179586.fb2
А как обстоит дело с метапопуляциями? Локальные популяции вымирают довольно часто, так как же можно говорить, что их численность регулируется? В таких случаях говорят, что регуляция происходит на уровне региональной метапопуляции.
См. также статьи «Равновесие», «Равновесие в природе», «Рост популяции», «Факторы, зависящие от плотности», «Хаос».
Многие виды являются редкими по своей природе. Таково их свойство. Это вовсе не означает, что им грозит вымирание. Угроза вымирания появляется тогда, когда виды становятся редкими в результате человеческой деятельности.
Существует семь позиций, по которым вид может быть причислен к редким. Для этого виды оценивают по численности местной популяции, географическому распределению и специфичности местообитания. (Все три аспекта непрерывно изменяются — первые два часто связаны между собой, но для простоты можно рассматривать исключающие комбинации.) Таким образом, получается восемь возможных комбинаций; в семи случаях хотя бы по одному из аспектов вид можно причислить к редким. Определение типа «редкости» вида служит первым шагом на пути разработки стратегии по его охране.
Причисление вида к редкому часто зависит от масштаба. Например, некоторые насекомые считаются редкими на Британских островах, но на материке они распространены и даже занимают более разнообразные местообитания. Просто Великобритания — это северная граница их распространения.
Редкость вида имеет и четвертое измерение — время. Популяция может быть относительно постоянной, постепенно уменьшающейся или быстро исчезающей. Международный союз охраны природы (МСОП) при оценке степени угрозы исчезновения теперь учитывает, помимо всего прочего, и скорость вымирания популяции. Например, вид, популяция которого за последние 10 лет или за три поколения сократилась на 80 %, считается «находящимся в критическом состоянии».
Существуют ли признаки, которые способствуют тому, чтобы вид стал редким? Возможно. Но наверняка это слишком общий вопрос, чтобы на него можно было дать конкретный ответ. Что касается некоторых черт (например, способности к расселению), то неясно, являются ли они причиной или следствием того, что вид стал исчезать.
Причины, по каким вид становится редким, различны и индивидуальны; лучше всего исследовать их в каждом конкретном случае отдельно.
См. также статьи «Биологическое разнообразие», «Минимальные размер популяции», «Природоохранная деятельность».
В реках находится всего лишь 0,0001 % всей воды нашей планеты. Фактически, в любой отрезок времени в атмосфере содержится в десять раз больше воды, чем во всех вместе взятых реках мира.
Однако эти сухие факты ничего не говорят о важности рек в круговороте воды и о том значении, которое они имеют для наземных организмов, в том числе и человека. Вода поступает в реки с суши, ежегодно реки приносят в море более 40 000 км 3 воды.
Реки являются необычными местообитаниями в том смысле, что для них характерно постоянное направление течения воды. Этот поток размывает, переносит и в конечном итоге способствует отложению различных веществ (ежегодно реки мира приносят в моря 15–20 миллиардов тонн отложений). Поток воды и все связанные с ним процессы прямо или косвенно влияют на большинство организмов, обитающих в реках.
Пресноводные местообитания более суровы, чем морские. Из-за их относительно малого размера они подвержены большим температурным перепадам; различные фрагменты мест обитания более удалены друг от друга; они могут высыхать или замерзать. Организмам приходится также тратить усилия на поддержание солевого баланса.
Для того чтобы полностью понять экологию рек, экологам нужно изучать всю область бассейна, из которого реки получают воду, химические и питательные вещества. Например, в маленьких реках, текущих в лесах умеренного пояса, практически нет фотосинтезирующих растений, поскольку им мешает тень деревьев. Следовательно, основную массу питательных веществ в данной экосистеме предоставляют опавшие и разлагающиеся листья. Важно понимать и роль деревьев — они уменьшают количество воды, поступающей в реку; это объясняет, почему после вырубки лесов возможны обширные паводки. Вследствие постоянного направления потока воды и питательных веществ, организмы, обитающие вниз по течению, сильно зависят от того, что происходит выше по течению; отсюда также следует, что сама площадь водосбора играет важную роль в экологии рек.
См. также статью «Озера».
В каком-то из изданий было сказано, что если бы человеческая популяция продолжала расти с нынешней скоростью, то через 200 лет огромная масса людей устремилась бы в космос со скоростью света. Этого, конечно, не произойдет; это всего лишь шутка, показывающая, однако, способность популяции к росту.
В идеальных условиях рост популяции определяют два фактора: количество половозрелых индивидов и количество произведенных ими на свет потомков, которые, в свою очередь, также начинают размножаться. Поэтому если количество выживающих особей потомства постоянно, то популяция продолжает расти с еще большей скоростью. Такой рост называется «экспоненциальным»; численность популяции не просто увеличивается, но увеличивается с каждым разом на все большее число особей.
В природе действительно случается экспоненциальный рост популяции, например при освоении видом новых территорий, но такое положение продолжается недолго. В конечном итоге рост популяции либо замедлится и стабилизируется на уровне поддерживающей емкости (размера популяции, который может поддерживаться при данных условиях среды), либо превысит поддерживающую емкость и начнет резко снижаться («бум и крах»), либо произойдет нечто среднее между этими двумя возможностями.
Когда численность популяции достигает определенного уровня, ее рост, как правило, замедляется, так как ресурсов становится недостаточно для поддержания роста, индивиды загрязняют среду, их численность контролируется хищниками и т. д. Процессы, зависящие от плотности популяции, служат сдерживающим фактором, потому что их влияние на популяцию ощущается тем сильнее, чем больше плотность популяции.
Численность людей увеличивается даже не экспоненциально, а с еще большей скоростью — каждые 35 лет она удваивается, что, естественно, не может продлиться бесконечно. Какова же поддерживающая емкость человеческого населения? По разным оценкам она составляет от 10 до 1000 миллиардов человек. Дело осложняется еще и тем, что люди живут все дольше и потребляют все больше ресурсов.
См. также статьи «Популяция», «Регулирование популяции», «Факторы, зависящие от плотности».
Тропические саванны покрывают половину площади Африки, располагаясь в двух обширных поясах по разные стороны экватора. Такой тип ландшафта встречается в Австралии, Бразилии и Южной Азии; все это жаркие местности с ярко выраженной сезонностью осадков (в каждом из трех сухих месяцев может выпадать менее 5 см).
Саванны состоят из обширных участков травы с редко разбросанными деревьями. Когда мы представляем саванны (например, Серенгети), в нашем воображении сразу же возникают стада травоядных копытных, мигрирующих с места на место с целью избежать последствий засухи.
Если оставить в стороне климат, то основное влияние на саванну оказывают пожары и пастбищные животные, причем они находятся в сложной взаимосвязи. Оба эти фактора более способствуют произрастанию травы, нежели деревьев, так как меристемы (точки произрастания) травы находятся на уровне земли или под ней и потому легче сохраняются. При отсутствии этих факторов количество деревьев увеличивается. Вместе с тем выщипывание травы сокращает количество топлива, уменьшая пожароопасность и увеличивая число деревьев.
Влияние, которое травоядные животные африканских саванн оказывают на их экологию, было убедительно продемонстрировано при сокращении их численности в результате заражения вирусом чумы рогатого скота от домашних животных. За последние 100 лет эпидемии в несколько раз сократили численность популяций травоядных и давление, которое они оказывали на травы. В результате уменьшилось количество «просветов» в зарослях, где было возможно произрастание семян акации и рост молодых побегов. В местах с низкой пожароопасностью деревья акации имеют приблизительно одинаковый возраст. Там же, где пожары часты, по мере восстановления численности травоядных появились новые побеги и выщипывание сократило частоту пожаров.
Нам еще многое предстоит узнать о саваннах. На первый взгляд они кажутся простым местообитанием, но на самом деле это мозаичные участки с чередующимся доминированием травы и деревьев, что является результатом сложных взаимоотношений между деревьями, травами, климатом, травоядными животными, пожарами и деятельностью человека.
См. также статьи «Биомы», «Луга».
Сорок лет назад три эколога задали вопрос: почему мир остается зеленым? Другими словами, почему вся растительность, которая покрывает нашу планету, не съедается травоядными?
Ответ был предложен следующий. Количество травоядных (растительноядных) контролируется их естественными врагами, хищниками и паразитоидами, так что они успевают потребить только некоторую часть (около одной пятой) растительности. Таким образом, численность травоядных ограничивается силами, действующими «сверху вниз», с высшего трофического уровня на нижний. Логично сделать вывод, что на низшем трофическом уровне численность растений не ограничивается травоядными (так как их недостаточно) и растительная биомасса увеличивается до тех пор, пока не заканчивается запас питательных веществ (ограничение «снизу вверх»). Точно так же и количество хищников, питающихся травоядными, ограничивается конкуренцией за ограниченное количество травоядных. Такие же процессы можно выявить на большем или меньшем числе трофических уровней. Довольно логичная концепция, но верна ли она?
Если не говорить о том, что идея трофических уровней является упрощением реальности, можно привести два объяснения, почему мир остается зеленым. Во-первых, многие растения не потребляются, потому что они имеют средства физической и химической защиты; во-вторых, растения — это довольно скудная пища, особенно по содержанию азота.
Силы, действующие сверху вниз в некоторых сообществах, очень важны, что подтверждается феноменом трофического каскада. Однако в общем случае более важными должны быть ограничения, действующие снизу вверх. Если удалить всех хищников из экосистемы, то последствия будут ощутимыми, но не такими серьезными, если удалить все растения — в таком случае экосистема просто прекратит существование. Возникают интересные вопросы: насколько далеко в обоих направлениях пищевой цепи действуют ограничивающие факторы? Насколько связаны между собой недостаток или избыток питательных веществ и хищников?
В настоящее время считается, что противопоставление факторов, действующих сверху вниз и снизу вверх, является чрезмерным упрощением. Обе эти группы играют важную роль в большинстве экосистем, и основным предметом исследований является их взаимодействие в различных системах.
См. также статьи «Первичная продукция», «Растительноядные», «Трофический каскад», «Трофический уровень».
Семантика играла важную роль в различных экологических спорах. Например, экология сообществ называлась уникальной областью в науке, поскольку ей недоставало «общепринятого определения сущности (то есть сообщества), с которой она преимущественно имела дело» (Джиллер, Джи, 1987). Противоречие связи между зависимостью от плотности и регулированием популяции было в большой степени решено, когда поняли, что противники спорили о различных концепциях (регулировании популяции и ограничении популяции), которые до того использовались как синонимы.
Экологию часто обвиняют в том, что она использует неточный язык. Говорят, что одной из причин, по которой не существует согласия в области терминологии, является то, что многие экологи «не заботятся о том, что непосредственно их не касается…», предпочитая, подобно Шалтаю-Болтаю Льюиса Кэрролла, «заставлять слова обозначать то, что они хотят» (Макинтош, 1995). Подразумевается, что экологи достаточно ленивы, чтобы узнавать точное значение термина, поэтому используют некоторые слова, не проверяя их изначального значения и не зная точного способа употребления.
Иногда один и тот же термин имеет разные значения. Например, «стабильность» может означать сопротивление переменам, гибкость или постоянство, и пока экологи не выяснят, в каком смысле употребляют это слово, они могут спорить до бесконечности. Например, термин «ниша» имеет многочисленные и совершенно разные значения. Для некоторых экологов «симбиоз» — это то же самое, что и «мутуализм», а для других это два разных понятия. Иногда термин «биологическое разнообразие» включает в себя функционирование экосистемы, а иногда нет.
Следует отдать должное экологам — основная часть проблем с определениями заключается в том, что многие объекты или понятия определить действительно нелегко. Термин «сообщество» остается неопределенным потому, что сами сообщества по своей природе являются неопределенными и нечеткими образованиями. Поэтому, даже если бы все термины и понятия в экологии были четко определены, экологам всегда было бы о чем спорить.
См. также статьи «Гильдии», «Ниша», «Редкие виды», «Симбиоз», «Сообщество», «Хаос».
Рифтия (Riftia), трубчатый червь длиной около метра, является важным членом сообщества гидротермальных источников, расположенных на срединно-океанических хребтах, в тех местах, где дно океана покрыто трещинами. У рифтии нет ни рта, ни пищеварительной системы. Как же она поддерживает свое существование? Ответ заключается внутри органа, который занимает почти все ее тело. В этом органе находится огромное количество бактерий, которые в качестве источника энергии используют вещества, содержащие серу (большинство «автотрофов», такие, как растения, используют энергию солнечного света посредством процесса фотосинтеза). Эти бактерии и обеспечивают рифтию углеводами; взамен рифтия обеспечивает их углекислым газом, кислородом и сероводородом, то есть веществами, необходимыми для их жизнедеятельности.
Отношение между рифтией и бактериями служит примером симбиоза, при котором два вида находятся в тесном физическом взаимодействии друг с другом. В данном случае бактерии являются эндосимбионтами, поскольку обитают исключительно внутри своего «хозяина». Симбиоз не обязательно должен приносить взаимную пользу (мутуализм). Распространенная форма симбиоза — паразитирование одного организма на другом. Существует тесная связь между паразитическим и мутуалистическим симбиозом. Например, внутри наземных тканей почти всех видов растений находятся грибы, в деревьях их десятки. Многие из этих грибов, которые, как считается, приносят пользу своим хозяевам, первоначально были паразитами и только потом эволюционировали в полезных симбионтов.
Трубчатые черви с фиксирующими энергию бактериями являются аналогом зеленых растений с внутриклеточными органоидами (хлоропластами), которые обеспечивают растения энергией и в которых осуществляется фотосинтез. Причем сходства здесь больше, чем кажется на первый взгляд, так как ученые предполагают, что хлоропласта были когда-то отдельными независимыми бактериями, ставшими впоследствии эндосимбионтами растений. Кроме того, все многоклеточные организмы внутри своих клеток содержат и другие типы «бывших бактерий», например митохондрии (органоиды, которые преобразуют энергию, запасенную в виде углеводов, в энергию, непосредственно потребляемую организмом).
См. также статьи «Коэволюция», «Мутуализм», «Паразитизм».
До начала 1970-х годов было распространено мнение, что чем выше сложность сообщества, тем выше его стабильность (см. «Равновесие»). Сложность в данном случае, грубо говоря, означает количество видов и степень связи между ними. Прямая связь между сложностью и стабильностью ощущается интуитивно — природные системы действительно кажутся нам довольно сложными — и это интуитивное предположение можно как будто доказать. Ведь чем больше количество видов в сообществе и чем активнее они связаны между собой, тем лучше система «гасит» отрицательные воздействия на нее окружающей среды.
Затем с помощью важных теоретических моделей было доказано, что верно противоположное мнение, то есть чем сложнее сообщества, тем они менее стабильны. Однако модели хороши только до тех пор, пока основываются на более или менее верных предположениях, а предположения, лежавшие в основе данных моделей, были весьма сомнительными. В недавнее время более реалистичные модели сконцентрировались на исследовании «слабых» взаимоотношений между видами. По всей видимости, для стабильности сообщества очень важно, являются ли эти «слабые» взаимоотношения постоянными, что способствует стабилизации, или же переменными, что усиливает нарушения системы. Коснувшись теоретических вопросов, перейдем к практике.
Что мы можем сделать, исходя из всех конфликтующих между собой теорий и практических наблюдений? Связь между сложностью и стабильностью зависит помимо всего прочего от того, каким образом измеряется стабильность, природа нарушений, степень взаимоотношений между видами и изменение этих взаимоотношений. Биолог Мэй, один из влиятельных авторитетов в этом вопросе, недавно сказал следующее: «Поскольку программа исследований продолжает развиваться, она отрицает любые обобщения» (Мэй, 1999). Это высказывание можно отнести к большинству, если не ко всем аспектам экологии сообществ.
См. также статьи «Модели в экологии», «Равновесие», «Трофическая сеть», «Экологическая избыточность».
Сообщество — это совокупность видов, обитающих в определенном месте. Иногда отдельное местообитание имеет вполне определенные границы, как, например, пруд, иногда же нет — в степи одни виды сменяют другие по мере изменения градиента влажности. Конечно, любые границы — это скорее отражение человеческого взгляда на мир, а не экологическая реальность. К примеру, границы пруда и окружающей его суши могут казаться нам вполне реальными и четкими, тогда как для земноводных, водяных насекомых, растений и даже некоторых млекопитающих они могут быть размытыми. Сообщества могут быть совершенно разного размера — от совокупности организмов внутри термитного гнезда до совокупности организмов африканских саванн. Экологи редко изучают сообщество целиком — для этого в нем слишком много видов. В практических целях для исследования обычно выделяют группу нескольких функционально близких видов (гильдия) или группу таксономически близких видов (например, пауки).
Во многом сообщество как нечто физически целое, имеющее границы, — это искусственная конструкция. Сообщества лучше всего представлять как уровни биологической организации. Хотя это и не было сказано в определении, данном выше, самой интересной с экологической точки зрения особенностью сообщества является то, что все виды в нем взаимодействуют (часто не напрямую) друг с другом. Частота и степень связей между видами определяют вид того или иного сообщества, образуя своего рода шкалу. На одном полюсе шкалы находится сообщество, состоящее из коэволюционирующих и в высшей степени взаимодействующих между собой видов, на другом — сообщество почти никак не связанных между собой видов, которые просто обитают в одной и той же среде, поскольку требования к среде у них одинаковы (индивидуалистическая концепция).
Историческая экология доказывает, что виды в сообществах не являются постоянными единицами, по мере смены среды обитания одни виды уходят, другие приходят. Поэтому многие экологи придерживаются мнения, что большинство сообществ все же ближе к индивидуалистическому типу.