52700.fb2
• Большая выразительность. Мы можем вычислить больше значений.
Какую из них выбрать? В Haskell пошли по второму пути. Всё-таки преимущество выразительности языка
оказалось самым существенным. Но для того чтобы избежать недостатков стратегии вычисления по имени
оно было модифицировано. Давайте посмотрим как.
9.2 Вычисление по необходимости
Вернёмся к выражению:
(\x -> add (add x x) x) (add Zero two)
Нам нужно как-то рассказать функции о том, что имя x в её теле указывает на одно и то же значение. И
если в одном из x значение будет вычислено переиспользовать эти результаты в других x. Вместо значения мы
будем передовать в функцию ссылку на область памяти, которая содержит рецепт получения этого значения.
Напомню, что мы по-прежнему вычисляем значение сверху вниз, сейчас мы просто хотим избавиться от
проблемы дублирования. Вернитесь к примеру с вычислением по имени и просмотрите его ещё раз. Обратите
внимание на то, что значения вычислялись лишь при сопоставлении с образцом. Мы вычисляем верхний
конструктор аргумента лишь для того, чтобы понять какое уравнение для foldNat выбрать. Теперь мы будем
хранить ссылку на (add Zero two) в памяти и как только, внешняя функция запросит верхний конструктор
мы обновим значение в памяти новым вычисленным до корневого конструктора значением. Если в любом
другом месте функции мы вновь обратимся к значению, мы не будем его перевычислять, а сразу вернём
конструктор. Посмотрим как это происходит на примере:
Вычисление по необходимости | 145
--
выражение
| память:
--------------------------------------------|-------------------------
(\x -> add (add x x) x) M
| M = (add Zero two)
-- подставим ссылку в тело функции
|
=>
add (add M M) M
|
-- раскроем самый верхний синоним
|
=>
foldNat (add M M) Succ M
|
-- для foldNat узнаем верхний конструктор
|
-- последнего аргумента (пропуская
|
-- промежуточные шаги, такие же как выше)
|
=>
| M
= Succ M1
| M1 = foldNat Succ Zero one
-- по M выбираем второе уравнение
|
=> Succ (foldNat (add M M) Succ M1)
|