173194.fb2 Five Patients - читать онлайн бесплатно полную версию книги . Страница 9

Five Patients - читать онлайн бесплатно полную версию книги . Страница 9

Sylvia Thompson. Medical Transition

Flight 404 from Los angeles to boston was somewhere over eastern Ohio when Mrs. Sylvia Thompson, a fifty-six-year-old mother of three, began to experience chest pain.

The pain was not severe, but it was persistent. After the aircraft landed, she asked an airline official if there was a doctor at the airport. He directed her to the Logan Airport Medical Station, at Gate 23, near the Eastern Airlines terminal.

Entering the waiting area, Mrs. Thompson told the secretary that she would like to see a doctor.

"Are you a passenger?" the secretary said.

"Yes," Mrs. Thompson said.

"What seems to be the matter?"

"I have a pain in my chest."

"The doctor will see you in just a minute," the secretary said. "Please take a seat."

Mrs. Thompson sat down. From her chair, she could look across the reception area to the computer console behind the secretary, and beyond to the small pharmacy and dispensary of the station. She could see three of the six nurses who run the station around the clock. It was now two in the afternoon, and the station was relatively quiet; earlier in the day a half dozen people had come in for yellow fever vaccinations, which are given every Tuesday and Saturday morning. But now the only other patient she could see was a young airplane mechanic who had cut his finger and was having it cleaned in the treatment room down the corridor.

A nurse came over and checked her blood pressure, pulse, and temperature, writing the information down on a slip of paper.

The door to the room nearest Mrs. Thompson was closed. From inside, she heard muffled voices. After several minutes, a stewardess came out and closed the door behind her. The stewardess arranged her next appointment with the secretary and left.

The secretary turned to Mrs. Thompson. "The doctor will talk with you now," she said, and led Mrs. Thompson into the room that the stewardess had just left.

It was pleasantly furnished with drapes and a carpet. There was an examining table and a chair; both faced a television console. Beneath the TV screen was a remote-control television camera. Over in another corner of the room was a portable camera on a rolling tripod. In still another comer, near the examining couch, was a large instrument console with gauges and dials.

"You'll be speaking with Dr. Murphy," the secretary said.

A nurse then came into the room and motioned Mrs. Thompson to take a seat. Mrs. Thompson looked uncertainly at all the equipment. On the screen, Dr. Raymond Murphy was looking down at some papers on his desk. The nurse said: "Dr. Murphy." Dr. Murphy looked up. The television camera beneath the TV screen made a grinding noise, and pivoted around to train on the nurse.

"Yes?"

"This is Mrs. Thompson from Los Angeles. She is a passenger, fifty-six-years old, and she has chest pain. Her blood pressure is 120/80, her pulse is 78, and her temperature is 101.4."

Dr. Murphy nodded. "How do you do, Mrs. Thompson."

Mrs. Thompson was slightly flustered. She turned to the nurse. "What do I do?"

"Just talk to him. He can see you through that camera there, and hear you through that microphone." She pointed to the microphone suspended from the ceiling.

"But where is he?"

"I'm at the Massachusetts General Hospital," Dr. Murphy said. "When did you first get this pain?"

"Today, about two hours ago."

"In flight?"

"Yes."

"What were you doing when it began?"

"Eating lunch. It's continued since then."

"Can you describe it for me?"

"It's not very strong, but it's sharp. In the left side of my chest. Over here," she said, pointing. Then she caught herself, and looked questioningly at the nurse.

"I see," Dr. Murphy said. "Does the pain go anywhere? Does it move around?"

"No."

"Do you have pain in your stomach, or in your teeth, or in either of your arms?"

"No."

"Does anything make it worse or better?"

"It hurts when I take a deep breath."

"Have you ever had it before?"

"No. This is the first time."

"Have you ever had any trouble with your heart or lungs before?"

She said she had not. The interview continued for several minutes more, while Dr. Murphy determined that she had no striking symptoms of cardiac disease, that she smoked a pack of cigarettes a day, and that she had a chronic unproductive cough.

He then said, "I'd like you to sit on the couch, please. The nurse will help you disrobe."

Mrs. Thompson moved from the chair to the couch. The remote-control camera whirred mechanically as it followed her. The nurse helped Mrs. Thompson undress. Then Dr. Murphy said: "Would you point to where the pain is, please?"

Mrs. Thompson pointed to the lower-left chest wall, her finger describing an arc along the ribs.

"All right. I'm going to listen to your lungs and heart now."

The nurse stepped to the large instrument console and began flicking switches. She then applied a small, round metal stethoscope to Mrs. Thompson's chest. On the TV screen, Mrs. Thompson saw Dr. Murphy place a stethoscope in his ears. "Just breathe easily with your mouth open," Dr. Murphy said.

For some minutes he listened to breath sounds, directing the nurse where to move the stethoscope. He then asked Mrs. Thompson to say "ninety-nine" over and over, while the stethoscope was moved. At length he shifted his attention to the heart.

"Now I'd like you to lie down on the couch," Dr. Murphy said, and directed that the stethoscope be removed. To the nurse: "Put the remote camera on Mrs. Thompson's face. Use a close-up lens."

"An eleven hundred?" the nurse asked.

"An eleven hundred will be fine."

The nurse wheeled the remote camera over from the corner of the room and trained it on Mrs. Thompson's face. In the meantime, Dr. Murphy adjusted his own camera so that it was looking at her abdomen.

"Mrs. Thompson," Dr. Murphy said, "I'll be watching both your face and your stomach as the nurse palpates your abdomen. Just relax now."

He then directed the nurse, who felt different areas of the abdomen. None was tender.

"I'd like to look at the feet now," Dr. Murphy said. With the help of the nurse, he checked them for edema. Then he looked at the neck veins.

"Mrs. Thompson, we're going to take a cardiogram now."

The proper leads were attached to the patient. On the TV screen, she watched Dr. Murphy turn to one side and look at a thin strip of paper.

The nurse said: "The cardiogram is transmitted directly to him."

"Oh my," Mrs. Thompson said. "How far away is he?"

"Two and a half miles," Dr. Murphy said, not looking up from the cardiogram.

While the examination was proceeding, another nurse was preparing samples of Mrs. Thompson's blood and urine in a laboratory down the hall. She placed the samples under a microscope attached to a TV camera. Watching on a monitor, she could see the image that was being transmitted to Dr. Murphy. She could also talk directly with him, moving the slide about as he instructed.

Mrs. Thompson had a white count of 18,000. Dr. Murphy could clearly see an increase in the different kinds of white cells. He could also see that the urine was clean, with no evidence of infection.

Back in the examining room, Dr. Murphy said: "Mrs. Thompson, it looks like you have a pneumonia. We'd like you to come into the hospital for X rays and further evaluation. I'm going to give you something to make you a little more comfortable."

He directed the nurse to write a prescription. She then carried it over to the telewriter, above the equipment console. Using the telewriter unit at the MGH, Dr. Murphy signed the prescription.

Afterward, Mrs. Thompson said: "My goodness. It was just like the real thing."

When she had gone, Dr. Murphy discussed both her case and the television link-up.

"We think it's an interesting system," he said, "and it has a lot of potential. It's interesting that patients accept it quite well. Mrs. Thompson was a little hesitant at first, but very rapidly became accustomed to the system. There's a reason-talking by closed-circuit TV is really very little different from direct, personal interviews. I can see your facial expression, and you can see mine; we can talk to each other quite naturally. It's true that we are both in black and white, not color, but that's not really important. It isn't even important for der-matologic diagnoses. You might think that color would be terribly important in examining a skin rash, but it's not. The history a patient gives and the distribution of the lesions on the body and their shape give important clues. We've had very good success diagnosing rashes in black and white, but we do need to evaluate this further.

"The system we have here is pretty refined. We can look closely at various parts of the body, using different lenses and lights. We can see down the throat; we can get close enough to examine pupillary dilation. We can easily see the veins on the whites of the eyes. So it's quite adequate for most things.

"There are some limitations, of course. You have to instruct the nurse in what to do, in your behalf. It takes time to arrange the patient, the cameras, and the lighting, to make certain observations. And for some procedures, such as palpating the abdomen, you have to rely heavily on the nurse, though we can watch for muscle spasm and facial reaction to pain-that kind of thing.

"We don't claim that this is a perfect system by any means. But it's an interesting way to provide a doctor to an area that might not otherwise have one."

Boston's Logan Airport is the eighth busiest in the world. In addition to the steady stream of incoming and outgoing passengers, there are more than 5,000 airport employees. The problem of providing medical care to this population has been a difficult one for many years. Like many populations, it is too large to be ignored, but too small to support a full-time physician in residence. Nor can a physician easily make the journey back and forth from the hospital to the airport; though only 2.7 miles away, the airport is, practically speaking, isolated for many hours of the day by rush-hour traffic congestion.

The solution of Dr. Kenneth T. Bird, who runs the unit, has been to provide a physician when the patient demand is heaviest, and to provide additional coverage by television. The system now used, called Tele-Diagnosis, is frankly experimental. It has been in operation for slightly more than a year. At the present time, eight to ten patients a day are interviewed and examined by television.

The Logan TV system is probably the first of its kind in the country, but Bird refuses to discuss priority. "The first to have it," he says, "was Tom Swift, in 1914."

Certainly there is a science-fiction quality about the station's equipment, for along with the Tele-Diagnosis apparatus, there is also a time-sharing station linked to the hospital's computer. Among other things, this computer can be used to take a preliminary history-to function as a doctor in questioning the patient about his symptoms and their nature. Some 15 per cent of the patients examined by Tele-Diagnosis have had their medical history taken by computer before they see the doctor himself. Like the cardiogram, the computer history can be sent directly to the physician.

Being interviewed by a machine is less bizarre than it sounds. Indeed, like the TV link-up, it is remarkable for the ease with which patients accept it. The most common complaint is boredom: the machine sometimes pauses three or four seconds between questions, and the patients get fidgety.

To be interviewed, one sits in front of a teletype console. The computer asks questions, which are printed out, and the patient punches in his answers. Whenever the computer gets a "yes" answer to some question, it follows it up with more questions on the same subject. If it gets a "no" answer, it goes on to the next topic. At the conclusion of the question, the computer writes out a medical summary. Unlike the questions, the summary is phrased in medical terminology. The entire process takes roughly half an hour.

The result of one such interview is reprinted in part below. The computer was given the same presenting complaint as that of Mrs. Thompson: chest pain. In an attempt to confuse it, the machine was first fed some false but suggestive information, namely, that there was a family history of cardiovascular disease, and that the patient was taking digitalis. However, in later questions, the machine was given a straightforward history for the type of chest pain most common among medical students-that of psychogenic, or musculoske-letal, origin.

A sample of the questions and answers ran as follows:

SEVERAL MONTHS

A FEW YEARS

DO YOU HAVE THIS COUGH EVERY DAY?

YES

DO YOU BRING UP ANY MATERIAL (SUCH AS SPUTUM, PHLEGM, OR MUCUS) FROM YOUR CHEST?

NO

HAVE YOU EVER COUGHED UP BLOOD?

NO

At the conclusion of these and other questions, the computer printed the following summary:

HAS YOUR VOICE CHANGED (BECOME ROUGH, SCRATCHY, OR HOARSE) DURING THE PAST YEAR?

NO

DO YOU HAVE A COUGH? 

YES

HOW LONG HAVE YOU HAD THE COUGH? 

1. A FEW DAYS 

2. A FEW WEEKS

MEDICAL HISTORY SUMMARY DATE: MAY 27, 1969

NAME: MICHAEL CRICHTON UNIT #: DEMO

AGE: 26 SEX: MALE

CHIEF COMPLAINT: CHEST PAIN COMMUNITY PHYSICIAN: NONE OCCUPATION: MEDICAL STUDENT

MEDICATIONS: DIGITALIS DRUG REACTIONS: PAN ALBA HOSPITALIZATIONS: NONE

FAMILY HISTORY: HEART ATTACK, HYPERTENSION.

SOCIAL HISTORY 

PT. IS MARRIED, HAS NO CHILDREN. COLLEGE GRADUATE. PRESENTLY A STUDENT, WORKING 50-60 HRS/WK. HAS BEEN SMOKING 5-10 YRS, 1 PACK/DAY. ALCOHOLIC CONSUMPTION: 1 DRINK/DAY. FOREIGN TRAVEL WITHIN THE LAST 10 YEARS.

REVIEW OF SYSTEMS 

GENERAL HEALTH 

NO SIGNIFICANT WEIGHT CHANGE IN PAST YEAR. SLEEPS 6-8 HRS/NIGHT. HEAD INJURIES: NONE WITHIN PAST 5 YRS. EYE SYMPTOMS: NONE. HAS BEEN TOLD BY MD OF NO EYE DISEASE. NO TINNITUS. NO EPISTAXIS, NOTES SINUS TROUBLE, DENIES CHANGE IN VOICE.

RESPIRATORY SYSTEM 

PT. NOTES COUGH OF SEVERAL MONTHS DURATION, WHICH OCCURS DAILY. DENIES SPUTUM PRODUCTION, DENIES HEMOPTYSIS. NOTES NO DYSPNEA. HAS HAD HAY FEVER. HAS HAD NO KNOWN CONTACT

WITH TUBERCULOSIS. LAST CHEST X RAY -2 YRS AGO.

CARDIOVASCULAR SYSTEM 

PT. NOTES CHEST PAIN OCCURRING LESS THAN ONCE A MONTH, LOCATED "ON BOTH SIDES," WHICH RADIATES TO NEITHER ARM NOR NECK. PAIN IS NOT AFFECTED BY DEEP BREATHING, IS NOT ASSOCIATED WITH EATING, EMOTION, OR EXERCISE. PAIN IS NOT RELIEVED BY RESTING. PT. NOTES PALPITATIONS ON RARE OCCASIONS. DENIES ORTHOPNEA. DENIES PEDAL EDEMA, DENIES LEG PAINS, DENIES VARICOSE VEINS, DENIES PERIPHERAL REACTION TO COLD. CARDIAC MEDICATIONS: NONE. HAS BEEN TOLD BY MD OF NO COMMON CARDIAC DISEASE. NO ECG IN PAST 2 YRS.

This is only half the total report. Analysis of gastrointestinal musculoskeletal, genito-urinary, hematologic, endocrine, dermatologic, and neurological systems followed. This particular computer program draws no conclusions about diagnosis; it only summarizes answers to its own questions, and it does not cross-check itself. Thus, while the computer was told the patient took digitalis, it later accepted the conflicting statement that the patient took no cardiac medications.

This program, which was devised at the MGH, is a rather simple example of the way that computers can and almost certainly will be used in the future. But it is the least sophisticated of the medical-history programs available; more complex ones already exist.

When Mrs. Thompson arrived at the MGH emergency ward, which had been expecting her, she was taken down to the EW X-ray department. In doing so, she passed a door near the front of the EW which is unmarked, without a label. Over the door is a lighted sign that says, incongruously, "On Air."

Dr. Murphy was behind that door, sitting in a corner of a small room, surrounded by equipment. Directly in front of him was a camera and a large TV screen, on which he watches the Logan patients. Built into his desk were two other screens: one, a small monitor of the larger screen, the other, a monitor that showed him his own image being transmitted to the patient. This second monitor allowed him to check his own facial expressions, the lighting in the room, and so on.

To his right was a panel of buttons that controlled the various remote cameras-two in the examining room and one in the laboratory. The examining-room remote camera is operated by a joystick: by pushing the stick right or left, up or down, the camera moves accordingly. In addition, there are buttons for focusing and zoom control.

Before going out to check on Mrs. Thompson, Dr. Murphy continued a study of Tele-Diagnosis

capability: reading a series of 120 chest X rays that are set up for him at Logan. He planned to read these by TV and later reread them in person, to compare the accuracy and consistency of his diagnosis.

The nurse at Logan set up the next X ray.

"What's this one?"

"Jay-nineteen," the nurse said, reading off the code number.

"Okay." He moved the joystick and touched the buttons. The camera tracked around the X ray, examining the ribs, then scanning the lung fields. "Wait a minute." He zoomed in to look closely at the right-upper lobe; he watched the little monitor, because resolution was better, but by glancing up at the large screen, he could also get a magnified view. "No. Well, on second thought…" He zoomed back for an over-all view. He zoomed in on another part of the upper lobe. "Looks like a small cavitation there…" He zoomed back, touching the buttons. He turned to the joystick, panned across the rest of the lung field, occasionally pausing to look at suspicious areas. "Nothing else, not really…" He finished his scan, and returned to the right-upper lobe. "Yes, there's cavitation. I'd have to call it moderately advanced tuberculosis. Next, please."

He was working with considerable rapidity.

"You get to be pretty good at this," he said. "At first, it all seems clumsy, but as you get more accustomed to the equipment, you move faster." The average time for a patient interview and exanimation by Tele-Diagnosis is now twelve minutes, less than half the average figure a year ago.

"What I'm doing now," he said, "is really just a test of our capability. It has no immediate practical use, because we can't take X rays at Logan-that's one of the main reasons we brought Mrs. Thompson into the hospital. But it's important to know if X rays can be read at a distance with accuracy. Our impression is that you can read them as well on TV as you can in person."

"Jay-twenty," the nurse said, putting up another film.

Murphy began his scan. "Ah. What's this? Looks like a rib fracture…"

One can argue that for the past twenty years technology has defined the hospital, has made it what it is today. That is, once a range of expensive, complex therapeutic and diagnostic machinery became available, the hospital assumed the role of providing a central location for such equipment. This was inevitable: private practitioners and even large group practices could not afford to buy such equipment, nor maintain it, nor pay the personnel to operate it. Only the hospital could do this. It was the only institution in existence that could possibly absorb the expense. Other possible institutions, such as nursing homes, were wholly inadequate.

Furthermore, because the hospital was already oriented toward acute care of critically ill patients, the technology that it absorbed was precisely that

which helped in this area. Monitoring machines and life-support equipment are clear examples. Thus technology reinforced an already existing trend.

Now, however, the pressures and forces acting upon the hospital are social and of a nature that is changing the meaning of technology within the hospital. As C.P. Snow has said, "We have been letting technology run us as if we had no judgment of our own." But such judgment is now required, and one can argue that in the next twenty years the hospital will define technology. That is, it will create a demand for new technological applications- and in certain ways will itself produce the new technology.

By doing this, the hospital will be extending its newest and most striking trend, which is to foster innovation, later to be picked up by other, nonac-ademic institutions. The absurd end-point of such a trend would be for the hospital to direct personally the diagnosis and therapy of a patient who never enters the hospital. Absurd as it may be, it is already happening in the case of many patients treated at Logan Airport. It will happen more often, in other ways, in the future.

Of the almost limitless spectrum of potential technological advance, we can concentrate here on two areas of imminent advance, television and computers. One ought to say that they have been imminent for a long time; a decade ago one heard that computers were about to revolutionize medicine, and one still hears it today. It obviously hasn't happened yet. Indeed, neither television nor the computer has made much difference yet to routine hospital functioning. Television is employed on occasion for student teaching; it is used in a small way for dispatching blood samples and other items; it has some application in X-ray technology, in terms of image-intensification systems. Computers remain primarily the plaything of researchers. At the MGH there is now a computer program to help in running the clinical chemistry lab, and a computer to help in billing and patient record-keeping, but the computer and television as direct aids in patient care have not made their appearance.

In contrast, the Tele-Diagnosis system at Logan Airport uses computers and TV in direct confrontation with the patient. The system is expensive and in some ways primitive. Also, its present thrust is diagnostic; therapy, the steps following diagnosis, will still be directly carried out by a doctor, nurse, or the patient himself. There are no machines to do this, unless one stretches the definition to include renal-dialysis machines, exercise machines, and the like.

In general, diagnostic automation appears much closer than therapeutic automation-and is much more readily acceptable to physicians. Consider, then, diagnostic automation first.

The first and most striking feature of the Logan system is that diagnosis can occur at a distance. The doctor's stethoscope is three miles long. But, oddly, that diagnosis at a distance is very old and has some humorous elements. Beginning around

a.d. 900, for example, the practice of uroscopy, or "water casting," came into vogue. It was felt that the amount of information obtainable from inspection of urine was unlimited. The urine of a sick man was often sent many miles to be examined by a prominent physician.

David Riesman cites a typical medieval interpretation of urine:

The urine is pale pink, thick above, thin below, becoming gray or dark toward the surface. The grayness and obscurity is caused by overheating of the material. The symptoms are these: pain in the head, especially in the temples, sourness of the breath, pains in the back from bile descending to the loins and kidneys, with paroxysms every day or every second day, usually coming on after dinner time.

In medieval literature there are many discussions of the hazards to the physician of uroscopy; even in those days, diagnosis at a distance had its risks. The Spanish physician Arnold of Villanova, who lived in the thirteenth century, wrote:

With regard to urines, we must consider the precautions to protect ourselves against people who wish to deceive us. The very first shall consist in finding out whether the urine be of man or of another animal or another fluid.

The second precaution is with regard to the individual who brings the urine. You must look at him sharply and keep your eyes straight on him or on his face; and if he wishes to deceive you he will start laughing, or the color of his face will change, and then you must curse him forever and in all eternity.

The third precaution is also with regard to the individual who brings the urine, whether man or woman, for you must see whether he or she is pale, and after you have ascertained that this is the individual's urine, say to him: "Verily, this urine resembles you," and talk about the pallor, because immediately you will hear all about his illness…

The fourth precaution is with regard to sex. An old woman wants to have your opinion. You inquire whose urine it is, and the old woman will say to you: "Don't you know it?" Then look at her in a certain way from the corner of your eye, and ask: "What relation is it of yours?" And if she is not too crooked, she will say that the patient is a male or female relation, or something from which you can distinguish the sex… Or ask what the patient used to do when he was in good health, and from the patient's doing you can recognize or deduce the sex…

The list continues through nineteen precautions, all designed to enable the physician to pry information from the person bringing the urine, and to prevent deception. Arnold was not above a little deception himself, however:

You may not find anything about the case. Then say that he has an obstruction of the liver, and particularly use the word, obstruction, because they do not understand what it means, and it helps greatly that a term is not understood by the people.

The modern counterpart of this medieval guessing game over urine is the telephone conversation between physician and patient. For years after the telephone became common, physicians resisted making telephone diagnoses, and they still frown on them. But every practicing doctor now spends a substantial part of his day talking to patients on the phone, and he is resigned to making a large number of decisions, some of them uneasily, by

phone.

Closed-circuit television, while far from the ideal of a personal examination, is vastly superior to the telephone alone, and in many cases it is surprisingly adequate. This does not mean that future patients will all be seen by closed-circuit television, with neither doctor nor patient leaving home. What it does mean is that television will probably work in certain very special applications. One of these is the Logan application-providing a doctor to a clinic during low-use periods. Another obvious use would be specialist consultations. A hospital or clinic that needs a neurologist only a few times a year cannot afford to staff one. Nor could it find one, even if it could afford it. Television is perfectly suited to such consultation.

At the same time, a system such as that at Logan makes possible a routine physical examination, but goes no further-and there are suggestions that technology will ultimately change the very nature of physical examination. Here the historical trend is clear.

Consider the innovations in physical diagnosis. In the nineteenth century, there were three of great importance-the stethoscope, the blood-pressure cuff, and the thermometer. Each of these is really nothing more than a precise way to determine what can be inaccurately determined by other means. Thus the thermometer is superior to the hand on the forehead; the stethoscope superior to the ear against the chest [For the purposes of this argument, I will ignore the fact that the stethoscope really initiated auscultation as a useful examination procedure. In truth, ears were not pressed against the chest with much regularity before Laennec invented the stethoscope and described auscultation.]; and the blood-pressure cuff superior to a finger compressing the artery to test its pressure.

Now, the first two advances of the twentieth century were quite different: the X ray and electrocardiogram provided new information not obtainable by physical contact. No amount of squeezing and touching the patient will tell you anything directly about the electrical currents in his heart. You may deduce this information from other findings, but you cannot extract it directly. Similarly, X rays represent a new kind of vision, providing a new kind of information.

At the present time a variety of examination procedures are being tested. These include ther-mography, ultraviolet light, ultrasonic sound, as well as mapping electrical currents in the skin. Except for thermography, these all represent "new" sensory information for the doctor.

Thus the initial trend was to measure the patient more exactly, and later, to measure the patient in new ways. The first approach has been to find new sorts of measurements and new sensory information. But a second approach, now in its infancy, concerns translation of old information into new forms. The computer will be helpful here in a number of ways, in producing what is called "derivative information."

In a simple way, this is already being done. The human computer [Defmed as the only computer that can be produced by unskilled labor] and the electrocardiogram are a clear example. The electrocardiogram measures electrical currents within the heart muscle-the current that makes it contract and beat. Often, when a physician looks at an electrocardiogram, he wants specific electrical information. He wants to know about rate and rhythm, about conduction of impulses, and so on. At other times, he wants nonelectrical information. He may want to know how thick a part of the heart wall is, for instance. In this case, he derives the information from the electrical information.

But there are more complex forms of derived in-

formation. A physician examining a patient with heart disease may be interested in knowing the cardiac output-exactly how much blood the heart is pumping per minute. This is the product of heart rate (easily determined) and volume of blood ejected per beat (very difficult to determine). Because cardiac output is so hard to assess, it is not much used in diagnosis and therapy. However, by measuring heart rate and the shape of the arterial pulse (both easily done) a computer can calculate cardiac output and can perform these calculations continuously over a period of days, if necessary. If a physician needs to know cardiac output, he can have this information. He can have it for as long as the patient is connected to the computer.

Does the physician really need cardiac output? At the moment, he can't be sure. For centuries he's had to content himself with other information. There is reason to believe, however, that cardiac output will be useful in a variety of ways, as will other derived information.

An interesting technological application concerns the reverse of the coin: determining which information the physician already has but does not need. This is not to say that the information is inaccurate, but only that it does not have diagnostic significance and is therefore not worth obtaining. At present, the physician naturally tries to avoid gathering useless information, but in certain circumstances he cannot perform as well as a computer. Multiple discriminant analysis is a case in point. As one observer notes, "There is a limita-

tion on the human mind regarding the speed, accuracy, and ability to correlate and intercorrelate multiple variables with all possible outcomes and treatment consequences." There is a limitation on the computer, too. Practically speaking, there are many limitations. But in purely mathematical capability, the human mind is much inferior to the computer in multiple-discriminant analysis.

This is a function vital to diagnosis. It refers to the ability to consider a large body of facts, and on the basis of those facts to assign a patient to one diagnostic category or another on the basis of probability. Consider a simple set of categories: appendicitis versus no-appendicitis. (This is a simplification of what is, practically speaking, a larger problem in diagnostic categories, but it will serve to explain the principle.) Let us assume that a surgeon seeing a patient with pain on the right side must make only this decision. How does he make it? No single piece of information will tell him the answer (except, perhaps, the fact of a previous appendectomy). Certainly such routine data as sex, age, white count, degree of fever, duration of pain in hours will not tell him. But considered all together, they permit him to arrive at a decision.

This is all very familiar. But the point is that it is not very precise. A discriminant function can be produced that weighs each variable-age, sex, white count-on the basis of how important each variable has been in the past. Thus the discriminant function has two uses. First, it can make a diagnosis and act as a consultant to the surgeon.* Second, it can determine which variables are most significant, which account for the greatest proportion of the variance, in making a diagnosis. This can sometimes be surprising. For example, one study of women undergoing gynecologic surgery indicated that the age of the patient had great diagnostic importance, and that notation of last menstrual period, biopsy of smear, pre-operative hemoglobin, and urine-sediment study were all much less important to making a diagnosis.

These applications of the computer are designed to be diagnostic aids to the doctor, rather than a replacement. One hears, for example, that "even though computers can be programmed to make diagnoses, it takes the physician to perform the physical examination, and it takes the personal contact of the doctor-patient relationship to gather the information needed for the identification process."

For better or worse, this is not quite true. History-taking, long the province of the physician and a keystone to his "art," is partially amenable to automation. The Logan station utilizes a simple program, which is not so much a conversation with the computer as a quiz. But more sophisticated programs exist, and still better ones are being planned.

*Several discriminant functions have been made and shown to be as accurate as the surgeons, though interpretation is made more complex by the fact that these functions are generated from data on previously diagnosed patients.

Some years ago, Joseph Weizenbaum of MIT designed a program to conduct psychiatric interviews. Although in some senses the program can be regarded as a "trick," it can nonetheless achieve impressive results. Dr. Andrew T. Weil has reported one interaction between the computer and a human psychiatrist as follows (the computer writes in upper-case letters; mere humans, in lower-case).

Doctor, I have terrible news

YOU SAY YOU HAVE TERRIBLE NEWS

yes, there is a computer program at m. i. t. that'11 rui n us 

WHY DO YOU SAY THAT

i have seen it working

YOU SAY YOU HAVE SEEN IT WORKING

it's frightening - you must see it

YOU THINK I MUST SEE IT

you sound depressed to me

IN YOUR FANTASY PERHAPS WE SOUND DEPRESSED TO EACH OTHER

yes - pe rhaps

I UNDERSTAND

i do too

YOU SAY YOU DO TOO

we are both in the same boat with respect to the computer

LET'S CONTINUE TO TALK ABOUT YOU - SHALL WE

you are a comfort

WHAT MAKES YOU THINK I AH A COMFORT

at a time like this you want to talk about me

WHY DO YOU THINK I WANT TO TALK ABOUT YOU

because you share my feelings about that damned computer

WHAT DOES THAT SUGGEST TO YOU

that, of course, you hate computers too

YOU THINK I HATE COMPUTERS TOO

why not, they're hardly human, are they

PERHAPS THAT'S WHAT WE ARE HERE TO FIND OUT

no computer could converse as you can, for example

OH

i can't understand how anyone could be fooled by a mere machine

CAN'T YOU REALLY

no, after all, there is nothing creative about a computer program

YOU ARE BEING NEGATIVE

i am convinced i am correct

ARE YOU WORRIED TO HAVE BEEN CONVINCED YOU ARE CORRECT

no, not in the least, not at all. not even a little

YOU ARE BEING NEGATIVE

you said you agreed with me, didn't you

IS THAT WHAT YOU HEARD ME SAY

why don't you try to dissuade me - computers diddle with numbers that 'sail

YOU WISH ME TO TRY TO DISSUADE YOU

you can't

YOU THINK I CAN'T

for example, could a computer in conversation like this raise a new topi c

YOU SEEM TO HAVE AVOIDED SPEAKING OF YOUR PARENTS ALTOGETHER

precisely as you just did YOU THINK I JUST DID 

yes, and that's what shows the difference between a man and a computer

I SEE

This kind of interaction is suggestive, at least, of the ways computers can be utilized in the future. And as the hospital reaches out into the community, these may be increasingly important. According to Jerome Grossman of the MGH Computer Sciences Laboratory, "A large part of history-taking is directed toward finding out how sick a person really is. The first question is always whether a patient needs to see a doctor at all. That's the biggest decision doctors make over the phone now-talking to the patients, trying to decide whether they're sick enough to be seen now, or whether it can wait. The patients want to know the same thing, so they spend all night or all weekend trying to get hold of the doctor, who's off duty, or out of town, or something…

"In the near future, when the home computer and television set is practical, you're going to be able to plug right into the hospital computer without ever leaving your home. The computer will flash questions on the screen, like 'Do you have a cough?' and you answer by touching the screen with your finger at the appropriate place. We've just developed a screen like this. It doesn't require any special gadgets or light pens or anything, just your finger. Touch the screen, and the information is recorded. Eventually, the computer will flash back some directions, like 'Come to the hospital immediately' or 'Call your doctor in the morning' or 'Have a check-up within six weeks,' or 'Someone will come on the screen, if further classification is necessary.' So there you have it. That first big decision-who needs to be seen-is settled by the computer, without ever having required the doctor's presence."

The idea is interesting not because it is an imminent practical development-it is not [What is imminent is the use of computer stations to take a portion of routine history and to advise the doctor on further tests. Such consoles are already in use experimentally in the MGH medical clinics and in certain private doctors' offices] -but rather that it represents a further extension of the hospital into the community-not only into clinics via TV, but into the homes of many individuals, via computer. One can argue, in fact, that those who predict the hospital's role as "primary physician" or "first-contact physician" is declining are wrong. It will, ultimately, increase with the use of computers.

Automated diagnosis is one thing; automated therapy, quite another. It is probably fair to say it is feared equally by both patients and physicians. It is also important to state firmly that the following discussion is largely speculative; automated diagnosis is in its infancy, but automated therapy has hardly been conceived. Its modern forerunners are the monitoring systems that check vital signs and the electrocardiogram. These monitors are not computers at all, in any real sense; they are just mechanical watchdogs, about as sophisticated as a burglar alarm.

At the present time, there are serious problems facing anyone who wishes to automate the therapy of even a circumscribed class or category of patient. To automate the therapy of all patients, with the full spectrum of disease, would be an enormous undertaking. Whether or not it is done will depend largely upon the demand for it, which in turn depends upon the availability of physicians. In assuming that it will be done, at least to some extent, I have also assumed that the shortage of physicians in this country will increase in the foreseeable future, necessitating a practical change in the doctor's functions.

Partially automated therapy is already desirable. The reasons are twofold. First, modern therapy makes necessary an enormous amount of paperwork; one hospital study concluded that 25 per cent of the hospital budget was devoted to information processing. The usual hospital systems for collecting, filing, and retrieving information consume great quantities of time for nearly everyone working in the hospital, from the physician who must spend time thumbing through the chart, to the nurses who must record routine data, to the personnel who work full time in the chart-record storage rooms. One consequence of the present methods, aside from the expense, is the number of

errors that occur at various points along the line. And the possible advantage of putting all data through computers is the ability to check errors. For instance, if medications are ordered by the physician through a computer, that computer can tirelessly review orders for drug incompatibilities, inappropriate dosages, and so on.

The second reason comes from experience with present monitors in intensive-care units. These monitors "watch" the patient more carefully than any group of physicians could; the patient's condition is sampled continuously, rather than just during rounds. Such monitoring has already changed many ideas about the nature of disease processes [One example: the incidence of cardiac arrhythmia following myocardial infarction is now suspected to be virtually 100 per cent; it is thus an almost certain consequence of heart attack- this is useful information since the arrhythmia are the most common cause of sudden early death from heart attack.] and it has renewed consideration of therapy at intervals. For example, most drugs are now given every six hours, or every four hours, or on some other schedule. But why not continuously, in an appropriate dose? And in that case, why not have a machine that can correct therapy on the basis of changes in the patient's condition?

Seen in this light, automated therapy becomes a more reasonable prospect. It will require adjustment, of course, by both doctors and patients. But that adjustment will be no more severe than in other sectors of society.

In the past fifty years, society has had to adapt to machines that do mechanical work-in essence, taking over functions of the musculoskeletal system. It is now quite accepted that almost nobody does anything "by hand" or "on foot," except for sport or pleasure. But what is coming is what Gerard Piel calls "the disemployment of the nervous system," in a manner comparable to the disemployment of the musculoskeletal system. Man has accepted the fact that there are machines superior to his body; he must now accept the fact that there are machines in many ways superior to his brain.

The image of the patient, lying alone in bed, surrounded by clicking, whirring stainless steel is certainly unnerving. It is easy to agree with the doctors who fear automation as leading to depersonalized care, and the computer, as psychologist George Miller notes, as "synonymous with mechanical depersonalization." But that is probably because we are so unfamiliar with them, and, in any event, man has found ways to personalize machines in the past-the automobile is a baroque example-and there is no reason to think he cannot do it in the future.

One example of an attempt to computerize some elements of patient therapy is the computer-assisted burns treatment project being carried out, with the Shrine Burn Institute, in Dr. G. Octo Bar-nett's Laboratory of Computer Science at the MGH. The project director, Kathleen Dwyer, notes that "there's no theoretical reason why you couldn't build a program to carry out some functions of a doctor, at least for certain kinds of patients. But, practically speaking, it's a long way off."

In trying to find out why, precisely, it is a long way off, one gets two kinds of answers. The first is that nobody is really interested in working very hard, at the moment, to duplicate a doctor on magnetic tape. The second answer is that doctors don't know themselves precisely how they operate; until doctors figure it out, no one can program a machine to carry out the same functions. The classic situation is that of the physician who enters the room of a person with normal temperature, heart rate, blood pressure, and electrocardiogram, takes one look at him and says: "He looks sick." How did the physician arrive at that conclusion? If he can't tell you the signals he used, then the programmers can't computerize them.

This situation is often held up as a kind of limit on the application of machines to medicine. How can one imitate the "unconscious" or "instinctive" or "intuitive" or "experiential" functions of a doctor? But, in fact, as Kirkland and others have pointed out, the argument is really more damaging to the reputations of physicians than machines. For, unless the doctor is flatly guessing when he says, "The patient looks sick," he is drawing a conclusion on the basis of some input, presumably visual. One need only identify that input-and then plug it into the computer. But if the input is truly unidentifiable, one must strongly suspect that the doctor is guessing or expressing a prejudice.

In any event, there is considerable interest in knowing how a doctor decides that a patient looks sick, or looks better, for, as Dr. Jerome Grossman says: "Working with computers has made us look closely at how people think."

But at the moment computer-assisted programs are all that are being used. Dwyer's program, which will be in pilot use by the end of 1970, is specifically designed to help in a major management problem-the burned pediatric patient. These young patients require close monitoring and frequent changes in therapy. This in turn produces an enormous amount of paperwork and accumulated data that is hard for a physician to summarize in his own mind simply by reading the chart. Dwyer anticipates that a computer-assisted program would "facilitate the orderly collection and retrieval of information [and] would not only improve patient care… but would also lead to the development of optimal therapeutic models and a better understanding of the disease process."

The first phase of the project will be a simple bookkeeping function: storing information about the patient and his treatment and displaying it on command on a teletype, or a cathode-ray tube (essentially, a TV screen), whenever the physician requests it. A hypothetical example of such a display is shown on the next page.

Here the computer is summarizing intravenous (Ringers) and oral fluid intake, urine output, and weight change over a five-day period. This achievement will not be very exciting to anyone who has  not spent half an hour going through a patient's chart attempting to extract this information- which the computer can provide in milliseconds.

8/2/68 11 30AM EUTH. JOHN 123-46-67

TUB RIKGERS ORAL OKIHB HT(KG) OTHER IV

TODAY 8/2/68

BAM 800/300 - 100/100 82

MM 250/650 100/100 100/200 82.6

10AM 100/660 200/300 155/326 S3 100B

11AM 200/850 60/360 122/447 82.5

FLUID TOTALS INPUT: 1300 OUTPUT: 447 «T. CHANGE: +.8

YESTEBDAX 8/1/68

BAH 100/100 60/50 76/76 81

Bill 200/300 -/SO 60/126 81

10AM 800/600 100/160 76/200 81.6 800P

11AM 800/900 100/260 100/300 81.7

UFM 200/1100 76/326 100/400 88

UN 150/1250 -/Z26 160/660.

11PM 12AU

6111 100/2600 -/TOO ZOO/1200 7AM 72/2576 60/750 100/1300 FLUID TOTALS INPUT: 3325 OUTPUT: 1300

82 82 BT. CHANGE: +1

1/31/68 300(200)/3200 1/30/68 3000(-I/3000 1/89/68 4200 (100)/4300

1100 1000 900

B,P

But the second stage is rather different. It is called "computer-generated treatment regimen," and what it means is that the computer will itself advise future therapy, which the physician is free to accept or ignore.

Another hypothetical example, for a new patient admitted to the unit:

ADMISSION DATE T

05/08/69 ADMISSION TIMEN^ 11.22AM ADMITTING DOCTOR'S INITIALS… KRD PATIENT'S NAME… SMITH, JOHN BIRTH DATE… it/20/65 UNIT NUMBER… 1234567

THIS UNIT NUMBER IS ALREADY ASSIGNED.

TRY AGAIN OR USE TEMP. UNIT NUMBER… 123456 LOCATION… SBI WEIGHT (LB OR KG?)… 20 KG HT (IN OR CM?)… 110 IN/CM? CM^ BURN DATE T TIME SAM TOTAL PERCENT BURtT… 16

PERCENT 1ST DEGREE… 0

2ND DEGREE… 9^

2ND-3RD DEGREE… 27

BURN SURFACE COMPUTEoTo BE

0.27 SQ METERS TREATED PREVIOUS TO EW

NO

ew therapy

N/S

. 0

ye? enter totals (ml) l!c~ringers… 200 plasma…? blood, urine.. 0~ vomitus

SUGGESTED INITIAL REPAIR AND MAINTENANCE 1440 ML RINGERS BEFORE 4.00 PM 05/08/69 RATE: 315 D/M PED (80 AD) 1640 ML RINGERS BEFORE 8.00 AM 05/09/69 RATE: 100 D/M PED

SUGGESTED INITIAL REPAIR AND MAINTENANCE 1440 ML RINGERS BEFORE 4.00 PM AT A RATE OF 310 D/M (PED)

1640 ML RINGERS BEFORE 8.00 AM ON 05/09/69 AT A RATE OF 100 D/M (PED)

Now this is not really so ominous. The suggestions for therapy are actually based on principles that come from John Crawford, chief of pediatrics at the Burns Unit. In essence, they represent (assuming no error in the program, and no variables that he would take into account but the machine does not) his therapeutic program were he personally treating the patient.

Thus the computer is at best as clever as a single clever man, and at worst considerably less astute than that one man.

Once in use, the MGH burns project will be analyzed by doctors, and adjustments made to refine the program. And as the program improves, it may become more and more difficult for a physician to ignore the computer's "advice."

In the future, it may be possible to have a computer monitor the patient and carry out therapy, maintaining the patient within certain limits established by physicians-or even by the computer itself.

The major consequence, indeed the avowed aim, of computer therapy in any form will be to reduce the routine work of patient care done by doctors. Other elements of that care are already disappearing; nurses have taken over several of these, and technicians have taken over others. Thus, during the week, the MGH has routine blood samples drawn by technicians and routine intravenous maintenance-starting IV lines and keeping them running-done by specially trained IV nurses. These programs were quite radical a few years ago, when doctors thought nurses constitutionally incapable of dealing with intravenous lines or drawing blood from a vein. But a startling consequence of this new specialization of nonphysician health personnel has been better care, in certain areas, than the physician himself could deliver. Even if doctors don't believe this, the patients know it well. On weekends, when the IV nurses and the blood technicians are off duty, the patients complain bitterly that the physicians are not as skilled in these tasks.

As for the special skills still reserved to physicians, such as lumbar punctures and thoracic and abdominal taps, it is only a matter of time before someone discovers that these, too, can be effectively delegated to other personnel.

It would thus appear that all the functions of a doctor are being taken over either by other people or by machines. What will be left to the doctor of the future?

Almost certainly he will begin to move in one of two directions. The first is clearly toward full-time research. The last fifteen years have seen a striking increase in the number of hospital-based physicians and the number of doctors conducting research in governmental agencies. This trend will almost surely continue.

A second direction will be away from science toward the "art" of medicine-the complex, very human problems of helping people adjust to disease processes; for there will always be a gap between the illnesses medicine faces and science's limitations in treating them. And there will always be a need for people to bridge that gap.

Physicians moving in either direction will be helped by a new freedom from the details of patient care; and physicians now emotionally attached to those details, such as those doctors who religiously insist on doing their own lab work, are mistaking the nature of their trade. Almost invariably, they would do better spending their time talking with the patient, and letting somebody else look at the blood and urine or count the cells in the spinal fluid-especially if that person (or machine) can work more rapidly and accurately than the physician himself.

One can argue that this presages a split among physicians, between those with a scientific, research orientation, and those with a behavioral, almost psychiatric, orientation. That split has already begun and some bemoan it. But, in reality, art and science have rarely merged well in a single individual. It is said that Einstein would have starved as a cellist, and it is certainly true that the number of doctors in recent years who have been both superb clinicians and excellent laboratory researchers is really quite small. Such men certainly can be found, and they are always impressive-but they are distinctly in the minority. In fact, the modern notion that the average physician is a practitioner of both art and science is at best a charming myth, at worst a serious occupational delusion.

In the final analysis, what does all this mean for the hospital and for the patient in the hospital? One may look at the short-term possibilities, as represented by the burns treatment program.

It will reduce the mundane work of ward personnel, both doctors and nurses, and leave them more time to spend with the patient. For doctors, it should mean more time for research as well. And for the patient, that should ultimately be a good thing.

Furthermore, as an extension of the hospital, a computer program offers quite extraordinary possibilities. Any hospital in the country-or even any doctor's office-could utilize the program, by using existing telephone lines. A community hospital could plug into the MGH program and let the computer monitor the patient and direct therapy. As a way to utilize the innovative capability of the hospital, and its vast resources of complex medical information, this must surely represent a logical step in 2,500 years of evolution. And for the patient, that, too, should ultimately be a good thing.