52704.fb2
const
m = 2147483647;
begin
if (aValue > 0) then
FSeed := aValue
else
FSeed := GetTimeAsLong;
{убедиться, что значение начального числа находится в переделах от 0 до m-1 включительно}
if (FSeed >=m-1) then
FSeed := FSeed - (m - 1) + 1;
end;
Как несложно заметить в коде метода AsDouble, метод Шрейга выглядит гораздо сложнее, нежели простая формула X(_n+1_) = aX(_n_) mod m со значениями а = 16807 и m = 2(^31^) - 1. Тем не менее, используя достаточно сложные математические выкладки, можно доказать его равенство приведенной формуле.
Кроме того, как уже упоминалось, в генераторе случайных чисел подобного типа использование нуля в качестве начального числа нежелательно, поскольку тогда бы все генерируемые значения были бы нулевыми. Поэтому метод msSetSeed использует значение 0 в качестве флага при необходимости установки начального числа по значению системных часов. К сожалению, для выполнения этой операции в 16- и 32-разрядных системах Windows используется разный код.
Создадим класс случайных чисел, который будет использовать системный генератор случайных чисел - функцию Random. В листинге 6.4 показан код метода AsDouble для такого класса.
Листинг 6.4. Использование в классе системной функции Random
function TtdSystemPRNG.AsDouble : double;
var
OldSeed : longint;
begin
OldSeed := System.RandSeed;
System.RandSeed := Seed;
Result := System.Random;
Seed := System.RandSeed;
System.RandSeed := OldSeed;
end;
Теперь, когда в нашем арсенале имеется два генератора случайных чисел, можно перейти к обсуждению методов тестирования их результатов.
В основе всех тестов будут лежать одни и те же принципы. Мы будем генерировать большое количество случайных чисел из диапазона от 0.0 (включительно) до 1.0 (исключительно). Получаемые в результате работы генераторов значения будут разбиваться на несколько категорий, будет подсчитываться количество значений в каждой категории, а затем вероятность попадания значения в каждую категорию. На основе результатов вычислений будет определяться значение функции хи-квадрат, на основе которого будет прогоняться тест по критерию хи-квадрат. При этом количество степеней свободы будет на единицу меньше, чем количество категорий значений. Это было всего лишь краткое введение, но через несколько минут мы приступим к собственно тестированию.
Первый тест самый простой - проверка на однородность. О нем мы уже говорили. Фактически случайные числа будут проверяться на равномерность распределения по диапазону от 0.0 до 1.0. Разобьем весь диапазон на 100 поддиапазонов, сформируем набор из 1000000 случайных чисел и вычислим количество значений, попавших в каждый поддиапазон. В поддиапазоне 0 будут находиться значения от 0.00 до 0.01, в поддиапазоне 1 - значения от 0.01 до 0.02 и т.д. Вероятность попадания случайного числа в любой поддиапазон составляет 0.01. Для полученного распределения вычислим значение параметра хи-квадрат и сравним его с данными для стандартного распределения хи-квадрат, находящимися в строке, для 99 степеней свободы.
Листинг 6.5. Тест на однородность
procedure UnifomityTest(RandGen : TtdBasePRNG;
var ChiSquare : double; var DegsFreedo : integer);
var
BucketNumber, i : integer;
Expected, ChiSqVal : double;
Bucket : array [0..pred(Uniformitylntervals) ] of integer;
begin
{вычислить количество чисел в каждом поддиапазоне}
FillChar(Bucket, sizeof(Bucket), 0);
for i := 0 to pred(UniformityCount) do
begin
BucketNumber := trunc(RandGen.AsDouble * Uniformitylntervals);
inc (Bucket [BucketNumber]);
end;
{вычислить значение параметра xu-квадрат}
Expected := UniformityCount / Uniformitylntervals;
ChiSqVal := 0.0;
for i := 0 to pred(Uniformitylntervals) do
ChiSqVal := ChiSqVal + (Sqr (Expected - Bucket [i]) / Expected);
{вернуть значения}