемнике нет эха и ложной тревоги. То же самое верно и в случае попадания птицы только в зону перекрытия передатчика. Энергия, отраженная от нее, не даст эха в зоне чувствительности приемника. Чуть дальше от радара, там, где по схеме датчик не имеет чувствительности, допплеровский сигнал от птицы появится может, но если удачно подобрано перекрытие зон излучения передатчика и чувствительности приемника, эхо будет слишком слабым для срабатывания.

Эхо от человеческого тела будет достаточно сильным для реальной тревоги во всей области наложения зон излучения передатчика и чувствительности приемника. Разделение конусов перекрытия возможно при раздельной установке друг над другом передатчика и приемника. Дистанция между ними должна быть примерно 100 длин волны (для 3-х сантиметровых волн это примерно 300 мм, или 3 метра). При большей длине рабочей волны появляется необходимость в технических компромиссах для создания достаточно надежной системы. Однако компромиссные варианты окупаются снижением чувствительности к малым целям.

При использовании диапазона 3 см в периметровых системах ложные тревоги могут быть вызваны дождем или градом, но разделение передатчика и приемника устранит их.

Удачные и неудачные варианты практического использования

Еще до начала обсуждения микроволновых детекторов необходимо уточнить, что радар установлен там, где это необходимо для конкретного случая.

Большие участки пространства

В целом, МКВ-устройства способны перекрывать большую площадь в расчете на детектор, чем любой другой метод сейсмического или пространственного обнаружения. Ширина лицензируемых диапазонов такова, что позволяет установить несколько раздельных детекторов с индивидуальными рабочими частотами для еще большего увеличения охраняемой площади. Широкий разброс частот внутри разрешенного диапазона практически исключает риск случайной работы детекторов на близких частотах, появления наведенного допплеровского сигнала и ложной тревоги.

Положительные качества микроволновых датчиков, работающих на больших площадях, еще ярче проявляются, если радары установлены на потолке или перекрытии крыши. Зона перекрытия таким образом увеличивается вдвое по сравнению с расположением на стене или колонне. Учитывая, что размеры нормального пучка 120-150 градусов в одной плоскости и 60-75 градусов в другой, нет необходимости направлять его на стены, окна и двери, где повышается риск ложных тревог.

Благодаря большей, по сравнению с ультразвуком, длине волны, микроволновое излучение менее чувствительно к внешней вибрации и к помехам из окружающей среды вообще. А поскольку МКВ-излучение пронизывает такие тонкие материалы, как колеблемая сквозняком бумага или картон, и делает это тем лучше, чем больше длина волны, то увеличение этой длины в разумных пределах улучшает надежность охраны складских помещений.