149476.fb2
Это произошло 2 декабря 1942 года. В те годы наша страна переживала тяжелые дни Великой Отечественной войны. Но работы по созданию реактора под руководством И. Курчатова уже начались...
Весной 1946 года в нескольких сотнях метров от домика И. Курчатова на территории лаборатории № 2 (прежнее название Института атомной энергии) закончилось строительство и отделка здания, которое тогда называли монтажными мастерскими. В бетонированном котловане десятиметровой ширины, длины и высоты выложили метровый слой графита и на нем стали складывать первый шар из уран-графитовых блоков. В графитовых кирпичах, из которых выкладывали реактор, имелись отверстия для урановых блоков, похожих на гирьки. Пока не было всего необходимого урана и графита, в здании собирали различные модели, с помощью которых можно было определить многие нужные физические параметры установки. И вот в декабре 1946 года прибыли последние партии урана и графита. На слое графита стали размещать графитовые кирпичи с вставленными в них блоками урана. Кирпичи клали так, чтобы реактор по форме как можно точнее напоминал шар - тогда меньше нужно графита и урана.
Наконец выложено шестьдесят два слоя графитовых кирпичей. Измерения показывают, что реактор почти критический. Надо еще немного улучшить размножение нейтронов - и цепная реакция начнется. И. Курчатов отпустил на отдых всех, непосредственно не связанных с пуском, а сам начал поднимать регулирующий стержень. Чем выше тот поднимался, тем осторожнее становились движения ученого. Вот стержень выдвинут еще немного. Зайчик гальванометра, а он должен был показывать поток нейтронов, чуть сдвинулся с места и остановился. Реактор заработал, но мощность его не растет, значит, еще нет цепной реакции. "Отдохнем", - говорит Игорь Васильевич. Потом еще поднял стержень на десять сантиметров. Зайчик гальванометра тронулся и начал двигаться по шкале не останавливаясь. Вот он ушел за шкалу; переключается масштаб измерений.
Мощность растет. Звонко щелкают динамики - это электрические импульсы, создаваемые нейтронами в счетчиках, с помощью усилителей превращаются в звук.
Щелчки динамиков учащаются: барабанная дробь сменяется пулеметной очередью, а затем и вовсе нельзя различить отдельные щелчки - все сливается в сплошной гул. Реактор стал надкритическим. И. Курчатов тут же оценил мощность: "Вот они, первые сто ватт от цепной реакции делений!"
Потом каждому пожал руку и поздравил с победой.
Реактор был пущен в 18 часов 25 декабря 1946 года.
Пока задачу приходится сводить к предыдущей
До сих пор мы еще не говорили, в каком виде выделяется энергия при делении атомного ядра. Очевидно, что часть ее связана с нейтронами, вылетающими при делении. Обладая огромной скоростью в 20 тысяч километров в секунду, они несут энергию в 5 Мэв на деление, что составляет 2,5 процента всей энергии разделившегося ядра. На гамма-излучение и на электроды приходится 10 процентов. Около 6 процентов уносит с собой нейтрино, причем уносит безвозвратно. И, наконец, 81,5 процента (или 88, если не учитывать всепроникающее нейтрино) приходится на осколки, те новые ядра, которые образуются при делении урана-235. Если ядро разделится точно пополам, отдав одинаковое количество энергии каждой половинке, то новое ядро-осколок будет лететь со скоростью двух тысяч метров в секунду. Обладая такой скоростью и массой, более чем в сто раз превышающей массу нейтрона, летящие осколки и уносят основную долю энергии, выделяющейся при делении.
Сталкиваясь с окружающими молекулами, они передают им свою энергию, и те начинают двигаться быстрее, интенсивнее. А увеличение скорости движения молекул вещества есть не что иное, как повышение его температуры. Так энергия деления ядра переходит в тепловую энергию движения молекул урана.
В реакторах уран находится в виде стерженьков или таблеток, выполненных из двуокиси урана и заключенных в металлическую оболочку. Из какого металла надо делать оболочки? Конечно, прочнее они были бы из нержавеющей стали. Но она очень сильно поглощает нейтроны и замедляет процесс деления. Поэтому идут: на компромисс, используя материал менее прочный и температуростойкий, но зато слабо поглощающий нейтроны. Обычно берут цирконий или сплавы этого металла.
Стержень из двуокиси урана, помещенный в герметичную циркониевую трубку, называют тепловыделяющим элементом - сокращенно "твэл". Если тепло от твэла не отводить, то температура его будет непрерывно повышаться, в конце концов он раскалится, затем размягчится - реактор "сгорит".
Каждый тепловыделяющий элемент реактора можно было бы сравнить с вытянутой в линию спиралью электрической плитки. Из нескольких тысяч таких "спиралек" составлена центральная часть реактора. Эту его часть называют активной зоной. Каждая "твэл-спиралька" отдает энергию куда большую, чем спираль электроплитки.
Напряженность работы поверхности тепловыделяющего тела, через которую передается тепло, теплотехники определяют по количеству тепла, отдаваемого единицей поверхности в единицу времени. Так, спираль электроплитки работает в довольно напряженных условиях - через каждый квадратный сантиметр ее поверхности в час проходит 4 килокалории тепла. Уже при такой тепловой нагрузке спираль накаляется докрасна.
В 25 раз больший тепловой поток идет через поверхность твэла активной зоны энергетического реактора.
Он составляет в час 100 килокалорий на один квадратный сантиметр, и тем не менее оболочка твэла докрасна не раскаляется, да до этого цирконий и нельзя допустить - он расплавится.
Как же удается снижать температуру оболочки? Конечно, хорошим отводом от твэла тепла. Наверное, многие замечали, что, если подуть на спираль электроплитки, она потемнеет, значит, температура ее понизилась, хотя количество тепла при этом выделяется то же самое. А температура понижается потому, что стало лучше отводиться тепло; и чем с большей скоростью будет отводиться тепло, тем меньшей будет температура спирали.
В большей части существующих сейчас энергетических реакторов энергия деления отводится от тепловыделяющих элементов примерно так же, но не с помощью воздуха, а воды. Охлаждающая вода поступает по трубе в нижнюю часть корпуса реактора, а затем попадает в каналы с тепловыделяющими элементами. В каждом канале может быть собрано 100-200 тепловыделяющих элементов, расположенных на некотором расстоянии друг от друга. Протекая с большой скоростью мимо твэлов, вода охлаждает их и, нагреваясь, выходит через трубы, расположенные сбоку в верхней части корпуса реактора. Путем такого интенсивного охлаждения и удается снизить температуру оболочки твэлов. Такова общая схема отвода тепла из активной зоны реактора.
Конечно, она ненова. Так же с помощью воды, только текущей по трубкам, отбирается тепло раскаленных газов в топках паровых котлов электростанций, работающих еа органическом топливе.
Есть- у математиков такой метод решения: новую сложную задачу упрощают, разбивая ее на части до тех пор, пока она не станет похожей на какую-нибудь другую задачу, которая уже была решена раньше. Говорятг задача сведена к предыдущей. В этой связи следует заметить такой шутливый рассказ, бытующий среди учащихся. Двум студентам - математику и механику предложили почти без всяких инструментов вытащить из стены забитые по шляпку гвозди. После долгих усилий эту задачу решили оба. Затем гвозди забили в стену только наполовину. Студент-механик сразу же вытащил гвоздь, а математик сначала свел задачу к предыдущей - забил гвоздь по шляпку, а потом уж испытанным способом вытащил его. Конечно, это шутка. Рассказана же она потому, что создатели атомных энергетических установок во многих случаях поступают подобно студенту- м атем атику.
Как очевидно, задача большой части энергетических установок - это получение электричества: наиболее удобной и гибкой формы энергии. Проследим цепочку получения электрической энергии на тепловых станциях.
В топках паровых котлов электростанций сгорают уголь, нефть или газ. Тепло, выделяемое при горении, передается другому веществу, например воде. Вода разогревается и превращается в пар. Пар, выходя из котла, направляется в турбину. В ней энергия пара преобразуется в механическую энергию вращения турбины. И наконец, последняя ступень - турбина вращает генератор, вырабатывающий электрический ток.
Таков долгий, но пока почти единственно возможный путь масштабного получения электрической энергии из топлива. Теперь на смену химическому топливу приходит энергия ядра. В самом факте освобождения внутриядерной энергии заложены совершенно новые большие потенциальные возможности. Во-первых, выделяющуюся энергию можно сконцентрировать в очень" небольшом объеме. Другими словами, может быть достигнута громадная плотность энерговыделения. Во-вторых, для осуществления процесса выделения ядерной энергии не нужно непрерывно вводить в установку какие-то иные, кроме топлива, вещества, без которых энерговыделение невозможно (имеется в виду кислород в топке обычных котлов). Кроме того, и само топливо вводится крайне редко. В-третьих, почти отпадает необходимость в обязательном удалении новых продуктов, возникающих в процессе энерговыделения: золы, шлаков, газов - непременных спутников процесса горения угля, сланцев, торфа, нефти. В-четвертых, количество ядерного горючего, нужного для работы реактора, в миллионы раз меньше количества химического топлива, обеспечивающего такую же выработку энергии. И наконец, в-пятых, в отличие от химических реакций (если не говорить о взрывных процессах) при выделении внутриядерной энергии могут быть получены любые необходимые температуры источника тепла.
Да, возможности громадные! Но пока... задачу получения электроэнергии приходится сводить к предыдущей, то есть превращать энергию атома в энергию пара и направлять его в турбину. Почему пока?
В кабинетах физиков-теоретиков, в конструкторских бюро, на экспериментальных установках и реакторах - везде ведутся поиски и разрабатываются новые, более совершенные пути использования энергии атома. Здесь и прямые газотурбинные ц-иклы, и магнитогидродинамические установки, и прямое преобразование тепла в электроэнергию. Трудно сказать, когда все эти новые методы войдут в жизнь. Поэтому посмотрим, как же решается эта задача сейчас.
Вода, нагретая в активной зоне, выходит из реактора и по трубопроводу поступает в парогенератор - сосуд с очень большим количеством трубочек, по которым и течет нагретая вода. Из парогенератора вода перекачивается насосом снова в активную зону. Получается замкнутый контур, из которого вода никуда не уходит:
реактор - парогенератор - насос - реактор.
Вода, циркулируя в этом замкнутом контуре, забирает тепло в активной зоне и отдает его в парогенераторе воде второго контура.
Вода второго контура, поступая в парогенератор и омывая снаружи трубочки, внутри которых протекает вода первого контура, нагревается, начинает кипеть и превращается в пар.
Энергия пара преобразуется в механическую энергию вращения вала турбины. После турбины отработанный пар направляется в конденсатор. Здесь он охлаждается наружной водой или воздухом, конденсируется и насосами снова перекачивается в парогенератор.
Вращение турбины передается генератору, вырабатывающему электрический ток.
Такова эта длинная цепочка превращения ядерной энергии в электроэнергию. Есть и другие схемы. Но о них мы расскажем позже.
СТЕПЕНЬ ОПАСНОСТИ
...Вещи невиданные, скрытые и непознанные порождают в нас и больше веры, и больше страха.
Гай Юлий Цезарь
Любое производство - будь то текстильная фабрика с ее машинами и шумами, металлургический комбинат с повышенной загазованностью воздуха, трактор на пашне - приносит человеку определенную пользу и определенный вред. То же самое можно сказать и по поводу энергетической станции. Если теплоэлектростанция вынуждает нас вдыхать двуокись серы, окислы азота, углекислый газ, аэрозоли и так далее, то на атомной станции вред может приносить облучение, которым сопровождается как процесс деления ядер, так и некоторые продукты, связанные с работой установки.
В каждой отрасли промышленности защите человека от вредного воздействия шумов, газов и т. д. уделяется серьезное внимание. Огромна роль профилактики - предупреждения возможных тяжелых заболеваний и травм. В атомной энергетике защите тоже уделяется большое внимание, точнее сказать, не просто большое, а по сравнению с другими производствами громадное внимание, и тем не менее к атомной энергетике у многих людей особенно настороженное отношение.
Подумайте сами. Самые различные группы населения - научные сотрудники и производственники, пенсионеры и школьники, артисты и педагоги, колхозники и служащие одинаково опасаются атомной энергии. Эта боязнь доходит порою до комизма. Бывает, что мои собеседники, узнав, что я живу невдалеке от Института атомной энергии, спрашивают с опаской: "И... ничего?"
Приходится отвечать, что я проработал там четверть века и уверен, что еще долго буду трудиться в тех стенах, где действуют реакторы и вырабатывается атомнал энергия. Кстати, этот московский район по уровню излучений один из самых благополучных.
Лекарства от радиации
Безусловно, основная причина необоснованной тревоги - чистая неосведомленность. Но объяснять только этим было бы большим упрощением. Очень важен и психологический фактор. Излучение - это нечто отличное от того, к чему привык человек. Пламя, например, явление привычное. Пожарные в робе из минерального волокна бесстрашно борются с ним. Сталевары, которых предохраняет от ожогов специальная одежда и обувь, спокойно обслуживают домны, вагранки. А химики, занятые производством вещества, способного взрываться, проникать в легкие, в кровь? Разве не они постоянно рискуют здоровьем? Но все дело в том, что металлурги, химики, строители, врачи и прочие специалисты научились обращаться с явлениями, таящими в себе опасность, и хорошо знают, чего можно от них ожидать.
А вот атомная энергия, излучение - его не видно. Оно не пахнет. Его не почувствуешь. В такой ситуации человек чувствует себя беззащитным.
Первое знакомство людей с атомной энергией было чудовищным знакомством. Ужасы Хиросимы и Нагасаки надолго останутся в человеческой памяти. К сожалению, такое знакомство привело и к тому, что выражения "атомная энергия", "атомный реактор" у многих стало отождествляться с понятием "атомная бомба", хотя из ранее сказанного читатель уже сам может сделать вывод, что это разные вещи. Но "ведь источник энергии, - скажут мне, идентичен! Что может помешать использовать атомную энергию не в мирных, а в военных целях?"
Лучше поставить вопрос так: кто может этому помешать? Ответ последует простой: это совершат народы, готовые сопротивляться всеми силами повторению Хиросимы и Нагасаки. Люди всего мира знают, чго Советское государство всячески препятствует применению адского оружия, и это их воодушевляет на борьбу против атомного кошмара.
Конечно, в атомной энергии есть опасность, И бороться против ее вредного воздействия необходимо. Но стоит ли отказываться от колоссального достижения человеческого разума? Не закрываются же химические производства, хотя на некоторых из них готовят взрывчатые и ядовитые вещества.
Не запрещаются же автомобили, самолеты, газовые плиты и электричество. А ведь они тоже могут приводить к гибели человека.
Атомная энергетика родилась в эпоху, когда развитие техники, включая и энергетику, достигло небывалых успехов и масштабов.
Она стала активно влиять на природу и облагораживающе и разрушительно, улучшая и ухудшая ее.
Пришла пора по-настоящему серьезно относиться к проблеме влияния техники и энергетики на природу и человека. Нужно сказать, что атомной энергетике явно повезло в том смысле, что с самого ее зарождения начались тщательные исследования, в частности, по созданию научно обоснованных пределов облучения. Не ошибусь, если скажу, что такого уровня эти исследования не достигли еще ни в одной из других отраслей промышленности.