52700.fb2 Учебник по Haskell - читать онлайн бесплатно полную версию книги . Страница 257

Учебник по Haskell - читать онлайн бесплатно полную версию книги . Страница 257

onlyOne [2,3,4,5,6]

=>

Just 2

fmap (+1) $ onlyOne [1,2,3,4,5]

=>

fmap (+1) $ Just 1

=>

Just 2

Результаты сошлись, обратите внимание на то, что функции fmap (+1) в двух вариантах являются раз-

ными функциями. Первая работает на списках, а вторая на частично определённых значениях. Суть в том,

что если при перекладывании значение не изменилось, то нам не важно когда выполнять преобразование

внутри функтора [] или внутри функтора Maybe. Теперь давайте выразим это на языке теории категорий.

Преобразование ε в категории B из функтора F в функтор G называют естественным (natural), если

F f ; εB = εA ; Gf

для любого f : A →A B

Естественное преобразование | 231

Это свойство можно изобразить графически:

ε

F A

A

GA

F f

Gf

F B

GB

εB

По смыслу ясно, что если у нас есть три структуры данных (или три функтора), если мы просто пере-

ложили данные из первой во вторую, а затем переложили данные из второй в третью, ничего не меняя. То

итоговое преобразование, которое составлено из последовательного применения перекладывания данных

также не меняет данные. Это говорит о том, что композиция двух естественных преобразований также явля-

ется естественным преобразованием. Также мы можем составить тождественное преобразование, для двух

одинаковых функторов F : A → B, это будет семейство тождественных стрелок в категории B. Получает-

ся, что для двух категорий A и B мы можем составить категорию F tr( A, B), в которой объектами будут

функторы из A в B, а стрелками будут естественные преобразования. Поскольку естественные преобразова-

ния являются стрелками, которые соединяют функторы, мы будем обозначать их как обычные стрелки. Так

запись η : F → G обозначает преобразование η, которое переводит функтор F в функтор G.

Интересно, что изначально создатели теории категорий Саундедерс Маклейн и Сэмюэль Эйленберг при-

думали понятие естественного преобразования, а затем, чтобы дать ему обоснование было придумано поня-

тие функтора, и наконец для того чтобы дать обоснование функторам были придуманы категории. Катего-

рии содержат объекты и стрелки, для стрелок есть операция композиции. Также для каждого объекта есть

тождественная стрелка. Функторы являются стрелками в категории, в которой объектами являются другие

категории. А естественные преобразования являются стрелками в категории, в которой объектами являются

функторы. Получается такая иерархия структур.

15.4 Монады

Монадой называют эндофунктор T : A → A, для которого определены два естественных преобразования

η : I → T и µ : T T → T и выполнены два свойства:

T ηA ; µA = idTA

T µA ; µTA = µTTA ; µA

Преобразование η – это функция return, а преобразование µ – это функция join. В теории категорий в

классе Monad другие методы. Перепишем эти свойства в виде функций Haskell: