52700.fb2 Учебник по Haskell - читать онлайн бесплатно полную версию книги . Страница 266

Учебник по Haskell - читать онлайн бесплатно полную версию книги . Страница 266

f ; g = idA

g ; f = idB

Объекты A и B называют изоморфными, если они связаны изоморфизмом, это обозначают так: A ∼

= B.

Докажите, что все начальные и конечные элементы изоморфны.

• Поскольку сумма и произведение типов являются начальным и конечным объектами в специальных

категориях для них также выполняются свойства тождества, уникальности и слияния. Выпишите эти

свойства для суммы и произведения.

• Подумайте как можно определить экземпляр класса Comonad для потоков:

data Stream a = a :& Stream a

Можно ли придумать экземпляр для класса Monad?

• Дуальную категорию для категории A обозначают Aop. Если F является функтором в категории Aop,

то в исходной категории его называют контравариантным функтором. Выпишите определение функто-

ра в Aop, а затем с помощью дуализации получите свойства контравариантного функтора в исходной

категории A.

Краткое содержание | 239

Глава 16

Категориальные типы

В этой главе мы узнаем как в теории категорий определяются типы. В теории категорий типы определяют-

ся как начальные и конечные объекты в специальных категориях, которые называются алгебрами функторов.

Для понимания этой главы хорошо освежить в памяти главу о структурной рекурсии, там где мы говорили

о свёртках и развёртках.

16.1 Программирование в стиле оригами

Оригами – состоит из двух слов “свёртка” и “бумага”. При программировании в стиле оригами все функ-

ции строятся через функции свёртки и развёртки. Есть даже такие языки программрования, в которых это

единственный способ определения рекурсии. Этот стиль очень хорошо подходит для ленивых языков про-

граммирования, поскольку в связке:

fold f . unfold g

функции свёртки и развёртки работают синхронно. Функция развёртки не производит новых элементов

до тех пор пока они не понадобятся во внешней функции свёртки.

Помните в одной из глав мы говорили о том, что рекурсивные функции можно определять через функцию

fix.

Например так выглядит рекурсивная функция сложения всех чисел от одного до n:

sumInt :: Int -> Int

sumInt 0 = 0

sumInt n = n + sumInt (n-1)

Эту функцию мы можем переписать с помощью функции fix. При вычислении fix f будет составлено

значение

f (f (f (f ... )))

Теперь перепишем функцию sumInt через fix:

sumInt = fix $ \f n ->

case n of

0

-> 0

n

-> n + f (n - 1)

Смотрите лямбда функция в аргументе fix принимает функцию и число, а возвращает число. Тип этой

функции (Int -> Int) -> (Int -> Int). После применения функции fix мы как раз и получим функцию

типа Int -> Int. В лямбда функции рекурсивный вызов был заменён на вызов функции-параметра f.

Оказывается, что этот приём может быть применён и для рекурсивных типов данных. Мы можем создать