179390.fb2
А.Каррингтон и др. Магнитный резонанс и его применение в химии. М., "Мир", 1970
18.11. Г.Хуцишвили. УФН., 1960, т.71.
19. РАЗНОЕ
В этом разделе даются краткие сообщения о некоторых эффектах, по какой-либо причине невошедшие в предыдущие главы "Указателя". В некоторых случаях это обьясняется несовершенством принципа, положенного нами в основу систематизации физических эффектов, в других - эффекты привлекли наше внимание уже после написания основных разделов, некоторые эффекты вобще трудно было назвать физическими, как например, эффект Мебиуса. Тем не менее, многие из них, по нашему мнению, могут с успехом использоваться в изобретательской практике.
19.1. Термофорез.
Если нагретое тело поместить в обьем, заполненный аэрозолем, т.е. мелкими частицами, взвешенными в воздухе, например, дымом или туманом, то вокруг тела возникает так называемая темная зона (среда, свободная от аэрозоля), толщина которой зависит от разности температур тела и среды, давления газа, размера и формы тела и не зависит от его химического состава. Горячее тело как бы отталкивает от себя частицы аэрозоля.
Это явление обусловлено термофоретическими силами, действующмими со стороны газообразной среды на находящееся в ней неравномерно нагретые тела (в частности, частицы аэрозоля). Термофоретические силы возникают вследствие того, что газовые молекулы у более нагретой стороны частицы сильнее бомбардируют ее, чем у менее нагретой стороны, и потому сообщает частице импульс в направлении убывания температуры. Величина термофоретических сил пропорциональна квадрату радиуса частицы, скорость же движения частицы под действием этих сил - скорость термофореза - не зависит от ее размера вследствие соответствующего возрастания силы сопротивления среды.
А.с. 261 400: Способ зарядки частиц, заключающийся в том, что при помощи коронного разрядника, содержащего заземленный металлический электрод и коронирующие проволочки, подключенные к одному из полюсов высоковольтного источника тока, получают поток ионов определенного знака движущихся к металлическому электроду и сообщающих заряд частицам аэрозоля, отличающийся тем, что с целью улучшения условий эксплуатации коронного разрядника и повышения качества электрофотографических изображений, получаемых пылевым методом проявлений, заземленный металлический электрод и коронирующие проволочки нагревают, например, электрическим током до такой температуры, при которой ввиду проявления термофоретических сил заряженные частицы аэрозоля не могут осаждаться в области плазмы коронного разряда.
19.2. Фотофорез.
Если аэрозоль осветить интенсивным направленным пучком света, то аэрозольные частицы начинают совершать упорядоченные движения, причем некоторые из них в направлении распространения света (положительный Ф.Ф.), а другие навстречу ему (отрицательный Ф.Ф.). Наиболее сильно Ф.Ф. проявляется на окрашенных частицах. Тип Ф.Ф. зависит от цвета и от ее размера.
В основе явления лежит совместное действие на частицу светового давления и термофоретических сил. Преобладание одного из этих факторов определяет тип Ф.Ф. Так, для мелких частиц основным фактором является световое давление, оно и обуславливает в данном случае положительный фотофорез.
19.2.1. Интенсивное явления обнаружено в аэрозолях селеновой и железной пыли. В этих системах под влиянием светового потока аэрозольные частицы начинают двигаться в направлении перпендикулярном направлению распространения света.
19.3. Стробоскопический эффект.
Если быстро вращающееся тело освещать импульсами света, частота следования которых совпадает с круговой частотой вращения, то наблюдатель будет видеть тело как бы неподвижным. Это позволяет рассматривать особенности его поверхности или какие-либо ее изменения, не останавливая вращения тела.
А.с. 515 936: Способ определения окружных люфтов трансмиссий с ведомым и ведущими валами, заключающийся в том, что на ведомом валу наносят базовую метку и вращают его с определенной и постоянной угловой скоростью, отличающийся тем, что с целью повышения точности определения люфтов, освещают базовую метку стробоскопическими импульсами с частотой при которой метка кажется неподвижно изменяют синхронно скорость вращения ведущего вала и частоту импульсов и определяют угол отклонения метки от первоначального ее положения, по которому судят о люфтах трансмиссий.
Если частоты световых импульсов и вращения тела несколько отличаются, то будет наблюдаться кажущееся вращение тела, скорость которого гораздо меньше действительной скорости вращения. Сказанное справедливо и для поступательного (колебательного) движения тел.
Стробоскопический эффект лежит в основе кино. Отдельные изображения последовательных стадий движения, быстро сменяя друг друга, создают иллюзию непрерывного движения. При этом важную роль играет особенность нашего светового восприятия инерционность, глаз как бы "видит" изображение предыдущего кадра некоторое время после того, как экран погас.
Движение в кинофильме может быть ускоренным или замедленным в зависимости от соотношения частот сьемки и воспроизведения, что используется для визуализации быстро - или медленно - протекающих процессов.
Несмотря на свою простоту, стробоскопический метод может являться основой многих тонких исследований.
А.с. 255 684: Фазовый способ измерения длины волны ультразвука, основанный на использовании стробоскопического эффекта при помощи бегущих ультразвуковых волн, отличающийся тем, что с целью повышения точности, модулируют одну из бегущих ультразвуковых волн, освещаемых пучком света, по фазе, наводят последовательно ось фотоэлектрического микроскопа на максимум освещенности видимого изображения и по расстоянию между соседними максимумами судят о длине ультразвуковой волны.
В заключении отметим, что стробоскопический эффект является ярким проявлением закона согласования ритмики частей системы.
19.4. Муаровый эффект.
При наложении двух систем контрасных полос возникает узор, образованный их сгущениями в местах, где полосы одной системы попадают в промежутки между полосами другой системы. Возниконовения таких узоров называют муаровым эффектом.
Простейший муаровый узор возникает при пересечении под небольшим углом двух систем равноудаленных параллельных полос (линий). Небольшое изменение угла поворота одной из систем ведет к значительным изменениям расстояния между элементами муарового узора.
19.4.1. Муаровый узор образуется также при наложении двух непересекающихся систем равноудаленных параллельных линий, когда величина шага одной из систем слегка отлична от другой. При этом, чем меньше разница в шаге, тем больше расстояние между муаровыми полосами. Это позволяет получить колоссальное увеличение (в миллионы раз) разницы в ширине промежутков между линиями. Иначе говоря муаровый эффект дает возможность визуально без применения оптических систем, обнаруживать ничтожные отклонения в почти одинаковых периодических структурах. В настоящее время метод муара широко применяют при контроле точности делительных устройств для изготовления дифракционных решеток.
19.4.2. Муар возникает на электронной микрофотографии двух кристаллов, наложенных таким образом, что их атомные решетки почти совпадают. Любой деффект нарушающий регулярность структуры кристалла, четко проявляется в муаровом узоре. Увеличение при этом таково, что позволяет видеть смещения атомов, величины которых меньше диаметра самого атома.
19.4.3. Если две решетки из равноудаленных параллельных прямых, несколько отличных по вельчине шага, двигать одну относительно другой в направлении, перпендикулярном линиям, то полосы муарового узора будут двигаться со скоростью гораздо большей, чем относительная скорость движения самих решеток. При этом направление их движения совпадает с направлением относительного смещения решетки с меньшим шагом. Таким образом, малое перемещение одной из решеток приводит к значительному перемещению полос муара, которое легко обнаружить и измерить.
А.с. 297 861: Способ определения деформаций по картине муаровых полос, отличающийся тем, что с целью повышения точности измерения деформаций, определяют отношение скоростей взаимного премещения деформированной и эталонной сеток и скорости перемещения муаровой полосы и по величине этого отношения судят о величине деформаций.
Описанное проявление муарового эффекта издавна используется во всех измерительных приборах, обладающих нондусом, таких, как микрометр или штангенциркуль.
19.4.4. С помощью эффекта муара можно визуализировать ничтожные изменения показателя преломления прозрачных сред, помещая их между решетками. Так, например, можно визуально изучить динамику расстворения двух веществ.
19.4.5. Этот же принцип позволяет производить экспресс-анализ качества оптических деталей. Линзы помещают между решетками, наличие выпуклой линзы увеличивает элементы муарового узора, вогнутой - уменьшают. При этом обе линзы поворачивают узор в противоположных направлениях на угол, пропорциональный фокусному расстоянию. В местах неоднородностей структуры или формы линз линии узора искажаются.
Еще пример контроля оптики!
А.с. 515 937: Интерференционный способ измерения клиновидности оптических прозрачных пластин, заключающийся в том, что пучок света от лазера фокусирует с помощью обьектива в плоскость отверстия в экране, за которым установливают контролируемую пластину, отличающийся тем, что с целью повышения точности и производительности измерений, от контролируемой пластины при ее фиксированном положении получают прозрачную копию интерференционных колец, поворачивают пластину в ее плоскости на 180, накладывают интерференционную картину на копию и по ширине муаровых полос, образовавшихся от наложения, измеряют клиновидность платины.
Множество муаровых узоров можно получить, совмещая решетки, образованные самыми различными линиями, например концентрическими окружностями, спиралевидными волнообразными или радиально исходящими из точки линиями и даже семействами равномерно расположенных точек. Таким образом можно моделировать многие сложные физические явления, такие, как взаимодействие электростатических полей, интерференция волн и другие. Подобными методами решаются некоторые задачи архитектурной акустики.
В Японии предложено использовать муаровый эффект для составления топографических карт предметов. Обьект фотографируют через решетку из тонких нитей, сбрасывающую на него четкую тень. Тень деформируется в соответствии с рельефом обьекта и при взаимодействии ее с реальной решеткой возникает муаровый узор, наложенный на изображение обьекта. На фотографии расстояние между линиями муара соответствует глубине рельефа. Такой метод очень эффективен, например, при изучении деформации быстровращающихся деталей, при анализе обтекания тел поверхностным слоем жидкости в медицинских исследованиях анатомического характера.
Универсальность метода муара, простота преобразования с его помощью различных величин, близка к ИКР, высокая разрешающая способность - все это говорит о том, изобретатели еще не раз обратятся в своей практике к муаровому эффекту.
19.5. Высокодисперсные структуры.
Одной из тенденций развития технических систем является увеличение степени дисперсности входящих в них веществ. При этом наблюдаются качественные изменения свойств дисперсной структуры по сравнению со свойствами монолитного нераздробленного вещества.
Высокодисперсные структуры подразделяются на сыпучие, консолидированные и коллоидные. Из сыпучих порошков особый интерес представляют ферромагинтные порошки, так как ими легко управлять магнитным полем (1), и их можно вводить ввиде индикаторных добавок в немагнитные вещества с целью выяснения условий действующих внутри исследуемого вещества (температуры, давления и т.п.).
А.с. 239 643: Способ определения степени затвердевания полимерного состава. В полимер в небольшом колличестве вводят ферромагнитный порошок. Полимер затвердевая сдавливает частицы порошка, который при этом меняет свои магнитные свойства, что легко обнаружить.
19.5.1. Консолидированные тела - это тела, полученные путем прессования или спекания мелкого порошка (размеры частиц от 10 до 100 мкм). Консолидированные тела обнаруживают много интересных свойств (2), отличающих их от сплошного тела, состоящего из того же вещества. Например, при консолидировании порошка путем прессования можно получить анизотропные тела, несмотря на то, что вещество, составляющее частицы вещества, изотропно. Параметры такого консолидированного тела (электропроводность, теплопровоность, распространение звука, модуль упругости и т.п.) в направлении прессования выше, чем в сплошном теле из того же вещества, причем все свойства изменяются практически на один и тот же масштабный коэффициент пропорциональности. Зная, в каком масштабе искажена одна из условных характеристик пористого образца (например, электропроводность), можно легко определить масштабы искажения и других характеристик этого образца (теплопроводности, скорости звука, модуля сжатия, коэффициента Пуассона и т.д.), а значить легко можно определить и сами характеристики данного образца. Контролируя какую-нибудь из легкоизмеряемых характеристик пористого тела в процессе его консолидации можно однозначно определить изменения интересующих нас других его характеристик.
19.6. Электрореологический эффект.
Электрореологическим эффектом называется быстрое обратимое повышениеэффективной вязкости неводных дисперсных систем в сильных электрических полях (3).
Электрореологические супсенции состоят из неполярной дисперсной среды и твердой дисперсной фазы с достаточно высокой диэлектрической проницаемостью. Дисперсными средами могут служить неполярные или слабополярные органические жидкости с достаточно высоким электрическим сопротивлением (порядка 10 ом.см). Например, светлые масла (валелиновое, трансформаторное, растительные мала (косторовое), диэфиры (дибутилсебацинат), нефтановые углеводороды (циклогексан), керосин, загущенный малыми добавками полиизобутилена. В качестве дисперсной фазы широко применяется кремнезем в различных модификациях. Размеры частиц не более 1 мкм.
Электрореологический эффект не проявляется заметно вплоть до некоторой пороговой напряженности электрического поля. Величина ее зависит от состава суспензии и температуры. После достижения значения Eкр эффективная вязкость растет приблизительно квадратично, но не до бесконечности, а до ее насыщения.
Эффект наблюдается и в постоянных и в переменных полях. При увеличении частоты поля кажущаяся вязкость вначале остается неизменной, затем падает. Вид зависимости эффекта от частоты зависит от состава дисперсной системы.
Электрореологические суспенсии весьма чувствительны к изменениям температуры. Нагрев снижает абсолютную величину эффективной вязкости системы. С ростом температуры влияние электрического поля постепенно невилируется.
19.7. Реоэлектрический эффект.
Под действием сдвига в так называемых электрочувствительных дисперсных системах происходят изменения диэлектрической проницаемости, электропроводности и тангенса угла диэлектрических потерь. Такие изменения диэлектричеких параметров предложено называть реоэлектрическим эффектом. Важное значение реоэлектрического эффекта для практики связано с возможностью получения на его основе электрически анизотропных материалов, в частности электронов. Если частицы дисперсной фазы несут заряд преимущественно одного знака, в концентрированных системах при наложении электрического поля наблюдается электросинерезис - сжатие структурного каркаса в целом у одного электрода и выделение дисперсной среды у другого.