52704.fb2
constructor THuffmanTree.Create;
var
i : integer;
begin
inherited Create;
FillChar(FTree, sizeof(FTree), 0);
for i := 0 to 510 do
FTree[i].hnIndex := i;
end;
Поскольку конструктор не распределяет никакой памяти, и никакое распределение памяти не выполняется ни в каком другом объекте класса, явному деструктору нечего делать. Поэтому по умолчанию класс использует метод TObject.Destroy.
Первым методом, вызываемым для дерева Хаффмана в подпрограмме сжатия, был метод CalcCharDistribution. Это метод считывает входной поток, вычисляет количество появлений каждого символа, а затем строит дерево.
Листинг 11.9. Вычисление количеств появлений символов
procedure THuffmanTree.CalcCharDistribution(aStream : TStream);
var
i : integer;
Buffer : PByteArray;
BytesRead : integer;
begin
{считывать все байты с поддержанием счетчиков появлений для каждого значения байта, начиная с начала потока}
aStream.Position := 0;
GetMem(Buffer, HuffmanBufferSize);
try
BytesRead := aStream.Read(Buffer^, HuffmanBufferSize);
while (BytesRead <> 0) do
begin
for i := pred(BytesRead) downto 0 do
inc(FTree[Buffer^[i]].hnCount);
BytesRead := aStream.Read(Buffer^, HuffmanBufferSize);
end;
finally
FreeMem(Buffer, HuffmanBufferSize);
end;
{построить дерево}
htBuild;
end;
Как видно из листинга 11.9, большая часть кода метода вычисляет количества появлений символов и сохраняет эти значения в первых 256 узлах массива. Для повышения эффективности метод обеспечивает поблочное считывание входного потока (прежде чем выполнить цикл вычисления, он распределяет в куче большой блок памяти, а после вычисления освобождает его). И в завершение, в конце подпрограммы вызывается внутренний метод htBuild, выполняющий построение дерева.
Прежде чем изучить реализацию этого важного внутреннего метода, рассмотрим возможную реализацию алгоритма построения дерева. Вспомним, что мы начинаем с создания "пула" узлов, по одному для каждого символа. Мы выбираем два наименьших узла (т.е. два узла с наименьшими значениями счетчиков) и присоединяем их к новому родительскому узлу (устанавливая значение его счетчика равным сумме значений счетчиков его дочерних узлов), а затем помещаем родительский узел обратно в пул. Мы продолжаем этот процесс до тех пор, пока в пуле не останется только один узел. Если вспомнить описанное в главе 9, станет очевидным, какую структуру можно использовать для реализации этого аморфного "пула": очередь по приоритету. Строго говоря, мы должны использовать сортирующее дерево с выбором наименьшего элемента (обычно очередь по приоритету реализуется так, чтобы возвращать наибольший элемент).
Листинг 11.10. Построение дерева Хаффмана
function CompareHuffmanNodes(aData1, aData2 : pointer): integer; far;
var
Node1 : PHuffmanNode absolute aData1;
Node2 : PHuffmanNode absolute aData2;
begin
{ПРИМЕЧАНИЕ: эта подпрограмма сравнения предназначена для реализации очереди по приоритету Хаффмана, которая является *сортирующим деревом с выбором наименьшего элемента*. Поэтому она должна возвращать элементы в порядке, противоположном ожидаемому}
if (Node1^.hnCount) > (Node2^.hnCount) then
Result := -1
else
if (Node1^.hnCount) = (Node2^.hnCount)
then Result := 0