53832.fb2
Николай Геннадиевич Басов, директор Физического института АН СССР, дважды Герой Социалистического Труда, лауреат Ленинской и Нобелевской премий, председатель правления общества" Знание», главный редактор журналов «Квантовая электроника» и «Природа».
Вот уже несколько десятилетий ученые всего мира бьются над решением проблемы управляемого термоядерного синтеза, обещающего навсегда избавить человечество от угрозы энергетического голода. В 1961 году советский физик Н. Г.Басов предложил новое направление в этой области — лазерный термоядерный синтез…
В сознании людей до сих пор термоядерный синтез отождествляется, к сожалению, с водородной бомбой — страшным по своей разрушительной силе оружием. Взрыв бомбы — неуправляемая смертоносная, огромного масштаба стихия из ударных волн, рентгеновского, нейтронного и гамма-излучения.
Здесь мне хотелось бы показать, что понятие «ядерная энергия» должно ассоциироваться не с военной угрозой, а с энергетическим изобилием.
Сейчас наиболее перспективной представляется ветвь атомной энергетики, связанная с реакторами на быстрых нейтронах, где идет деление дешевого изотопа урана-238, запасы которого достаточно велики. Однако и здесь имеется ряд трудностей, главная из которых заключается, на наш взгляд, в том, что такие реакторы работают в режиме расширенного воспроизводства плутония — основы ядерного оружия. Развитая на такой основе мировая энергетика ввести в международный оборот много сотен тонн плутония. Ясно, что возникающая при этом возможность его утечки не будет способствовать укреплению безопасности и предотвращению ядерной войны. Если удастся преодолеть эти и другие трудности, то урановая энергетика будет способна отодвинуть кризисные явления на 100 и более лет. Управляемый термоядерный синтез не только снимает опасность утечки плутония, но и решает проблему кардинальным образом, обеспечивая, по существу, «вечное» энергетическое изобилие.
К управлению термоядерным синтезом ученые разных стран идут двумя в значительной мере независимыми путями. Первый из них исторически связан с методом «медленного» нагрева плазмы определенной плотности, удерживаемой магнитным полем достаточно длительное время. Лидирующее положение в этой области, по общему мнению, принадлежит установкам типа «токамак». Другой путь — импульсные инерциальные системы, в которых реакцию слияния ядер тяжелых изотопов водорода вызывают излучением оптических квантовых генераторов (лазеров). Здесь ученые сосредоточили свой поиск на путях получения энергии термоядерного синтеза малыми порциями.
Что может произойти за одну миллиардную долю секунды? На первый взгляд кажется, что столь ничтожный по обычным нашим понятиям промежуток времени не может быть масштабом сколько-нибудь заметного явления. Однако именно в течение такого отрезка времени твердый шарик размером в несколько миллиметров и массой в несколько миллиграммов, состоящий из смеси дейтерия и трития, вспыхнет и исчезнет, оставив взамен себя миллиард джоулей энергии. Столь высокой энергоемкостью (около 100 млрд. Дж/г) как раз и обладает реакция термоядерного синтеза. Примерно такое же количество энергии выделяется при сжигании 30 л бензина или взрыве около 250 кг взрывчатки.
Однако ядра дейтерия и трития не вступают в реакцию синтеза сами по себе, так как при сближении этих ядер начинают действовать электрические силы отталкивания. Преодолеть такой энергетический барьер можно только одним способом — разогнать ядра до достаточно больших скоростей. Наиболее естественный и, пожалуй, единственно возможный в физике путь осуществить условие, позволяющее не отдельным, а многим ядрам вступать в реакцию синтеза, — получить нагретый до очень высоких температур (не менее 100 млн. °С) газ, состоящий из ядер дейтерия и трития. Получение такой плазмы и лежит в основе управляемого термоядерного синтеза.
Один из возможных путей решения этой задачи состоит в сферически-симметричном облучении твердых шариков из дейтериево-тритиевого льда короткими (примерно в одну миллиардную долю секунды) и мощными импульсами лазерного излучения. Образовавшийся в результате этого сгусток термоядерной плазмы успевает за ничтожное время своего существования сгореть в «термоядерном огне». Такой импульсный процесс по сути своей — термоядерный микровзрыв. Он и составляет основу лазерного направления в проблеме управляемого синтеза — так называемый лазерный термоядерный синтез, предложенный в Физическом институте имени П. Н. Лебедева Академии наук СССР в 1963 году.
Нетрудно понять физический принцип использования лазеров для получения термоядерных микровзрывов. Наглядная сторона вопроса заключается в возможности фокусировать лазерный световой импульс на площадку очень малых размеров — порядка 100 мкм и меньше, что, в свою очередь, означает возможность вложить всю лазерную анергию в небольшие объемы вещества.
Высокая мощность лазеров обеспечивает мгновенный нагрев и сжатие малых порций термоядерного вещества. Этим и создаются условия для термоядерного микровзрыва. Возникающее под действием лазерного излучения давление в образующемся сгустке термоядерной плазмы достигает 1010 атм (всего в 10 раз меньше давления в недрах Солнца). Плотность горячей плазмы в момент, предшествующий термоядерному микровзрыву, может составлять 100 г/см3.
Для эффективной термоядерной вспышки необходима, по современным представлениям, энергия лазера — 1-10 МДж при длительности лазерного импульса 1 не. Сама по себе названная величина энергии невелика и соответствует сгоранию 25-250 г. бензина. Однако такая энергия, сосредоточенная в узких лучах и выделяющаяся в течение столь короткого времени, оказывается способной дать человечеству свет и тепло на практически неограниченный срок.
В последние годы мы являемся свидетелями весьма бурного прогресса в решении проблемы лазерного термоядерного синтеза. В СССР, США, Франции, Японии и других странах введены в действие и строятся многоканальные лазерные комплексы с энергией излучения 104 –105 Дж. На этих установках уже зафиксированы плотности термоядерной плазмы 10–30 г/см3, температуры в десятки миллионов градусов, а рекордное число образующихся нейтронов составляет 30 млрд. Сейчас задача состоят в том, чтобы достичь так называемого физического порога термоядерных реакций, то есть получить энергию, равную по величине энергии излучения лазера. Решение задачи означало бы возможность решающего перехода из области физических исследований в сферу инженерного конструирования. Для достижения этого порога выход нейтронов надо поднять до величины 1016 –1017 част. — имп. На первый взгляд может показаться, что мы еще очень далеки от цели. Однако физика термоядерного синтеза такова, что «дефицит» в 6–7 порядков по нейтронному выходу можно ликвидировать при увеличении массы, плотности и температуры мишени всего в несколько раз, для чего, как показывают расчеты, энергия падающего излучения должна быть многократно увеличена.
Лазерные «машины» с энергией 105 Дж — это громадные, технически насыщенные сооружения, которые трудно сравнить с чем-либо. Однако они всего лишь инструменты для физических исследований. Основная проблема лазерного термоядерного синтеза заключается в настоящее время, с нашей точки зрения, в выборе типа лазера для демонстрационного эксперимента и разработки на этой основе коммерческой системы лазер — термоядерный реактор. Среди возможных вариантов рассматриваются мощные газовые лазеры на углекислом газе, так называемые эксимерные лазеры, например криптон-фторовый и некоторые другие. Параллельно разрабатываются проекты импульсных термоядерных реакторов — устройств, превращающих энергию термоядерного микровзрыва в удобный вид энергии, например в электричество.
Лазерный термоядерный реактор — это камера, стенки которой «собирают» энергию, полученную при микровзрыве, и преобразуют ее сначала в тепло, а затем в электричество. К сожалению, вряд ли кто возьмется сегодня назвать сроки практического использования результатов фундаментальных исследований. Однако существует весьма заманчивая возможность приблизить это время. Она связана с так называемыми гибридными реакторами, в которых одновременно используются реакции синтеза и деления.
Как работает такая установка? Сфокусированные на мишени лазерные пучки вызывают термоядерную вспышку. Возникает импульсный точечный источник нейтронов, поток которых обрушивается на урановую оболочку камеры. Под действием одного термоядерного нейтрона в естественном уране происходит одно деление и образуются три-четыре атома плутония. Накапливающийся со временем плутоний повышает размножающие свойства урановой оболочки так, что один нейтрон вызывает уже 10–20 делений при полной ядерной взрывобезопасности. При этом размеры взрывной камеры могут быть невелики — всего около метра. Весь цикл такого реактора — накопление плутония, достаточно полное (до 50 %) выжигание урана — удается провести примерно за 30 лет. Вследствие того, что плутоний вначале накапливается, а затем расходуется, удовлетворительные размножающие свойства поддерживаются в продолжение всего срока без извлечения тепловыделяющих элементов и их химической переработки. Конечно, в гибридных реакторах утрачивается основное преимущество чисто термоядерных установок, однако намного проще решается проблема энергетического баланса. Вполне приемлемыми выглядят габариты станции, а ее строительство можно значительно ускорить по сравнению с чисто термоядерными. Гибридный реактор, занимающий промежуточное положение между стационарными ядерными реакторами и термоядерными системами, будет, подсей вероятности, первым этапом практического применения управляемого термоядерного синтеза.
Существуют и другие идеи, которые могут стать основой проектов импульсных термоядерных реактотывается ядерное топливо для атомных электростанций или химическое топливо, в частности, водород.
Преимущество термоядерной энергетики, основанной на лазерном синтезе, можно продемонстрировать на следующем примере. Обычная тепловая электростанция мощностью 1 млн. кВт потребляет в год 2,1 млн. т угля, атомная электростанция такой же мощности — 30 т урановой руды, а термоядерная электростанция — 600 кг термоядерного горючего.
Еще одно ее преимущество заключается в чрезвычайно низкой цене дейтериево-тритиевого топлива и в высоком качестве получаемой энергии. Так, возможность создания термоядерного реактора, работающего в режиме получения водорода, в принципе означает революцию в системе производства и снабжения энергией. Представьте себе тепловые электростанции, работающие на водородном топливе, автомобили, потребляющие вместо дорогостоящего бензина дешевый водород, «водородный», а не электрический утюг и т. д. При этом нет необходимости хранить водородное топливо в сосудах большой емкости, что связано с опасностью взрыва. Существующая в настоящее время технология изготовления сферических оболочек диаметром около 100 мкм и толщиной стенок в несколько микрометров (лазерных термоядерных мишеней) решает проблему взрывобезопасности при хранении и распределении водородной энергии. Прочность рассмотренных капсул такова, что газообразный водород можно хранить в них при давлении в сотни и тысячи атмосфер.
Таким образом, возможной конечной целью любой из мыслимых термоядерных разработок является создание проекта технически реализуемого, экономически рентабельного, безопасного для людей и окружающей среды источника энергии.
Овладение управляемым термоядерным синтезом создаст новые широкие возможности для развития человеческой цивилизации, исчезнет призрак энергетического голода. Человечество сможет вплотную заняться многими проблемами, решение которых сегодня тормозится вследствие нехватки энергии. Принципиально новая технология производства энергии не только повлечет за собой новую революцию в промышленном производстве, но и позволит резко поднять уровень повседневной жизни людей. Создание термоядерной энергетики ликвидирует реальную основу современной борьбы за энергию, лишит смысла военнополитические доктрины и концепции, ставящие во главу угла овладение энергетическим сырьем. Это создаст возможность значительно смягчить политический климат на нашей планете и тем самым ослабить нависшую над человечеством военную угрозу, создать более благоприятные условия для поступательного развития человеческой цивилизации.
Юрий Анатольевич Овчинников, вице-президент АН СССР, директор Института биоорганической химии имени М. М. Шемякина, Герой Социалистического Труда, лауреат Ленинской и Государственной премий, президент Федерации европейских биохимических обществ.
Проникновение во внутренние тайны живой клетки и расшифровка генетического кода в 50-х годах нашего столетия привели к стремительному развитию всех разделов физико-химической биологии, породили своеобразный биологический ренессанс. И уже сегодня в научных лабораториях сделаны такие открытия, которые в недалеком будущем могут привести к созданию новой обширной области промышленного производства — биотехнологии.
Я изучаю живой организм — значит, я биолог. Но главные процессы в организме основаны на физико-химических превращениях. Нет ни одного факта, который противоречил бы этому утверждению. Новая информация, поступающая в мозг, закрепляется благодаря синтезу химических соединений. Наследственная информация, которая передается от родителей к детям, записана химическим языком. Именно последовательностью нуклеотидов в генах (в блоках молекулы ДНК) и аминокислот в белках определяется строение и работа клеток, тканей, органов. Не зная молекулярных физико-химических основ, наука не может ответить на большинство вопросов, возникающих в процессе познания жизни.
В конце концов именно объединение специалистов, работающих в разных областях естествознания, и, как следствие, мощный поток открытий в области молекулярных, физико-химических основ жизнедеятельности привел к новому качественному скачку — рождению генетической инженерии. Манипулируя молекулами, как инженер деталями машин, современный биолог по заранее намеченному плану вводит новые гены в существующий наследственный аппарат, конструируя небывалые прежде живые системы.
Учась оперировать геном, человек обретает возможность направленно вмешиваться в течение внутриклеточных процессов, в механизмы их регуляции, исправлять дефекты, определяющие развитие патологии, усиливать бастионы самозащиты организма и, наконец, создавать организмы, необходимые сельскому хозяйству и медицине. Так становятся не только вполне реальными, но и вдохновляющими возможности практического применения фундаментальных биологических исследований. Так фундаментальная наука приближает еще одну индустриальную революцию, на сей раз связанную с биологией вообще и с биотехнологией в частности.
Человек исстари пользовался биологическими механизмами для своих нужд. Варил сыр, пек хлеб. Успехи физико-химической биологии наполнили понятие биотехнологии принципиально новым содержанием.
Современная биотехнология — комплексная, многопрофильная область научно-технического прогресса. Она включает в себя разнообразный микробиологический синтез, генетическую, в последние годы и клеточную инженерию, инженерную энзимологию — использование знаний условий и последовательности действия белковых ферментов в организме растений, животных и человека, в промышленных реакторах. Именно эти новые направления биотехнологии призваны способствовать решению насущных проблем медицины, сельского хозяйства, энергетики, наконец, охраны и рационального использования природных ресурсов.
Микроорганизмы, прежде всего бактерии и дрожжи, — наиболее мощные биологические агенты, которые может использовать человек в своих интересах. Они растут с большими скоростями, огромными темпами увеличивают биомассу, способны жить в экстремальных условиях (скажем, при температуре кипящей воды и выше) и утилизировать самые разнообразные вещества и материалы вплоть до металлов, многих пластмасс, целлюлозы, нефти и угля.
Микробиологическое производство требует сравнительно простых технологических решений и при широких масштабах в большинстве случаев оказывается рентабельным. Ныне таким путем получают кормовой белок и белково-витаминные концентраты для нужд сельского хозяйства во многих странах, причем научные основы такого производства в свое время были разработаны в Советском Союзе. Используя в качество сырья углеводороды нефти, спирт, природный газ, отходы сахарного производства, наша страна располагает самой мощной микробиологической промышленностью в мире и продолжает развивать ее высокими темпами.
Другие направления биотехнологии связаны с развитием генетической, а также клеточной инженерии, выросших на фундаменте знаний структуры и функций нуклеиновых кислот и белков и зависящих от дальнейшего роста этого «блока знаний».
Суть генетической инженерии — рассечение молекулы ДНК на отдельные фрагменты (это достигается с помощью ферментов), а затем их сборка, сшивка (также с помощью ферментов, только противоположного действия). Вся эта операция проводится с единственной целью: вставить в эволюционно отлаженную цепь нуклеотидов новый фрагмент — ген, отвечающий за производство необходимого нам белка, вместе с так называемыми регуляторами — участками, обеспечивающими активность «своего» гена. Такой гибрид — рекомбинантная ДНК в организмах, способных к быстрому размножению, например в дрожжах или в кишечной палочке, заставляет их наряду с традиционными веществами, необходимыми для поддержания жизнедеятельности, производить чужеродный для них белок. Будучи чужеродным, а потому ненужным, этот белок выделяется во внешнюю среду, собирается и при необходимости дополнительно обрабатывается.
Способы получения гибридных (рекомбинантных) ДНК могут быть разными. Цель же у них одна: получать белки человека, растений или животных, необходимые в практической деятельности человека, прежде всего в медицине.
Один из важнейших таких белков — инсулин. Он вырабатывается поджелудочной железой и регулирует уровень сахара в крови. В клетках железы этот гормон существует в виде проинсулина (86 аминокислотных остатков) — своего неактивного предшественника, который становится активным при выходе в кровь. Недостаток инсулина в организме приводит к развитию тяжелого заболевания — сахарного диабета. Для борьбы с ним раньше использовали инсулин животного происхождения, однако в последние годы выяснилось, что большое число людей этот препарат не воспринимает. Лет двадцать назад удалось разработать способ химического синтеза инсулина, который в некоторых странах применяется в медицинской практике по сей день, несмотря на его очень высокую цену.
Более рентабельный путь получения инсулина, к тому же не химического, а естественного происхождения, дает генетическая инженерия. Сейчас с этой целью ученые используют сочетание двух подходов — генноинженерного с химико-ферментативным. Короткие синтетические фрагменты ДНК сшиваются ферментом — лигазой. Полученный ген вместе с регуляторными участками вводят в состав рекомбинантной ДНК бактериальных или дрожжевых клеток, и они вынуждены отныне продуцировать проинсулин. Технологическая задача промышленного получения инсулина решена.
Не менее важный объект генетической инженерии — интерферон. Основу этого соединения составляет белок, вырабатываемый клетками позвоночных в ответ на проникновение вирусов и защищающий от них клетки, а значит, и организм в целом. Интерферон видоспецифичен: каждый организм производит свой белок. Поэтому для лечения человека пригоден только интерферон человека, организм которого далеко не всегда способен к выделению должного количества интерферона нужной активности. Заманчивость помощи извне тем более понятна, что по некоторым (пока предварительным) сведениям интерферон — не только универсальное противовирусное средство. Он способен также эффективно помочь в борьбе против определенных форм рака — заболевания вирусогенетической природы.
Сегодня препарат интерферона получают из лейкоцитов донорской крови — основы не только очень дорогой, но и принципиально не способной удовлетворить потребности медицины в ценном белковом препарате. В поиске альтернативных путей получения интерферона ученые обратились к генетической инженерии. Программа создания штамма — продуцента интерферона — успешно завершена, получены первые партии промышленного интерферона, которые отданы медикам на испытание. В этой работе участвовало несколько институтов и производств Академии наук СССР.
Другой путь — химический синтез гена интерферона в сочетании с регуляторными участками, необходимыми для того, чтобы он работал в искусственной наследственной системе. Иными словами, надо собрать воедино самую большую из когда-либо синтезированных человеком органических молекул — 1200 нуклеотидов! Заманчивость задачи перевесила все сложности: за данный синтез взялись ученые и в США, и в Советском Союзе — в Институте биоорганической химии имени М. М. Шемякина АН СССР, Институте цитологии и генетики Сибирского отделения АН СССР, в институтах Главмикробиопрома. Работа была выполнена за несколько лет. А ведь еще совсем недавно это казалось совершенно нереальным, и ученые, отважившиеся на решение подобной задачи, воспринимались в лучшем случае как чудаки!
И еще один пример использования генетической инженерии для получения крайне необходимого медицине белка — соматотропина, или гормона роста. Его применяют для лечения карликовости, ожогов, костных переломов и т. д. Задача получения этого белка решена сотрудниками Института молекулярной биологии Академии наук СССР.
Надо ли говорить, что за словами «задача решена» стоят месяцы и годы труда большого коллектива, поиск оригинальных подходов к преодолению многих частных, хотя каждый раз принципиальных сложностей.
Если клетки высших организмов выращивать, как микроорганизмы, в искусственных условиях, они могут производить ценнейшие вещества живого организма, необходимые и в пищевой, и в парфюмерной промышленности. Например, в Институте физиологии растений имени К. А. Тимирязева АН СССР в содружестве с Главмикробиопромом разработан промышленный регламент получения настойки женьшеня из клеточной биомассы, выращенной таким способом. И если из корня растения, добытого старателями с плантаций, получают в год 200–250 килограммов ценного препарата, то уже за первый год промышленного производства было получено около 5 тонн экстракта женьшеня.
Растительная клетка обладает уникальным свойством — любая может дать начало целому растению. Это позволяет, используя клеточную селекцию и инженерию, конструировать новые — высокоурожайные и устойчивые к болезням, к неблагоприятным условиям среды — хозяйственные растения. Так ученые переходят от моно— к микроклональному размножению, благодаря которому выводят устойчивый к филлоксере гибридный сорт винограда, устойчивый к поражению вирусом гибридный сорт картофеля, гибриды сахарной свеклы, люцерны и других культурных растений. Та же технология используется и для создания межвидовых гибридов, например, картофеля с томатом.
Не менее значительны результаты и в работе с животными клетками — яйцеклетками крупного рогатого скота. Исследования в МГУ, институтах Академии наук СССР и особенно широко в институтах ВАСХНИЛ направлены на создание банков замороженных эмбрионов высокопородных животных с последующей их трансплантацией. Таков путь получения генетических копий выдающихся животных-рекордистов.
Наконец, новая биотехнология — это наша надежда в деле охраны природы и воспроизводства природных ресурсов. Запасы угля, нефти, природного газа, Сланцев не беспредельны, хотя с каждым десятилетием их используют все больше и больше. Сгорание этих органических соединений сопровождается загрязнением атмосферы углекислым и сернистым газами, проливающимися потом «кислыми» дождями, что «бьет» и по природе, и по климату, и по благополучию человека. Строительство гидроэлектростанций меняет гидрологический режим рек, отражается на продуктивности рыбного стада. Атомная энергетика ставит перед учеными необходимость разработки надежных и рентабельных способов обезвреживания и утилизации радиоактивных отходов и т. д. И выход я вижу в ускоренной разработке методов промышленного получения биоэнергии, опирающихся на уникальный, естественный для природы механизм трансформации и утилизации практически бесконечной солнечной энергии — фотосинтез.
Успехи физико-химической биологии способствовали детальному изучению молекулярных основ фотосинтетического аппарата высших растений, синезеленых водорослей, бактерий. Сегодня мы уже досконально знаем, как энергия Солнца трансформируется в поток электронов, в АТФ (аденозинтрифосфорную кислоту) — эту универсальную энергетическую валюту живого, как и на каком этапе в процессе такой трансформации образуется водород — самое совершенное природное топливо.
Возникает заманчивая и вполне реальная задача — научиться останавливать фотосинтез на одном из этапов и в зависимости от «остановки» получать либо водород, либо поток «готового» электричества, либо богатую энергетической валютой биомассу. Основы таких будущих технологий отрабатываются сегодня в лабораториях биологов. И как только удастся найти способы длительного сохранения работоспособности разделенного на отдельные структуры фотосинтетического аппарата, человек начнет получать энергию в количестве, которое сегодня производит и потребляет страна в целом, с площади в несколько десятков квадратных километров пустыни или полупустыни.
Важнейшим светочувствительным элементом сетчатки глаза служит окрашенный пигментом белок — родопсин, расположенный в мембранных дисках палочек. Около пятнадцати лет назад было обнаружено, что галофильные, то есть соленолюбивые, бактерии содержат в своей оболочке (мембране) белок, весьма сходный с родопсином. Его и назвали бактериородопсином.
Но зачем галофильным бактериям оветочувстви» тельный белок? Оказалось, что он представляет собой некий насос, поглощающий кванты света и благодаря перекачиванию водорода сквозь клеточную мембрану запасающий энергию в виде все той же АТФ, в дальнейшем используемую для обмена веществ, движения, размножения — для жизни. Это первый известный науке случай непосредственной утилизации солнечного света живыми существами, не содержащими хлорофилла — светочувствительного белка высших растений и синезеленых водорослей.
Бактериородопсин оказался чрезвычайно интересным белком. Прежде всего тем, что это природная солнечная батарея, генератор ионных токов. В связи с этим весьма вероятно использование его в будущих гелиотехнических устройствах, скажем, для опреснения воды. Кстати сказать, галофильные бактерии живут в соленых озерах Средней Азии, в Мертвом море, в пересыхающих тропических лагунах.
Вместе с тем этот устойчивый к различным внешним воздействиям белок, сохраняющий свои свойства даже в высушенной пленке, обратимо меняет свою окраску под действием света. Отсюда вполне понятная мысль: создать на основе бактериородопсина фотохромные материалы с высочайшей разрешающей способностью. Полимерные пленки с включенным в них бактериальным светочувствительным белком могут выдержать очень много циклов записи и стирания оптической информации. Сейчас такие материалы, используемые в качестве элементов памяти в ЭВМ новых поколений, разрабатываются в институтах Академии наук СССР.
Таким образом, биотехнология — это новый этап синтеза современных биологических знаний и технологического опыта. Возникнув на стыке различных направлений — микробиологии, биохимии и биофизики, генетики и цитологии, биоорганической химии и молекулярной биологии, иммунологии и молекулярной генетики, — базируясь на достижениях фундаментальных исследований, биотехнология, в свою очередь, ставит новые сложные задачи перед фундаментальной наукой.
Биотехнология — триумф знаний, победный результат многолетней борьбы науки за бережное и рациональное отношение к природе. Познание мира — лишь первая задача человеческой мысли. Знание обязательно должно иметь своим результатом конструктивное улучшение мира.
Евгений Павлович Велихов, вице — президент АН СССР, заместитель директора Института атомной энергии имени И. В. Курчатова, Герой Социалистического Труда, лауреат Ленинской и Государственной премий.
Говорят, количество со временем переходит в качество, и нигде эта истина не подтвердилась так ярко и полно, как в случае с электронно-вычислительными машинами. С тех пор как ученые и инженеры ухитрились уменьшить их размеры в десятки тысяч раз, ЭВМ сделались такими компактными, что перестали быть достоянием только крупных учреждений. Вторгаясь в нашу жизнь, микропроцессоры обещают реформировать все ее области, от производственной до бытовой.
— Нашим детям предстоит обживать мир, предельно насыщенный сложной, «интеллектуальной» техникой. Насколько близко такое будущее к нашим дням?
— Оно уже наступило! И в основе грандиозного технического переворота, оказавшего влияние буквально на все стороны жизни современного общества, — кремниевая пластинка, площадь которой не превышает половины квадратного сантиметра. Поразительны темпы этого обновляющего процесса. Микроэлектроника заявила о себе в начале шестидесятых годов, а уже в начале восьмидесятых завоевала мир. Приятно сознавать, что к микроэлектронной революции прямо причастна наука, которой я занимаюсь. Именно фундаментальные исследования в области физики твердого тела сделали эту революцию реальной. Современные компьютеры по сравнению со своими «предками» в 300 тысяч раз меньше по размеру, но работают в 10 тысяч раз быстрее, при этом более наделены, а энергии потребляют значительно меньше. И самое главное, нынешние компьютеры стали относительно дешевыми. В расчете на одну условную единицу проводимых операций их цена за последнюю четверть века снизилась в 100 тысяч раз!
Микроэлектронное производство не нуждается в большом количестве дорогостоящего сырья и энергии, не загрязняет окружающую среду, а выпускаемые приборы, становясь с каждым днем миниатюрнее и дешевле, приобретают универсальность. Уже в ближайшие годы микрокомпьютер станет столь же необходимой и привычной деталью повседневного обихода, как, скажем, телефон или телевизор. И пока только человеческое воображение ограничивает область применения ЭВМ. По мнению многих исследователей, нынешняя микроэлектронная революция увеличивает мощь нашего интеллекта, подобно тому, как промышленная революция умножила силу наших мускулов.
— В каких областях скажется, на ваш взгляд, прогресс микроэлектроники?
— Прежде всего, конечно, в общественном производстве.
Мы много внимания уделяем тем выгодам, которые дает внедрение станков с числовым программным управлением или специальных обрабатывающих центров. Но ведь их появление сразу меняет сам характер труда обслуживающего персонала. К примеру, работа станочника сводится лишь к контролю за работой автоматизированного оборудования. А какие горизонты творчества открывает компьютер перед конструктором! Раньше он, создавая, допустим, новый автомобиль, вручную, медленно и не без ошибок воспроизводил сначала его образ, модель. Теперь он уже на первом этапе автоматизированного проектирования может перебрать большое количество вариантов. Когда начнется детализация, то есть разработка отдельных частей, узлов — от двигателя до кузова, — то компьютер всю конструкцию будет поддерживать в заданных размерах. Не позволит, скажем, сделать подвески шире кузова. А это огромный труд — непрерывное увязывание всех деталей в одно целое. Такой труд берет на себя вычислительная система. Она же потом проверит и расчеты, и готовое изделие на точность и прочность, в различных взаимосвязях, чрезвычайных ситуациях.
Сейчас ученые Академии наук и МГУ помогают по-новому проектировать модели машин на заводе имени И. А. Лихачева.
Воплощается в конкретное дело исследовательская мысль, практически реализуются наши идеи. И не только в модели ЗИЛ-133, но и в системе управления всем огромным производством.
Сегодня повсеместно возрастает потребность в специалистах высшей квалификации. Прежде всего требуются инженеры по эксплуатации микроэлектронного оборудования, специалисты в области программного обеспечения, автоматической обработки данных.
— А как будет проходить микроэлектронная революция?
— Вскоре мы начнем считать компьютеры на миллионы. У нас есть для этого все технические возможности. Надо лишь четко продумать организационную сторону дела. Важнейшее требование при этом — стандартизация выпускаемой продукции. Нельзя ставить на поток тысячи типов компьютеров!
Кроме того, требуется высочайшее качество, надежность электронно-вычислительной техники. Можно на 99 процентов сделать вещь хорошо, а недоделка на оставшийся один процент сведет весь труд на нет. То есть организация строжайшего контроля за качеством — гарантия эффективного использования компьютеров. Вместе с тем нужна и большая доля свободы в разработке новых средств автоматизации. Микроэлектроника развивается столь быстро, что самая совершенная новинка за два-три года устаревает. Здесь нужен некий «момент-человек». Едва он придумал что— то — сразу же ему создать все условия для воплощения идеи, что называется, в металл, перебросив его на завод или создав небольшую производственную группу. Словом, обеспечить динамизм внедрения. Надо добиваться компьютерной грамотности в порядке всеобуча, как говорят, от рабочего до министра. Прав академик А. Ершов, считающий, что всем нам необходима эта вторая грамотность. Я бы добавил: вскоре у человека будет одним другом больше. Компьютер станет действенным помощником во всех наших делах. Особенно примечательны в этом отношении персональные компьютеры, мощность которых стремительно растет: через каждые два года удваивается! Персональный компьютер не просто подсказчик или наставник, который проверит ваши знания, оценив, правильно или неправильно вы ответили на конкретные, жестко сформулированные вопросы. Это инструмент творчества, развивающий вас, поощряющий ваши поиски…
Вот компьютер в школе — он должен учить учиться, работать на всех уроках и даже вне их. Почему бы компьютерному кабинету, который будет в каждой школе (мы постараемся, чтобы это произошло как можно быстрее), не взять на себя обработку, допустим, сельскохозяйственной информации? Известно, что в любом колхозе одно поле отличается от другого. Чтобы добиться максимальной продуктивности угодий, надо иметь точные сведения и соотнести их, взаимосвязан. Без такой корреляции трудно рассчитывать на успех, а установить ее поможет вычислительная техника, в том числе компьютер из будущего школьного кабинета.
Грандиозная перестройка во всех этих направлениях у нас уже идет. Всем следует глубоко осознать, что эра компьютеров уже наступила и выдвинула свои требования к каждому из нас.
— Облегчит ли информатика научный поиск? Что даст науке широкое использование электронно-вычислительной техники?
— Начнем с того, что сегодня просто невозможно без них проводить исследования, кроме, быть может, самых абстрактных. Огромная память и быстродействие ЭВМ позволяют в десятки раз ускорить получение результатов. Кроме того, электронно-вычислительная техника — незаменимый помощник исследователя и в самом проведении экспериментов. Открытие новых частиц в физике высоких энергий, создание искусственных генов, получение кормового белка и масса других достижений науки стали возможными благодаря тому, что ученые вооружились этой совершенной техникой. Если раньше эксперимент длился несколько дней или недель, а обработка полученных данных растягивалась на месяцы и даже годы, то компьютер позволяет получить конечный результат почти сразу после завершения опыта.
Персональный компьютер с набором вспомогательного оборудования и программ — мощное средство интенсификации научного поиска, но если его ресурсы окажутся недостаточными для решения поставленной задачи, то можно по системе телекоммуникации подключиться к «мозгу» большой ЭВМ, как бы почерпнуть дополнительные знания и силы. Вдобавок, персональный компьютер позволяет исследователю полностью менять ход вычислений, то есть не регламентирует творческий поиск. Однако новая техника выдвигает и некоторые требования перед исследователем. Он должен научиться более четко организовывать свою работу, «алгоритмизировать» свои размышления, с максимальным эффектом использовать «умную электронику»…
— А как скажется появление микроэлектронных устройств на самом «предмете» информатики — накоплении, хранении и переработке информации?
— Традиционный носитель информации — книга. Хранилище для 10 миллионов томов — это хорошая национальная библиотека. Давайте подсчитаем: для библиотеки в 10 миллионов томов потребуется всего лишь сто пластинок. Их можно будет постоянно иметь «под рукой» на полках домашней библиотеки, получая с помощью компьютера заключенную в них информацию. Точно так же компьютер может предоставить запрошенную информацию на рабочее место, связавшись с банком данных через информационную сеть.
Современные компьютеры уже могут прочесть книгу вслух — точно и отчетливо, даже воспроизвести интонации и модуляции человеческого голоса. Со временем человек сможет продиктовать компьютеру самые сложные тексты и получить их в отпечатанном виде, с правильно расставленными знаками препинания, без орфографических ошибок и опечаток. Кстати, бумажное делопроизводство в самое ближайшее время, на наших глазах совершенно преобразится благодаря таким средствам, как электронная почта, телекопирование документов, а огромное число конторских служащих освободится для более интересного и производительного труда.
Коренным образом изменится и работа средств массовой информации. Компьютер будет записывать нужную информацию, передающуюся круглые сутки, а каждый из, нас сможет с помощью того же компьютера прослушивать ее в удобное для себя время.
Но главное, конечно, информационная служба на производстве. Как ею обеспечить, к примеру, инженерный труд? ЭВМ сегодня накапливает информацию о всех технических проектах, устраняя повторы соответствующих расчетов. Опыт такого использования компьютеров в самолетостроении, электронике, автомобилестроении показал, что общие расходы на научно— техническую подготовку производства сокращаются на 40 процентов, не говоря уже о сжатых сроках исследований.
— Что вы считаете сегодня самым важным для ускорения научно-технического прогресса?
— Я уже касался проблем компьютерного образования. Повторяю: учиться предстоит всем — от академика до школьника. Причем, как понимаете, основные заботы и надежды приходятся на детей… Именно их нужно готовить для жизни в «информационном обществе XXI века», до наступления которого остались считанные годы. Электронные игры в детском саду, овладение первыми навыками работы с компьютером в средней школе — все это надо тщательно продумать и энергично осуществить. И нужно, по-моему, обращать основное внимание на то, чтобы выработать у ребят потребность в постоянном самообразовании, привить им умение грамотно и быстро находить нужные сведения, привычку искать и «пускать в дело» ценную информацию. Ведь, возможно, уже в ближайшие десятилетия коренным образом изменится «трудовой цикл» человека. Получив образование и проработав несколько лет, он вынужден будет оставить свое рабочее место или даже изменить профессию, вновьусаживаясь на студенческую скамью. Непрерывная учеба станет нормой нашей жизни. Бесспорно, это нелегко. Но другой возможности нет, если не просто мечтать о будущем, а деятельно приближать его.
Беседу вел журналист А. М.ЛЕПИХОВ
Борис Евгеньевич Патон, президент АН УССР, директор Института электросварки АН УССР, дважды Герой Социалистического Труда, лауреат Ленинской и Государственной премий.
Институт электросварки АН УССР славится на всю страну своей научной продуктивностью. Разработки этого коллектива не задерживаются в стенах его лабораторий, а быстро и широко внедряются в практику промышленного производства, многократно повышая производительность труда рабочих. Высокие принципыи традиции основателя института Е. О. Патона продолжены и укреплены его последователями.
— Еще недавно спорили: что важнее — фундаментальные или прикладные исследования?…
— Прогресс — лучший судья и свидетель. Все революционные изменения в технике, технологии и экономике рождаются на основе фундаментальных исследований. Помните, знаменитая книга Евклида называется «Начала». Фундаментальные исследования и есть то самое начало, на котором возводится все здание науки. Раньше проходили десяти, а то и сотни лет, пока открытая истина обретала конкретное воплощение. Теперь же ученый, занимаясь фундаментальными разработками, как правило, должен ясно представлять возможности их практического использования. Более того, практика сама сегодня подсказывает наиболее важное направление научного поиска. Именно такие исследования — целенаправленные, фундаментальные — мы стремимся развивать в Академии наук Украины. Фундаментальные по сути, они конечным своим результатом имеют решение конкретных народнохозяйственных проблем. Возьмем, к примеру, физику низких температур, интереснейшее и перспективнейшее ее направление — сверхпроводимость. Здесь — фундаментальные исследования должны привести к результатам огромной значимости не только для самой науки, но и для народного хозяйства. Овладев секретами сверхпроводимости при температурах выше криогенных, можно было бы значительно уменьшить энергопотери в электрооборудовании. И не только это. Удалось бы высвободить для хозяйственных нужд так называемые площади отчуждения, занятые линиями электропередачи и равные территории некоторых государств, а также решить другие важные проблемы, которые ставит перед нами практика.
— Среди них одна из актуальнейших — снижение материалоемкости?
— Я бы даже сказал, одна из острейших. Уже сегодня достижения науки позволяют существенно уменьшить массу машин, механизмов, сооружений (громоздкое, тяжелое оборудование к тому же неконкурентоспособно на мировом рынке), улучшить их эксплуатационные характеристики, отказаться в ряде случаев от дорогостоящих и большей частью дефицитных материалов, заменить их новыми, прогрессивными. В обозримой перспективе ведущее место в народном хозяйстве останется за металлами. Их производство нельзя бесконечно наращивать. Надо всемерно экономить металл, максимально снижать его потери.
— Вы говорили о новых материалах…
— Да, пластмассы, керамика… Они все смелее вторгаются в нашу жизнь, становятся привычными. За ними — будущее. Но по меньшей мере до середины третьего тысячелетия пальму первенства будут удерживать металлы. Область их применения продолжает непрерывно расширяться. Кроме того, они практически незаменимы там, где возникают (замечу, все чаще и чаще) экстремальные условия: огромные давления, очень низкие и высокие температуры, агрессивные среды, радиация и т. д. Не всякий материал такое вытерпит. У металлов есть и другие достоинства, Например, можно заранее их «запрограммировать», придать им новые качества, необходимые свойства. В решении одной из таких проблем нам помогли трещины.
— Трещины?
— Самые обычные. Правда, в газопроводах. Они страшнее любого ЧП. Родившись, хрупкая трещина со сверхзвуковой скоростью распространяется по трубе, разворачивает ее в почти ровный металлический лист. Таким образом разрушаются не десятки, не сотни метров газопровода — километры. В США зафиксирован своеобразный рекорд — 10 километров. Ученые дали меткое название этому явлению: лавинное разрушение.
— И невозможно укротить «строптивую»?
— Можно делать трубы из высокопрочных, холодоустойчивых и высоковязких сталей, что и практикуется в некоторых странах. Однако это не всегда лучший путь. Производство таких труб сложно, трудоемко и, что не менее важно, очень дорого. Оригинальное решение проблемы предложили ученые нашего института: «гасить» трещины с помощью ловушек из многослойных материалов, ввариваемых в газопровод. Трещина, попадая в такие ловушки, не распространяется дальше. Эта разработка послужила началом исследований, направленных на создание и широкое использование нового класса композиционных материалов. Один из них, названный армированным квазимонолитным материалом, уже нашел практическое применение, в частности, для изготовления платформ сорокатонных карьерных самосвалов. Он заменил дорогую легированную сталь. Платформы стали тоньше, надежнее и служат дольше. Эти исследования значительно расширили наши представления о металле, его возможностях.
— Нередко устоявшееся мнение о незыблемости тех или иных понятий, законов мешает развитию науки?
— Да, например, электрошлаковый переплав, открытый в свое время тоже в Институте электросварки… Испокон веков считалось, что сталь и шлак — враги. Не отделишь — считай пропало. А шлак оказался не то что другом — кудесником. Пройдя через него, металл становится лучше по всем качествам, словно Иванушка из «Конька-Горбунка» после купания в кипящем молоке. Сегодня электрошлаковый переплав — целое семейство технологий, недавно пополнившееся еще двумя «родственниками»: центробежным и кокильным литьем, которое позволяет эффективно использовать металлоотходы производства и получать изделия сложной формы с минимальными припусками на обработку. Или другой пример. Берем лист хрома и легко его сгибаем, хотя это и противоречит его природе. Полученный по новой технологии, он еще и не на такое способен. Кстати, эта технология особенно перспективна в космосе.
— В шестидесятые годы, когда ваш институтвпервыепредложил сварку на орбите, кое-кто не верил в успех.
— Нам тогда очень помог Генеральный конструктор академик Сергей Павлович Королев. Мы с ним часто обсуждали будущее космических технологий. К сожалению, Сергей Павлович не дожил до того дня, когда Валерий Кубасов на «Союзе-6» с помощью установки «Вулкан» впервые в мире провел космическую сварку.
На орбитальной станции, как и в любой исследовательской лаборатории, приходится не только проводить эксперименты и наблюдения, но также монтировать и налаживать оборудование, ремонтировать вышедшие из строя установки, узлы станции. Причем не только внутри, но и за ее пределами — в открытом космосе. Для этого нужен инструмент, позволяющий в сложных и порой необычных условиях выполнять сразу несколько технических операций. Светлане Савицкой и Владимиру Джанибекову очень понравился универсальный ручной инструмент — УРИ, созданный в Институте электросварки. Он может резать, сваривать, паять, наносить покрытия в открытом космосе. Необходимость в выполнении таких работ может возникнуть в самых непредвиденных ситуациях. Помните, во время полета Валерия Рюмина и Владимира Ляхова вдруг обнаружилось, что за стыковочный узел зацепилась антенна радиотелескопа. Рюмину пришлось с ней повозиться. А был бы y него УРИ — вмиг бы электронным лучом перерезал тросик антенны.
— Какими, на Ваш взгляд, чертами и качествами должен обладать настоящий ученый?
— Прежде всего высоким профессионализмом, постоянным стремлением к самосовершенствованию, принципиальностью и честностью в отстаивании своих идей, убеждений. И конечно же, высокой гражданственностью, активной позицией в отношении новых прогрессивных перемен в обществе, обостренным чувством личной ответственности за судьбы человечества, всего мира. Свойства эти не рождаются вместе с человеком. Их нужно взрастить в себе, воспитать. Только самоотверженным трудом, преданностью делу можно добыть право быть в науке. В этом устремлении нельзя останавливаться, расслабляться. Победа коротка. Она свершилась и — уже вчерашний день. Нужно постоянно накапливать знания, опыт, чтобы реально оценивать созвучность своих планов и дел времени. Нужно всегда чувствовать себя молодым. Мой отец Евгений Оскарович — его имя носит наш институт — говорил, что в творческих вопросах молодость определяется не годом рождения, а умением всего себя отдавать труду, любимому занятию.
Наука не терпит лени. Ей ничто так не мешает, как дело, отложенное на завтра.
Беседу вел журналист П. Г.ПОЛОЖЕВЕЦ
Юрий Николаевич Денисюк, член корреспондент АН СССР, заведующий лабораторией Государственного оптического института лауреат Ленинской и Государственной премий.
Голография — «целостная запись» — это метод получения изображения объекта, основанный на интерференции волн. Ее предложил в 1948 году англичанин Д.Габордля ликвидации искажений электронного микроскопа. Советский ученый Ю.Денисюк ставил перед собой другую задачу: он стремился получить более совершенные, чем фотографии, объемные, цветные, неотличимые от самого объекта изображения. Появление лазеров открыло новые возможности перед голографией, обещая сделать ее универсальным средством регистрации информации.
В 1894 году Габриэль Липпман получил первые цветные фотографии. Принцип их был основан на интерференции. К фотоэмульсии, нанесенной на прозрачную пластинку, прижималось металлическое зеркало. При отражении света от зеркала возникала интерференционная картина, но только не между двумя пучками света, а между падающим и отраженным лучом. Максимумы (пучности) располагались в толщине эмульсии на расстояниях, равных половине длины волны. Фотопластинка подвергалась специальной обработке, чтобы черные зерна серебра стали блестящими и отражали свет. Такое слоистое полупрозрачное зеркало обладало одной особенностью: оно отражало свет лишь с той длиной волны, под действием которой образовалось. То есть из падающего белого света отражало красный свет там, где падал красный, синий там, где падал синий, и так далее. Получилась плоская цветная фотография. За эту работу в 1908 году Габриэлю Липпману была присуждена Нобелевская премия.
История работ Липпмана ярко иллюстрирует причудливый и странный характер выяснения истины в науке: Липпман фактически открыл один из частных эффектов голографии. Более того, он получил первое голографическое изображение — в инструкции по использованию своих пластинок он предупреждал, чтобы между зеркалом и эмульсией не попадались соринки, иначе их изображение зафиксируется на фотопластинке.
Вместе с тем Липпман мечтал о получении изображений, создающих полную иллюзию действительного объекта, и даже предложил метод их получения. Метод оказался несовершенным и не имел ничего общего с его же собственными работами по регистрации стоячих волн.
Занимаясь липпмановскими фотографиями, я подумал, нельзя ли рассматривать зеркало, прижатое к эмульсии, не как приспособление аппарата, а как объект, свойства которого в данный момент зафиксировались фотопластинкой. То есть на фотопластинке зафиксировался не предмет, на который был направлен фотоаппарат, а расположенное за нею зеркало вместе с отраженным в нем предметом.
А если зеркало — объект, то его можно исследовать — отодвигать, изменять, заменять на другой.
Поставив вместо плоского зеркала вогнутое, я обнаружил, что изображение, полученное на плоской пластинке, обладает всеми свойствами вогнутого зеркала, так же фокусирует свет, так же искажает отражение предметов. Так и была названа первая, опубликованная в 1961 году работа: «Об отображении оптических свойств объекта в волновом поле рассеянного им облучения».
Позже на фотопластинку был поставлен обычный предмет, и получилась первая обычная трехмерная голограмма.
До 1963 года голография была многообещающим ребенком науки. Дело в том, что для получения четкой голограммы и восстановления изображения был необходим когерентный свет. (Когерентность — это согласованность излучения, когда волны не только совпадают по длине, но и распространяются, выдерживая между собой постоянную разность фаз.) Если луч нес в себе свет с различной длиной волны, то максимумы и минимумы от волн с различной длиной налезали друг на друга, смешивались и голограммы не получались. До 60-х годов источники давали когерентный свет, достаточный для получения четкой интерференционной картины, лишь на расстоянии долей сантиметра. При помощи различных фильтров и приспособлений удавалось увеличить это расстояние (длину когерентности) до сантиметров, но объект, имеющий в глубину несколько сантиметров, уже не фиксировался на голограмме.
В начале 60-х годов появились мощные источники когерентного излучения — лазеры. Длина когерентности лазерного луча достигала нескольких метров.
В 1963 году сотрудники Мичиганского университета Эммент Лейтс и Юрис Упатниекс использовали лазер для получения голограмм. Сделанный ими голографический снимок обошел весь мир. Фотографы снимали с голограммы изображение шахматной доски с фигурами, наводя резкость на последние фигуры, на передний план с различных точек так, чтобы фигуры перекрывались, а потом все были видны. Иллюзия подлинной шахматной доски была безупречной. С этого момента и началось триумфальное шествие голографии в союзе с лазером по всем странам мира.
Едва ли не каждый день мы узнаем о новых применениях голографии. Но она изменяет не только методику научных исследований, но и наши понятия, представления о мире, делает их четче, нагляднее, проще.
С этой точки зрения интересно рассмотреть случаи, когда голография, даже не внося ничего нового в методику исследований, меняет роль и место понятий просто одним своим существованием.
Известны факты, когда даже значительные разрушения коры головного мозга не наносят ущерба памяти. Попытки объяснить их многократной записью информации выглядели очень неубедительно, потому что приводили к громоздким, неустойчивым и неработоспособным системам. Но вот появились голограммы, даже небольшой участок которых содержит информацию о всем объекте и в то же время отличается от любого другого. Если мы разрушим голограмму, сохранив лишь небольшую ее часть, то все равно сможем увидеть весь объект, только осматривать его придется не через широкое окно, а через небольшое отверстие.
Голограмма, как и человеческая память, наделена ассоциативными свойствами, то есть может восстановить изображение всего предмета по фрагменту. Только человек по части узнает и представляет весь предмет, а голограмма восстанавливает его изображение.
Появление модели процессов, абсолютно непонятных биологам, вызвало интерес к ассоциативности и устойчивости человеческой памяти.
Это сходство не осталось не замеченным специалистами по электронно-вычислительной технике. К сожалению, большинство из них увлеклось такими свойствами голограмм, как большая емкость, быстродействие, устойчивое сохранение информации при механических нарушениях, и мало уделяет внимания их ассоциативным свойствам.
Как работает ЭВМ? Числовой массив считывается с магнитной ленты и заносится в машину. Затем каждое число переносится в сумматор и там сравнивается с заданным признаком. При обработке больших массивов информации именно ввод и вывод сдерживают быстродействие ЭВМ.
На фотопластинке, особенно трехмерной, можно записать в голографическом виде очень большой массив информации, и не только в виде чисел. Но выборку необходимого элемента можно осуществить, не перебирая всего массива. Стоит только осветить голограмму лучом из соответствующей точки или поставить перед ней фрагмент, например, номер страницы, как мгновенно будет восстановлено искомое изображение.
Поставив несколько голограмм одну за другой так, чтобы изображение, считываемое с предыдущей, было признаком для последующей, мы можем реализовать выборку информации по самой сложной логической цепи, затратив на это время, нужное, чтобы свет прошел расстояние от первой пластинки до последней.
Такой набор голограмм будет одновременно и памятью, и программой, и ЭВМ.
Значительные трудности возникают, если по ходу действия над элементами информационных массивов производятся математические операции. Но дальнейшее изучение свойств восстановленного волнового фронта, разработка приспособленной к голографии системы кодирования со временем дадут возможность создать так называемый интегральный сумматор, который будет получать отдельный результат или общие характеристики всего числового массива (дисперсии, средние значения), не перебирая все его элементы. Уже первые результаты ведущихся в этом направлении исследований впечатляют, а значение конечной их цели трудно переоценить.
Это лишь одно из направлений, по которым развивается голография. Но есть и другое, не менее перспективное.
Пословица «Лучше раз увидеть, чем сто раз услышать» отражает не только житейский опыт, но и определенную особенность человеческого мышления. Восемьдесят пять процентов информации поступает в мозг через зрение, и он максимально приспособлен к обработке зрительных образов. Поэтому иногда очень важно видеть предмет или наблюдать за процессом.
Голограмму можно получить от любого волнового излучения. От радиоволн, от инфракрасного и ультрафиолетового света, от рентгеновского излучения и ультразвука. А восстановить волновой фронт можно в видимом свете и увидеть объект таким, каким видит его образовавшее голограмму излучение.
С помощью ультразвука можно получить объемное изображение внутренних органов человека и океанского дна. Антенна спутника, вращающегося вокруг Венеры, может одновременно принять радиоволны, идущие с Земли и отраженные поверхностью Венеры. Голограмма, переданная на Землю, позволит увидеть, что же скрывается за непроницаемой для глаз венерианской атмосферой. Голография делает видимыми движение горячих потоков воздуха, незаметные глазу вибрации.
Это перечень не возможностей голографии, а того, что она уже делает. Пока еще в редких лабораториях, но не сегодня завтра — в каждой, на многих заводах. Но особое влияние окажет она, проникнув в наш быт.
Достаточно на заднюю стенку ниши наклеить голограмму, восстанавливающую изображение перед собой, как в доме появится божественная Афродита или незабываемый профиль Нефертити. Не будет даже необходимости в нише. Если наклеить на плоскую стенку голограмму ниши со скульптурой, то непосвященного придется убеждать, что это плоская копия, а не укрытый стеклом оригинал. Тесные стены квартир раздвинутся за счет бесконечных перспектив понравившихся нам, естественных или созданных художниками, пейзажей. Как это повлияет на наши привычки, наш образ мыслей? Впишутся ли наши современные костюмы и стилизованная мебель в этот интерьер? Это вопросы уже не завтрашнего, а сегодняшнего дня, потому что такие голограммы могут появиться через месяцы, а дешевое, массовое их производство можно наладить через год или два.
Развитие голографии еще встречает технические трудности, но уже видны пути их преодоления. Голография не фантазия. Это реальность ближайшего будущего.
Олег Григорьевич Макаров, летчик-космонавт СССР, дважды ГеройСоветского Союза, совершил три космических полета — в 1973, 1973 и 1980 годах. Работает в конструкторском бюро, где создаются космические корабли и орбитальные станции.
С тех пор как 12 апреля 1961 года советский космонавт Ю. А. Гагарин совершил свой первый в истории беспримерный космический полет, Земля стала объектом пристального исследования из космоса. И этот взгляд со стороны позволил обнаружить множество таких особенностей в строении и жизни нашей планеты, каких никогда не смог бы обнаружить земной наблюдатель.
В истории космонавтики без труда можно проследить несколько этапов, на каждом из которых выделялись главные задачи. Вполне естественно, вначале первенствовали медико-биологические исследования, так как надо было ответить на главный вопрос: может ли человек жить и работать в космосе? Затем — астрофизические эксперименты и исследования планет Солнечной системы. Мы получили множество результатов, без которых нельзя разобраться в ее эволюции и в конечном счете реконструировать историю нашей родной планеты. Несколько позже в центре внимания оказались изучение природных ресурсов и контроль за состоянием окружающей среды. Таким образом, человек, выйдя в околоземное пространство, вновь обратил внимание на свою Землю и увидел ее как бы в новом ракурсе.
Тесная связь явлений, которыми занимаются геология, геофизика, геохимия, гидрология, океанология, метеорология и другие науки о Земле, заставляет нас подходить к изучению нашей планеты комплексно. Космическая техника и средства дистанционного зондирования помогают людям находить полезные ископаемые и пресную воду, оценивать их запасы и темпы расходования, определять степень загрязнения атмосферы и водоемов, следить за состоянием лесов и сельскохозяйственных угодий, собирать информацию о паводках и наводнениях, лесных пожарах и резких изменениях погоды. Сегодня поиск полезных ископаемых фактически начинается в космосе, где во время пилотируемых полетов фотографируется земная поверхность. Одно из преимуществ таких снимков состоит в том, что они охватывают одновременно к!уда большие территории, чем при фотографировании с самолета. Но дело не только в этом. Геологи получают принципиально новую информацию, поскольку с высоты 200–400 км появляется возможность вести поиск тех геологических структур, которые с очевидностью богаты минеральными ресурсами определенного вида. Так, наблюдения из космоса помогли обнаружить на Украине, в Поволжье, Западном Казахстане, Таджикистане ряд нефтегазоносных структур. В некоторых из них уже ведется добыча нефти и газа. По космическим снимкам Урала, Зауралья и восточной окраины Русской платформы — района, который изучался геологами многие десятилетия, — выявлено около тысячи разломов земной коры. И только тогда ученые поняли, почему полезные ископаемые здесь располагаются своеобразными «кустами»: большинство месторождений металлов, нефти, газа, угля, каменной соли как раз и находится в зоне разломов. И теперь специалисты, используя космические, геофизические, геологические и другие данные и опираясь на всю совокупность «сигналов» о присутствии полезного ископаемого, могут гораздо точнее, чем раньше, характеризовать отдельные участки района.
В нашей стране создана космотектоническая карта Большого Кавказа, которая уже позволила повысить эффективность геологоразведочных работ на территории всех республик Закавказья.
Как часто говорят ученые, нет ничего более практичного, чем хорошая научная теория. И в самом деле, мы не раз убеждались, что сколь бы абстрактными и на первый взгляд оторванными от жизни ни казались работы ученых, рано или поздно они начинают служить практическим нуждам людей. Так случилось и с космонавтикой, которая теперь начала щедро «выплачивать проценты» на вложенный в нее капитал.
Телевизионные камеры, ведущие наблюдения поверхности, атмосферы и облачного покрова Земли из космоса, стали незаменимым метеорологическим прибором. Запуск одного метеоспутника стоит недешево. Но если полученная таким образом информация позволяет сделать надежный прогноз погоды, скажем, на пять суток вперед, то и экономический эффект оказывается значительным.
Советские спутники типа «Метеор» — составная часть большой метеорологической системы, в которую входят, помимо них, наземный комплекс приема, обработки и распространения информации, служба контроля бортовых систем и управления ими. Прогноз погоды, который мы ежедневно узнаем из телевизионных программ или газет, основывается на данных, переданных со спутников и собранных наземными метеостанциями.
Без космических средств сегодня нельзя обойтись и при организации массового телевизионного вещания. Уже два десятилетия эксплуатируется спутниковая система «Орбита», и жители многих районов нашей страны могут смотреть передачи Центрального телевидения одновременно с москвичами. Замечу, что эта система многоцелевая: она используется не только для передач телевизионных программ, но и для радиовещания, телефонных переговоров, фототелеграфного обмена, приема газетных полос. Обеспечивают ретрансляцию через космос спутники «Молния», выводимые на высокоэллиптические орбиты, и «Радуга», движущиеся в плоскости экватора синхронно с вращением Земли и поэтому «висящие» неподвижно над определенной точкой земной поверхности (геостационарная орбита). Три таких геостационарных спутника, разнесенных по долготе на 120° относительно друг друга, дают возможность создать практически глобальную систему телевидения и связи.
Можно предположить, что через небольшое время малогабаритные приемно-передающие устройства размером с наручные часы будут у каждого. Вы нажмете несколько кнопок и услышите голос (а то и увидите) нужного вам человека.
В последнее десятилетие в микроэлектронике произошла настоящая революция, все последствия которой мы еще только начинаем осознавать. Не за горами то время, когда микрокомпьютер станет таким же неотъемлемым элементом нашего окружения, как часы, телефон или телевизор. Но какое же, собственно, отношение все это имеет к космонавтике? Оказывается, самое прямое.
Благодаря космической технике появляется возможность уже в ближайшем будущем создать единую информационную систему страны, а может быть, и всей планеты. С помощью спутниковой, кабельной и радиоволновой связи миллионы индивидуальных компьютеров могут быть объединены в единый комплекс. А это означает, что наша жизнь может существенно измениться. Простой пример. Любому из нас станут легкодоступными фонды крупнейших книгохранилищ страны. И это уже не фантазия. Если для записи информации, которая содержится в 10 миллионах книг, хранящихся, скажем, в Библиотеке СССР имени В. И. Ленина, использовать современные средства памяти, то всю эту электронную библиотеку можно разместить в обычном книжном шкафу.
Космонавтике по силам внести свой вклад и в решение энергетической проблемы. Уже на борту третьего советского искусственного спутника работали кремниевые солнечные элементы — первые фотоэлектрические преобразователи солнечной энергии, вынесенные в космос. В дальнейшем при выполнении космических программ по исследованию Луны, Венеры, Марса КПД солнечных батарей был повышен до 11–12 процентов в космических условиях и 15 процентов в наземных (характеристики таких элементов ухудшаются под воздействием протонов и электронов низких энергий, в частности, в околоземном пространстве). Как считают специалисты, применение сложных полупроводниковых структур позволит довести КПД до 30 процентов.
Совершенствование солнечных элементов продолжается, и это позволяет нам надеяться, что со временем на геостационарных орбитах появятся космические электростанции, с которых преобразованная солнечная энергия в сверхвысокочастотном диапазоне будет передаваться на Землю. Проекты таких гигантских сооружений, удаленных от Земли на десятки тысяч километров, уже существуют. Их фотоэлектрические «щиты» или «ковры» могут собирать солнечную энергию почти 24 часа в сутки.
В самые последние годы появились проекты, в которых космические электростанции (КЭС) выглядят несколько по-другому. Их «сместили» с относительно низких околоземных орбит (около 40 тысяч километров) на околосолнечные, расположенные в районе орбиты Меркурия или даже еще ближе к Солнцу. Основание разумное: на орбите Меркурия мощность потока солнечной энергии выше в 6 раз, чем около Земли. Ну а если КЭС «соорудить» на расстоянии 15 миллионов километров от Солнца, то на нее буквально «обрушится» поток энергии: его мощность будет уже в 100 раз больше. В таком случае солнечная батарея может иметь площадь в 100 раз меньшую, чем у станции такой же мощности, находящейся на геостационарной орбите.
Собирать такие конструкции — прочные, легкие и термостойкие — придется, вероятно, непосредственно в космосе из заготовок, доставленных с Земли. А это значит, что в будущем там появятся крупные производственные и сборочно-монтажные комплексы, и одной из самых массовых на орбите станет профессия космического монтажника.
Современная космическая техника еще не достигла того уровня, который бы позволял смонтировать в космосе десятки квадратных километров фотобатарей. Однако само по себе изучение проблемы может привести к чрезвычайно важным и полезным здесь, на Земле, открытиям. Я имею в виду поиск экономически перспективных способов, позволяющих эффективно преобразовать электрическую энергию в СВЧ-излучение и СВЧ-излучение — в промышленный ток. Представьте себе на минуту, что во всем мире исчезли линии электропередачи.
Разумеется, чтобы космические электростанции стали реальностью, нужно решить множество сложнейших технических задач. Но специалисты убеждены, что над этой проблемой стоит поработать,
А почему бы нам не подумать о создании космических солнечных отражателей? Зачем они нужны? Вот что думает по этому поводу один из тех, кто разрабатывает эту идею: «Зеркало на орбите ИСЗ может осветить большие районы в темное время, например, во время полярной ночи… Лучшая видимость снизит число транспортных аварий. Освещение, создаваемое спутниками, может быть весьма полезно при освоении новых районов и поисковых работах при кораблекрушениях или после стихийных бедствий. Оно может содействовать лучшему развитию светолюбивых растений и повышению урожайности».
Расчеты показывают: чтобы в ночное время при наличии облачности получить нормальное освещение, нужно на достаточно высокую орбиту поместить зеркало площадью 20–50 квадратных километров. Если использовать более низкие орбиты, то, с одной стороны, придется уже создавать целую систему из 6-10 зеркал, непрерывно сменяющих друг друга, а с другой, площадь каждого из них может быть уменьшена всего до 0,3–0,7 квадратного километра.
Запасы экологически чистой солнечной энергии неистощимы, но использовать ее для удовлетворения энергетических потребностей человечества, по-видимому, без помощи космонавтики не удается. Решение только одной этой грандиозной задачи оправдало бы все расходы на космические эксперименты.
А ведь есть еще, например, космическая технология. Сейчас много говорят об орбитальных заводах будущего. До их создания, конечно, пока далеко. Однако уже сегодня кое-что из добытого в космосе помогает нам совершенствовать земную технологию.
Мы все должны осознать, что человечество — экипаж одного космического корабля.
Я уверен, что космические путешествия будут приносить благо и только благо человечеству и они, как мечтал К. Э. Циолковский, дадут обществу горы хлеба и бездну могущества, но при условии, что над всем человечеством будет простираться мирный и только мирный космос.
Олег Георгиевич Газенко, директор Института медико-биологических проблем, лауреат Государственной премии.
Сто лет назад, мечтая о космических путешествиях, К. Э. Циолковский указывал, что необходимо выяснить действие невесомости на состояние и функционирование человеческого организма. Ответить на все возникающие вопросы и призвана современная космическая медицина. От полета к полету накапливая ценную информацию, биологи и медики готовят основу для новых, все более сложных и длительных космических экспериментов.
«Лицом к лицу» человек и космос встретились всего четверть века назад, когда первый землянин Юрий Гагарин, преодолев путы земного тяготения, сделал свой шаг во Вселенную. И… задал тем самым науке множество загадок. Сотни лет медики изучали человека, особенности его физиологии. Но оказалось, что все эти знания далеко не полные, что в нас самих много еще не открытых «белых пятен». Человек столкнулся с невесомостью — средой для себя непривычной. Оказалось, что он может к ней приспособиться.
Люди, совершающие космический полет, успешно адаптируются к новым условиям, работают в космосе с высокой эффективностью. А по прибытии на Землю довольно быстро обретают свою привычную форму. Таким образом, исследования человека в космосе расширили наши знания о возможностях человеческого организма. А что еще, кроме невесомости, может повлиять на человека в полете? Как найти способы и средства, которые могли бы полностью обезопасить космонавтов от заболеваний? На эти вопросы ищет ответы космическая медицина.
От медицины обычной она отличается тем, что пациенты ее — люди не больные, а отменно здоровые — космонавты. А ведь исторически врачи всегда занимались болезнями людей. Поэтому в современной медицине знаний о различных заболеваниях, их причинах, течении, способах лечения больше, чем сведений о… здоровом человеке. Медицинское обследование космонавтов не только помогает обеспечивать четкую работу на орбите. Оно позволяет нам лучше понять физиологию здорового человека, расширить наше понимание о здоровье вообще и способах его поддержания. Так космическая медицина помогает развитию медицины земной, обогащает ее своими результатами.
Кроме того, космическая медицина потребовала создания специальных инструментов и приборов — миниатюрных, легких, с низкой энергопотребляемостью. Именно такими приборами сегодня оснащены «медпункты» «Салютов». Такие же требования предъявляются сегодня к качеству современной медицинской техники на Земле.
Космическая медицина научила землян и новым методам диагностики. Наблюдения за состоянием космонавтов ведутся на Земле, а все данные передаются с помощью аппаратуры из космоса. Почему бы не использовать этот опыт на самой планете? Например, врач-консультант, находящийся в Москве, может установить диагноз заболевания у пациента, работающего в Антарктиде. Создаются специальные автобусы, оборудованные всевозможными медицинскими приборами, которые будут приезжать к людям, находящимся по роду своей деятельности далеко от поликлиник. Это нефтяники, лесорубы, оленеводы. В «поликлинике на колесах» будет проводиться обследование населения, а полученная информация обрабатываться электронно— вычислительными машинами и затем поступать в клинические специализированные центры для анализа высококвалифицированными специалистами. Это поможет выявить многие заболевания до их видимого проявления.
В будущем человек непременно начнет летать к другим планетам. Где-нибудь в начале следующего века, вероятно, будет совершена экспедиция к Марсу. Эта планета наиболее интересна для нас. И теоретически полет к ней вполне реален. Предстоит, конечно, решить немало технических проблем, чтобы этот полет был не слишком дорогим, надежным и эффективным. Представляете, человек своими глазами увидит Марс! Автоматы уже побывали н Луне, Венере, Марсе. Но автомат работает по заданной ему жесткой программе. Изменить ее почти невозможно. Поэтому «знания», добытые автоматами, никогда не заменят человеческого восприятия и понимания увиденного во Вселенной. Всегда будет нужен именно «человеческий взгляд» на окружающий мир.
Такие полеты предъявят, несомненно, и новые требования к космическим кораблям. Какими они могут быть? Одни конструкторы предполагают, что нужно создавать вращающиеся космические системы. Обитаемые отсеки будут находиться на большом расстоянии от центра вращения. Тогда центробежные силы будут имитировать действие силы земного тяготения. Но подобная космическая система не позволит осуществить строгую ориентацию на какой-либо объект в космосе. Поэтому есть необходимость в создании систем стабилизированных, не вращающихся, с условиями микрогравитации. Но тогда останется невесомость. А стоит ли нам так ее бояться? Советские космонавты могут сегодня работать в условиях невесомости более двухсот суток. С помощью специальных мер профилактики организм человека успешно противостоит действию длительной невесомости. Не исключено, что можно будет строить космические системы без создания на них условий гравитации.
Космонавт — профессия, родившаяся в нашем столетии. Но устремлена она, конечно, в будущее. Кто встанет в ряды завтрашних покорителей космоса, какие требования будет предъявлять к ним время? В космосе, на мой взгляд, будут работать специалист
ты двух типов. Космонавты-профессионалы, пилоты бортинженеры, которые обязаны организовывать выполнение тех или иных операций по осуществлению космического полета. С другой стороны, к работе в космосе станут привлекаться специалисты разных областей знаний: металлурги, биологи, геологи, представители других профессий. И главное, что потребуется от этих специалистов, — это глубокое знание своего предмета.
Никита Николаевич Моисеев, специалист в области общей механики и прикладной математики, заместитель директора Вычислительного центра АН СССР, лауреат Государственной премии.
Последовательно проводя политику укрепления мира и разоружения, Советское правительство не раз указывало мировой общественности на гибельные для всего живого последствия ракетно-ядерной войны. Но агрессивные милитаристские круги западных стран, прежде всего США, распространяли сведения, что нападающая сторона сможет избежать ущерба от применения ядерного оружия. Создав математическую модель земной атмосферы, советские ученые провели уникальный эксперимент «Гея», показавший: ракетно-ядерная война губительна для всей планеты. Победителей в ней не может быть.
Еще в начале XIX века в естествознании утвердился термин «биосфера», то есть сфера жизни: это и атмосфера, и океан, и все части земной поверхности, где утвердилась жизнь в любых ее формах. Проблемы возникновения и развития биосферы становятся важнейшим разделом естествознания. Одним из выдающихся ученых в этой области был академик Б. И. Вернадский.
Согласно его воззрениям весь лик Земли, все ее ландшафты, ее атмосфера, химический состав ее вод, вся толща осадочных пород — все это обязано своим происхождением жизни, прежде всего жизни! Если бы жизнь однажды не возникла на Земле, то наша планета, подобно Луне, не замечала бы уходящих миллионов и миллиардов лет, в течение которых на ее поверхности практически ничего не менялось бы. Жизнь, по Вернадскому, — это связующее звено между космосом и Землей, звено, которое, используя энергию, приходящую на Землю, трансформирует мертвое вещество, создает новые формы материального мира, в миллионы раз ускоряет все процессы, протекающие на Земле.
Обосновав общую схему эволюции верхней оболочки нашей планеты, В. И. Вернадский пришел к необходимости выяснить роль человека во всем этом процессе. Так родилось учение, которое через четверть века получило название «учения о ноосфере». Согласно этому учению появление на Земле человека многократно ускоряет все эволюционные процессы, темпы которых все возрастают. Дальнейшее неконтролируемое, ненаправляемое развитие деятельности людей таит в себе опасности. Неизбежно наступит время, когда дальнейшая эволюция планеты, а следовательно, и человеческого общества, должна направляться разумом. Биосфера должна будет постепенно превратиться в ноосферу — в сферу разума.
Диалектик и естествоиспытатель В. И. Вернадский хорошо понимал, что ничто на Земле не может быть стабильным, вечным, идеальным. Мир есть и будет соткан из противоречий. Человек всегда будет вмешиваться в окружающий его мир, устраивать его для себя. И задача науки, цель науки и человеческих действий не в том, чтобы сохранить мир в его первозданном виде, а найти гармоничные формы взаимодействия человека и биосферы. Биосфера может прожить без человека, человек существовать вне биосферы не может. Вступление человечества в эпоху ноосферы означает, что и эволюция Земли вошла в новое русло. Человек теперь способен очень легко переступить ту «роковую черту», ту грань, за которой начнутся необратимые процессы. Биосфера начнет переходить в новое состояние, и места для человека в ее новом состоянии может не оказаться. Вот почему человечество должно предвидеть результаты своих действий и знать, где лежит «запретная черта», отделяющая возможность дальнейшего развития цивилизации от ее более или менее быстрого угасания.
Важнейшая задача современной науки — создать инструмент, способный увидеть эту «запретную черту», этот рубеж, переступать который человечество не должно ни при каких обстоятельствах.
В Вычислительном центре Академии наук СССР мы пришли к выводу, что решение проблем глобального масштаба неизбежно потребует построения математической модели биосферы, рассматриваемой как единое целое.
Модель состояла из двух связанных между собой систем. Одна группа описывала процессы, происходящие в атмосфере и океане, и позволяла изучать явления климатического характера. Другая — круговорот углерода в природе с учетом жизнедеятельности растений. Понадобились помощь и советы многих научных организаций — Главной геофизической обсерватории, Института почвоведения, Института географии Академии наук СССР и многих других организаций, прежде чем была создана система «Гея», позволившая получить чрезвычайно интересные результаты.
Для первых экспериментов с системой «Гея» мы выбрали проблему увеличения концентрации углекислоты в атмосфере.
Этот вопрос не зря волнует ученых. Концентрация углекислоты за XX век существенно возросла. К концу первой четверти XXI века она еще удвоится. Это может заметно повысить среднюю температуру, что приведет к уменьшению перепада температур между экватором и полюсом. Средние температуры на экваторе практически не меняются. Изменения средних температур происходят за счет полярных зон.
А этот перепад — главный двигатель, благодаря которому происходит движение атмосферы, переносящее тепло от экваториальных зон к полярным. При его уменьшении циркуляция атмосферы делается более вялой, уменьшается влагоперенос. Значит, засушливые зоны становятся еще более засушливыми, продуктивность растительного мира падает…
Первый большой эксперимент, проведенный на модели «Гея» в Вычислительном центре Академии наук СССР, в основном подтвердил приведенные выше рассуждения. Математическая модель «Гея» превратилась в реальность. С ее помощью мы и приступили к исследованию климатических последствий ядерной войны.
Долгое время считалось, что ядерные взрывы действуют на атмосферу примерно так же, как вулканы. А поскольку даже наиболее сильные извержения, вроде взрыва вулкана Тамбора в Индонезии, выбросившие в атмосферу в 1815 году около 100 кубических километров пыли, не вызывали серьезных климатических изменений, считалось, что влияние ядерной войны на климат планеты не может быть значительным.
Однако проведенные исследования показали, что ядерная бомба может сыграть роль спички, которая зажжет пожары невиданной силы. Такие пылающие вихри получили название «огненных торнадо». Раз вспыхнув, они сами выделяют огромные, все увеличивающиеся количества энергии. И если приток кислорода достаточно интенсивен, то «огненные торнадо» прекратятся лишь тогда, когда выгорит все, что может гореть, — и металл, и железобетон, не говоря уже о дереве, пластмассе. При тепловом импульсе, превышающем 20 калорий на квадратный сантиметр, сгорает практически все.
Для мощных ядерных взрывов, как показали расчеты, «огненные торнадо» — обязательные спутники. Все это заставило ученых серьезно заняться проблемой пожаров.
В городах из-за высотных зданий образуется сильная тяга — как в хорошей печке с высокой трубой. В результате и вспыхивает «огненное торнадо». Количество сажи, которое поступит в атмосферу, если в огненном вихре сгорит большой город, способно породить такое плотное и густое облако, что под ним станет темнее, чем в самую безлунную ночь. А поскольку городов, которые в случае ядерной войны подвергнутся атаке, будет много, то можно ожидать, что последствия этих ядерных ударов окажутся поистине катастрофическими.
Стало ясно, что ядерный конфликт приведет к глобальной ядерной ночи, которая продлится около года. Компьютер показал: Землю окутает тьма. Сотни миллионов тонн грунта, поднятого в атмосферу, дымы континентальных пожаров — зола и, главным образом, сажа горящих городов и лесов сделают наше небо непроницаемым для солнечного света.
Пятна сажевых облаков постепенно сольются в одно целое, и через 1,5–2 месяца вся Земля окажется окутанной сплошным черным покрывалом, не пропускающим света. Уже в первые недели после ядерного взрыва средние температуры Северного полушария должны упасть на 15–20 °C ниже ординара. В отдельных местах, например, в Северной Европе, температура понизится на 30°, а на Восточном побережье США и в центральных районах Сибири — даже на 40–50 °C. Похолодание охватит также и южные районы. Так, в Саудовской Аравии к концу первого месяца после ядерной катастрофы температура упадет на 30 °C и более. В дальнейшем, когда образуются сплошные сажевые одеяла, похолодание распространится в Южное полушарие. В экваториальной зоне температура упадет на 15–20 °C. Похолодает даже в Антарктиде.
Произойдет полная перестройка всей атмосферной циркуляции. В Аравийской пустыне и Сахаре сделается так же холодно, как в Антарктике.
Черное покрывало сажи постепенно надвинется и на Южное полушарие. В Австралии, Южной Америке и Антарктиде также установится черная «ядерная ночь» и «ядерная зима». К началу третьего месяца после ядерной катастрофы черное покрывало сажи целиком окутает всю Землю.
На материках в экваториальной зоне (в тропических лесах Африки и амазонской сельве) всюду температуры будут отрицательными. Только в океане — в его экваториальной зоне и в средних широтах из-за огромной теплоемкости воды температура воздуха над поверхностью океана снизится лишь градусов на десять, а значит, останется положительной.
Постепенно сажа станет оседать, атмосфера начнет просветляться и прогреваться. Однако, поскольку обволакивающее Землю покрывало будет черным, оно, по-видимому, станет отражать значительно меньше солнечной энергии, чем Земля отражает в космос сейчас. Земля в целом получит больше солнечной энергии, но энергия эта начнет концентрироваться вверхних слоях атмосферы, там, где будет находиться черное покрывало.
После ядерной катастрофы верхние слои атмосферы (на границе тропосферы) разогреются до плюс 100 °C, а у поверхности Земли воцарятся глубокие отрицательные температуры.
При таком распределении температур атмосфера сделается гораздо более устойчивой, чем сейчас. Исчезнет конвективный перенос. Не будет облачности, а значит, и осадков, которые вымывают сажу. Оседать она будет только за счет силы тяжести.
Одновременно с просветлением начнется очень медленное прогревание атмосферы.
Первыми это прогревание почувствуют Гималаи и другие высочайшие горные хребты. Начнут таять ледники и вечные снега. Огромные массы воды станут низвергаться вниз — еще один катаклизм. Но он уже, наверное, будет происходить без свидетелей. Катастрофический процесс таяния захватит и Антарктиду, где гигантские ледники вздымаются на высоту до 5 километров.
Температура поверхности океана понизится сравнительно мало. Возникнет огромная разность температур между сушей и океаном и между воздухом и водой. Какие невиданные штормы это породит в прибрежных районах! Проведенные расчеты процессов в атмосфере и океане показывают, что и через год атмосфера не сможет просветлиться полностью. Будет ли вообще Земля пригодна для того, чтобы на ней смогли приютиться живые существа?
Проблема серьезного научного анализа последствий ядерной войны привлекла внимание ученых многих стран. И то понимание предмета, которое сейчас существует в мире, — это плод совместных усилий огромного международного коллектива ученых. Идея провести анализ климатических последствий ядерной войны родилась не только у нас в стране. Аналогичное исследование было проведено и в США.
Советские и американские специалисты, независимо друг от друга, работая с разными моделями, используя различные вычислительные средства, пришли к однозначному результату. Человечество имеет новое, основанное на точных научных данных представление о том, что его ожидает после ядерной войны. Поскольку на материках температуры практически всюду окажутся отрицательными, то все источники пресной воды замерзнут, а урожай на всем земном шаре погибнет. Радиация на огромных территориях превзойдет смертельную дозу. В этих условиях человечеству не выжить. Предположим, уцелеют группы людей, упрятавшихся в специальные бункеры, или обитатели отдельных маленьких островов в экваториальной зоне Мирового океана. Но и их дни в той пустыне, в которую превратится наша планета, будут, вероятно, сочтены. Как показывают расчеты, слой озона, поглощающий сегодня жесткое ультрафиолетовое излучение Солнца, будет почти уничтожен. Это еще одно дополнение к тому радиационному фону, который возникнет и который для всего живого, а особенно для человека, губителен.
Биосфера — я в этом уверен — сохранится и постепенно даст начало новому развитию. Но та биосфера, которая возникнет после ядерной войны, вряд ли будет пригодна для жизни человека. Во всяком случае, в первый миллион лет!
Таким образом, ядерный удар уже сам по себе несет возмездие. Кто бы ни нанес первый удар, в каком бы районе планеты это ни случилось, произошел бы ответный удар или нет, в любом случае никому не удастся пережить катастрофу. И того, кто нажмет кнопку пускового устройства, ждет такая же судьба, как и жителей городов, подвергшихся атаке.
Результаты советско-американских исследований, которые были доложены впервые в 1983 году на конференции «Мир после ядерной войны», кто-то назвал антиядерной бомбой.
Итак, ученые показали, что современная ядерная война грозит такими последствиями, которые человечество не в силах пережить. Создавшуюся в мире ситуацию точно определил академик Е. П. Велихов: «Теперь стало всем ясно, что ядерное оружие уже не инструмент политики и даже не инструмент войны. Это инструмент самоубийства».
Евгений Михайлович Сергеев, специалист в области инженерной геологии, грунтоведения и гидрогеологии, профессор Московского государственного университета имени М. В.Ломоносова,
Литосфера — это верхняя оболочка земного шара, включающая в себя 30-40-километровую толщу коры и примыкающие к ней горизонты верхней мантии. Это именно та часть нашей планеты, которая в нашем представлени и связывается с прочной и неподвижной земной твердью. Однако исследования геологов показали: литосфера, — опора всего сущего на Земле — уязвима и точно так же нуждается в защите, как пахотный слой, океаны, атмосфера, флора и фауна Земли.
Известный советский академик В. И. Вернадский писал: «… Впервые человек становится крупнейшей геологической силой. Меняется лик Земли, исчезает девственная природа». Эти прозорливые мысли были высказаны в 1944 году, когда население Земли перешло рубеж второго миллиарда. Сейчас эта цифра приближается к пяти миллиардам. Расчеты специалистов показывают, что при сохранении нынешних темпов роста к концу века нас станет шесть-семь миллиардов, а к середине будущего века народонаселение планеты еще удвоится. В. И. Вернадский назвал человека крупнейшей геологической силой не только потому, что народонаселение планеты неуклонно растет, но и потому, что постоянно будут расти ее научно— технические возможности.
Уже сегодня его хозяйственная деятельность влияет на ход вековых природных процессов. И это естественно. Человек не может не использовать в своих целях растительный и животный мир, не употреблять воду для питья, для полива земель, не может отказаться от строительства на земной поверхности и в недрах Земли. С каждым годом все больше ему нужно природного сырья, все сильнее он воздействует на окружающую среду. Следовательно, вывод только один: рационально использовать природные ресурсы, бережно относиться к земле.
Сейчас во всем мире уделяется много внимания борьбе с загрязнениями воздуха, пресноводных водоемов и акваторий Мирового океана, восстанавливается плодородие почв… Но лишь в последние годы было обращено внимание на состояние верхнего слоя земного шара — литосферы. Эта, казалось бы, такая надежная земная твердь, которая тысячелетия держит все сооруженное человеком и которая всегда была для нас символом устойчивости и постоянства, оказалась довольно хрупкой под натиском деятельности человека. Все возрастает добыча полезных ископаемых. Новые шахты, карьеры, рудники, нефтяные и газовые скважины во всем мире меняют лик Земли. Например, при добыче цветных металлов вокруг горнодобывающих предприятий ежегодно рассеиваются тысячи тонн меди, свинца, цинка. В результате меняется геохимический облик ландшафта. Изменяется растительный покров, нарушается водный баланс.
В нашей стране для охраны литосферы создано специальное подразделение, которое с самолетов, из космоса ведет наблюдения как над верхними слоями Земли, так и над более глубокими горизонтами.
Наиболее активное воздействие человек оказывает на приповерхностные слои. Строятся жилые массивы и крупные промышленные комплексы. А ведь каждое трех-пятиэтажное здание весит до 15 тысяч тонн, многоэтажные дома — примерно в 20 раз больше. Возводятся грандиозные гидротехнические сооружения: длина оросительных магистральных каналов только в нашей стране составляет 300 тысяч километров, это более чем три четверти расстояния от Земли до Луны. Густой сетью покрыли поверхность Земли автомобильные и железные дороги. Создаются искусственные подземные хранилища для нефти, газа, воды. В недрах захороняют промышленные отходы. Самая глубокая скважина в мире на Кольском полуострове преодолела глубину в 12 километров. Такая пока одна, но десятки скважин углубились на семь-восемь километров, тысячи достигли пятикилометровых отметок. В некоторых рудниках добыча ведется на глубине почти в четыре километра, есть угольные шахты, уходящие вглубь более чем на один километр.
При проведении горных и строительных работ в мире ежегодно перемещается такое количество различных горных пород, которое соизмеримо с объемом материала, переносимого всеми реками Земли. На огромных площадях образуется новый искусственный покров Земли. Все созданное человеком — городские и сельские строения, наземные коммуникации, горные разработки, водохранилища, сельскохозяйственные угодья — занимает около восьми процентов суши.
Результаты хозяйственной деятельности человека в последнее время начинают все интенсивнее проявляться и на больших малозаселенных пространствах. Например, там, где идет крупная добыча нефти, газа, забор артезианских вод, там земная поверхность может опуститься на больших площадях. А если они опустятся на несколько десятков сантиметров, начнется изменение природной среды в масштабах целого региона. Изменяются и гидросфера, и биосфера, и климатические условия.
Казалось бы, лишь тонкий слой в приземном пространстве испытывает воздействие инженерно-хозяйственной деятельности человека. Слой этот ничтожно мал по сравнению с глубинами земного шара, объемом атмосферы, беспредельностью космоса — он мал даже по сравнению с общей мощностью самой литосферы. Но изменения, которые происходят в верхних ее этажах, меняют привычный ход природных геологических процессов, вызывают прежде неизвестные явления.
Литосфера — минеральная основа биосферы. Все элементы внешней оболочки земного шара — горные породы, слагаемые ими массивы, формы рельефа, подземные воды, а также протекающие естественные геологические процессы и явления — все они взаимосвязаны и с атмосферой, и с гидросферой, и с растительным миром. Вот почему любые изменения в земной коре — природные или антропогенные — оказывают существенное влияние на все составные части природной среды и биосферы в целом. Бережно, рационально используя литосферу, мы тем самым предохраняем от вредных последствий и другие составные части природной среды. В идеальном варианте возводимое инженерное сооружение так удачно вписывается в природную обстановку, что не нарушает сложившегося в ней равновесия. Добиться этого чрезвычайно редко удается. Чаще всего строительство зданий, каналов, карьеров, тоннелей и других сооружений, вырубка лесов, орошение, распахивание целинных земель оказывают значительное воздействие на окружающую природу, меняют привычное течение, которое установилось там за тысячи лет, в худшую сторону.
Забота, ответственность за сохранность земной поверхности легли главным образом на одну из наук о Земле — инженерную геологию. Специалисты этой отрасли издавна готовят для проектировщиков и строителей данные о различных свойствах пород, о возможности возникновения нежелательных геологических процессов, дают рекомендации, как разместить жилые дома, производственные комплексы, гидротехнические сооружения. Указывают наиболее защищенные от стихийных бедствий места для жизни и работы людей.
Инженерная геология способна предвидеть возможные перемены на земной поверхности и в ее недрах.
… Площадь распространения вечной мерзлоты охватывает около четверти суши всего земного шара. В нашей стране она захватила почти половину территории.
Там, где тысячелетиями властвует мерзлота, посреди ровной площадки может неожиданно вырасти бугор пучения, иногда высотой до 12 метров. В Якутии их зовут «булгунняками», в Канаде и на Аляске «пинго». Бывает, что за год они вырастают на полмэтра.
При промерзании мелких речек сжатая льдом вода, вырываясь на поверхность, образует наледи. Они иногда распространяются на десятки квадратных километров, а в высоту могут достигать пяти метров. Еще пример: промерзание горных пород на склонах гор способствует их разрушению и образованию курумов — «каменных речек», которые медленно, но неуклонно стекают вниз.
Нетрудно представить, какие осложнения вызывают наледи или «каменные реки», выросшие там, где пролегли транспортные магистрали или коммуникации, что произойдет при строительстве и эксплуатации зданий, под которыми грунт начнет оттаивать и потечет…
Долгое время считалось, что вечная мерзлота — это враг хозяйственного освоения Севера и с ней надо «бороться». Познание законов, регулирующих существование вечномерзлых почв и горных пород, дает возможность сделать вечную мерзлоту союзником строителей, нефтяников, горняков… Надо научиться сохранять ее, и тогда северные стройки получат надежный фундамент для возведения любых сооружений.
И вот за Полярным кругом выросли поселки и большие города с современными многоэтажными домами, которые надежно служат уже не одно десятилетие. Изоляция построек от поверхности земли позволяет сохранять мерзлое состояние грунта под строениями, используя тем самым его высокую прочность.
После открытия первых нефтяных и газовых месторождений в Западной Сибири стало ясно, что здесь начнется строительство дорог, трубопроводов, линий электропередачи, поселков, городов, нефтегазодобывающих предприятий… Мощному инженерно-хозяйствен— ному воздействию должна была подвергнуться территория площадью 3,5 миллиона квадратных километров. В ее северной части развита многолетняя мерзлота, центральные районы с большим количеством озер сильно заболочены, а на юге распространены про— садочные лессовые породы.
Благодаря высотной аэрофотосъемке были получены «ландшафтные портреты» изучаемой площади. Исследовательский коллектив в течение нескольких лет составил инженерно-геологические карты для всей территории Западной Сибири. Проектировщики и строители получили указание, с какими трудностями им придется встретиться при освоении нефтяных и газовых месторождений.
Опыт строительства в районах вечной мерзлоты и на просадочных породах был уже накоплен. Но в Западной Сибири пришлось учиться строить и на болотах: в Тюменском крае гигантское болото Васюганье протянулось с запада на восток на 800 километров. Нами были изучены процессы заболачивания, особенности болотных отложений и подстилающих их пород, современные озерные осадки, разрабатывать новые методы их освоения. Это изучение помогло выбрать оптимальные варианты прокладки дорог, трубопроводов, сооружения нефтегазодобывающих предприятий. За эту работу группа специалистов была удостоена Государственной премии СССР. Подобные исследования теперь проводятся во многих районах.
Дальнейшее развитие инженерной геологии поможет вести великие стройки и добывать полезные ископаемые, не нарушая законов равновесия литосферы.
Алексей Алексеевич Созинов, академик АН УССР и ВАСХНИЛ, директор Института общей генетики имени Н. И. Вавилова АН СССР, президент украинского общества генетиков и селекционеров.
На протяжении столетий люди создавали новые сорта полезных растений, выводили новые породы скота путем кропотливого и длительного искусственного отбора. И только в наши дни появилась возможность буквально конструировать новые виды растений и животных, руководствуясь принципами и достижениями генетики.
Мне ближе всего биология, а конкретно — генетика, которая познает чрезвычайно сложные, удивительно совершенные механизмы передачи наследственной информации от поколения к поколению, ищет пути управления этими механизмами. Еще недавно эта сугубо теоретическая наука теперь реально помогает увеличивать производство продовольствия и сельскохозяйственного сырья, разрабатывать стратегию и тактику охраны природы, здоровья населения.
Основа сельского хозяйства — это растения, животные и микроорганизмы. В их совершенствовании кроются огромные, я бы сказал, невиданные до сих пор резервы. Более половины достигнутого за последние тридцать лет прироста урожая сельскохозяйственных культур получено благодаря новым сортам и гибридам. Только создание сортов озимой пшеницы «безостая-1» и «мироновская-808» в свое время дало 20-процентную прибавку урожая этой культуры.
Современное сельское хозяйство ставит перед генетикой и селекцией новые задачи. Повышение продуктивности и устойчивости земледелия зависит от интенсивных технологий. Однако при этом на полях создаются благоприятные условия не только для растений, но и для распространения агрессивных болезней и вредителей. Наиболее надежный выход — создание сортов с генетической, наследственной устойчивостью к болезням, и реальные возможности для решения этой задачи дают генетика и селекция.
Не менее острая проблема — получение высоких урожаев на низкоплодородных землях. В нашей стране обрабатывается более 80 миллионов гектаров засоленных и кислых почв. Мелиорация этих земель дает свои положительные результаты, но добиться ка них устойчивого повышения плодородия и запланированной урожайности не удается. Нужно проводить мелиорацию и создавать приспособленные к этим почвам растения. На создание таких сортов потребуются неизмеримо меньшие затраты, чем на химическую мелиорацию.
Селекция может и должна сыграть во многом определяющую роль в повышении качества урожая и, в частности, белка. Предстоит в короткие сроки создать сорта более устойчивые к засухе, низким температурам, гербицидам, обеспечив уменьшение расхода энергии для получения продукции.
Не менее важно совершенствование генетической природы животных и используемых в биотехнологическом производстве микроорганизмов.
Но традиционными методами создать по существу новые поколения растений, животных и микроорганизмов нельзя. Нужны качественно новые подходы к управлению наследственностью.
В лабораториях мира уже создается научная основа для радикальных, даже революционных изменений в важнейших областях сельскохозяйственного производства и охраны природы. Человек проник в сокровенные тайны механизмов наследственности и более того — научился перестраивать передаваемый по наследству, образно говоря, главный чертеж, по которому строится организм. Мы уже можем переносить гены из бактерий высшим организмам и, наоборот, заставлять функционировать гены растений, животных и даже человека в бактериях, создавать генные конструкции, которых никогда не существовало в природе, получать целые растения из рядовой соматической клетки.
На протяжении жизни одного поколения мы видели, как несколько событий такого же масштаба породила физика — становление атомной энергетики, освоение космоса, компьютеризацию и микроэлектронику. На пороге подобных открытий стоит и биология, в частности, генетика. Готовы ли мы к этому?
В нашей стране созданы научные коллективы, где развиваются новейшие направления биологии и генетики, получен ряд результатов мирового уровня. Так, за последние два года учеными Академии наук СССР в содружестве с другими коллективами методами генетической инженерии разработана биотехнология получения ценнейших лекарственных препаратов — интерферонов, гормона роста человека и животных, вакцин против тяжелых заболеваний, созданы эффективные биотехнологические процессы получения кормового белка. Во Всесоюзном селекционно-генетическом институте ВАСХНИЛ использование культуры растительных клеток дало возможность уже сейчас создавать новые сорта ячменя за четырех-пятилетний срок вместо обычных 10–12 лет. Два таких сорта — «исток» и «одесский-115» успешно проходят государственное сортоиспытание.
Ученые Института общей генетики Академии наук СССР совместно с другими коллективами нашли новые подходы ускорения селекционного процесса с помощью особых молекулярных маркеров и приподняли завесу над тайной создания сортов выдающимися селекционерами. Здесь же выделены и изучены гены, кодирующие белки молока коровы, и выяснены закономерности их функционирования. А выделение и перенесение гена гормона роста человека лабораторным животным почти вдвое ускорило их рост. Это уже не фантастика, не романы Уэллса, а реальный научный результат.
В развитых странах идет буквально штурм проблем современной биологии и генетики. ЦК КПСС и Совет Министров СССР приняли постановление, обеспечивающее выход отечественной биологии на передовые рубежи.
Назревающая революция в биологии требует большого прилива молодых научных работников, которые могут использовать самые современные методы исследований на молекулярном уровне и в тоже время хорошо знают биологию целого организма, свободно владеют вычислительной техникой.
Человеческий фактор в науке решает многое. Например, лишь одно из многих открытий Петра Леонидовича Капицы — способ получения газообразного и жидкого кислорода — дало экономический эффект, перекрывающий все затраты на науку в те годы.
Времена Ломоносова и Ньютона прошли, и сегодня никакой научный гений не может работать без сложных лабораторных приборов и дорогостоящих реактивов. Но даже самое совершенное оборудование не принесет пользы, если попадет к человеку неквалифицированному или бесталанному, если он сам в погоне за внешними эффектами будет уходить от тяжелого кропотливого поиска научной истины.
Создание нового поколения растений, животных и микроорганизмов, биологических средств их защиты, физиологически активных веществ кардинально изменит технологию производственных процессов в сельском хозяйстве, а это повлечет за собой просто разительные перемены.
Рэм Викторович Петров, иммунолог и иммуногенетик, директор Института иммунологии, председатель Всесоюзного общества иммунологов, лауреат премии имени И. И. Мечникова и Государственной премии УзССР.
Иммунология — это наука о защитных силах живого организма, позволяющих ему противиться,"не подвергаться» действию болезнетворных микробов и чужеродных веществ. Основанная трудами Л. Пастера,И. Мечникова, Н.Гамалеии других выдающихся ученых, иммунология особенно быстро развивается в последние годы в связи с достижениями в области генетики и биохимии.
Я иммунолог, моя наука, расположенная в двух сферах — в биологии и медицине, изучает одну из систем жизнеобеспечения живого организма, будь то человек, осетр или мышь. Это иммунная система, которая представлена совокупностью определенных органов и клеток тела. От ее не прерывающейся ни на секунду бдительности зависит здоровье организма, его неприкосновенность. Она защищает нас от вирусов, от бактерий, от рака. Без ее регулирующего надзора не может нормально работать печень и даже нервная система. Если бы меня спросили, какое открытие в иммунологии прошлых лет я расценивал как важное, я бы ответил: создание гибридом. Авторы этого открытия, опубликованного в 1975 году, — английские исследователи Г. Коллер и Ц. Милштейн. Что такое гибридомы и зачем они? Гибридомы получаются от слияния лимфоцитов, взятых у иммунизированных животных, с клетками миеломы, извлекаемыми из костного мозга и культивируемыми в питательной среде.
Миелома — одна из форм рака крови. Миеломные, как и другие злокачественные, раковые клетки, способны безудержно размножаться. Они возникают по еще неизвестным причинам в костном мозге, делятся быстрее всех нормальных клеток, наводняют организм, губят его. Извлеченные из организма и помещенные в питательную среду, они не утрачивают злого качества безудержно и бесконечно размножаться. Культура этих клеток «бессмертна», ее можно выращивать тоннами. Но зачем?
А вот лимфоциты, как и другие «благородные» клетки тела, размножаются ровно настолько, насколько нужно организму. Извлеченные и помещенные даже в самую идеальную среду, они не размножаются бесконечно. Они быстро отмирают. Возникает биотехнологический парадокс. Те клетки, которые не могут вырабатывать в культуре нужные нам антитела, «бессмертны», а те, которые могут, в питательной среде не живут.
Гибридома — это использование раковой клетки в промышленных целях. От лимфоцита гибридома получает способность синтезировать нужные антитела, а от миеломного партнера — выживать в искусственной среде и бесконечно в ней размножаться. Поэтому антитела, синтезируемые гибридомами, могут быть получены в неограниченном количестве. Они идентичны по всем параметрам и взаимодействуют только с одним антигеном.
Таким образом, полученный в пробирке препарат может служить идеальным реагентом на ту или иную органическую субстанцию, идеальным диагностическим или лечебным средством. Набор специфических реагентов, который может быть получен, неограничен. Осенью 1984 года Г. Коллер и Ц. Милштейн — создатели гибридом — были удостоены Нобелевской премии.
С моей точки зрения, наиболее значимые достижения иммунологии произошли также в области иммунной биотехнологии. Я говорю «также» потому, что гибридомы — это часть данной области. Именно с момента создания гибридом иммунная система животных и человека удостоилась чести войти в промышленность. Клетки иммунной системы стали извлекать из организма, помещать в колбы или реакторы и нарабатывать нужные для человечества «субстанции». Другая часть иммунной биотехнологии занялась химическим или генноинженерным синтезом самых важных для медиков веществ, находящихся в микробах и вирусах — возбудителях болезней. Эти вещества именуются антигенами. Они — действующее начало всех вакцин. Именно на них реагирует наша иммунная система, когда организует защиту против данного возбудителя болезни. Но вот против некоторых инфекций до сих пор не удается создать эффективных предупреждающих вакцин. Это грипп, малярия, гепатит, ряд болезней сельскохозяйственных животных. До сих пор неясно, почему против антигенов этих микроорганизмов иммунитет не срабатывает — из-за того, что слаба иммунная система, или из-за того, что слабы микробные антигены? И в том, и в другом случае науке нужны эти микробные антигены в чистом виде и в достаточных количествах. Чтобы быть окончательно точным, необходимо подчеркнуть, что нужна не обязательно вся гигантская молекула какого-либо микробного белка целиком. Достаточно иметь ту часть антигена, которая ответственна за включение иммунитета. Ее называют антигенной детерминантой.
Несколько групп иммунологов одновременно в нескольких странах научились синтезировать антигенные детерминанты вируса гриппа, вируса ящура и микробов, вызывающих кишечные инфекции. Но мы научились делать еще одно: находить среди искусственных полиэлектролитов такие молекулы, которые в соединении с этими слабыми антигенами или с их еще более слабыми детерминантами заставляют иммунную систему реагировать в сотни раз сильнее, превращая эти антигены в искусственную высокоэффективную вакцину. Это было сделано автором данной статьи, Р. М. Хаитовым и В. А. Кабановым совместно со своими сотрудниками. В ближайшие годы искусственные вакцины нового типа против еще не побежденных инфекций войдут в жизнь. И тогда будет одержана победа над гриппом и некоторыми болезнями сельскохозяйственных животных.
В 1981 году в США была описана новая болезнь, так называемый синдром приобретенного иммунного дефицита — СПИД. Описанный в США иммунодефицит отличался от всех ранее известных тем, что у больных развивалось резкое уменьшение одной из разновидностей лимфоцитов, так называемых Т-помощников. В итоге — самые разнообразные последствия: у одного пневмония, у другого опухоль, у третьего кишечные расстройства, у четвертого гнойниковые поражения. И высокая смертность. Половина заболевших умерла в течение двух лет. Возбудитель этой болезни, ранее неизвестный вирус, был открыт в 1983–1984 годах. Иммунологи теперь ищут способы лечения СПИДа и создание вакцины для его профилактики.
Перспективным для будущего науки и практики было обнаружение неизвестных ранее регуляторных пептидов костного мозга — миелопептидов — и создание на их основе первого лечебного препарата нового типа. Оно также относится к такой области иммунологии, которую я считаю одной из многообещающих в будущем. Чтобы рассказать о ней, надо понять, что наш организм — универсальная фармацевтическая фирма.
Первыми фармакологически активными веществами — лекарствами, — обнаруженными в организме, выделенными из него и примененными с лечебной целью, были защитные белки — антитела, вырабатываемые клетками иммунной системы. Это произошло в 1890 году, когда Эмиль Беринг ввел кроликам яд бактерий — возбудителей дифтерии; через несколько дней в крови появились антитела-противоядия. Он выделил сыворотку из крови этих кроликов и стал лечить ею детей, задыхающихся от дифтерита. И до сих пор так лечат. Смертельный исход при дифтерии ушел в прошлое. Беринг в 1901 году за это лекарство получил Нобелевскую премию. Он открыл не просто лекарство от дифтерии. Антитела стали готовить и против столбняка (противостолбнячная сыворотка), и против стафиллококков (противостафиллококковая плазма), и против кори (противокоревой гамма-глобулин). Два последних — это антитела, выделяемые из крови иммунных людей. Антитела против столбняка готовят на лошадях. Вызывает бесконечное удивление иммунный цех нашей универсальной фармацевтической фирмы: проникает в организм яд X, против него вырабатывается противоядие анти-Х; проникает яд Y, вырабатывается противоядие анти-У.
Второй набор фармакологически активных веществ пришел из эндокринологии. Это гормоны, вырабатываемые эндокринными железами. Самый яркий пример — инсулин.
В 1900 году русский исследователь JI. В. Соболев доказал, что гормон, контролирующий уровень сахара в крови, — это гормон, вырабатываемый особыми клетками поджелудочной железы. В 1923 году Ф. Бантинг и Ч. Бест выделили из этих клеток инсулин. Именно им лечат диабет. В эти же годы были изолированы гормоны роста из гипофиза, несколько позже кортикостероиды из надпочечников. Все это теперь лекарственные средства организменного происхождения. Потом пришла пора простогландинов и нейропептидов. Их уже не называют гормонами потому, что они вырабатываются не только в определенных органах — железах внутренней секреции, но и клетками многих тканей и служат внутренними системами, клеточными и межклеточными регуляторами очень важных процессов.
Их стали называть медиаторами. Одни из нейропептидов — энкафелины (или эндорфины) — обладают обезболивающим эффектом, в сотни раз более сильным, чем самое сильное обезболивающее средство — морфин. Например, дельтапептид является медиатором засыпания. Некоторые стимулируют обучаемость, ускоряют запоминание. Использование нейромедиаторов в качестве лечебных средств — это ближайшая перспектива. Одно из ограничений применения медиаторов — их дороговизна, которая объясняется тем, что они содержатся в тканях в очень малых концентрациях. Для очистки и выделения даже малых количеств требуются огромные затраты. Эта проблема будет снята после решения вопроса их массового химического или генноинженерного синтеза.
Можно было бы продолжить перечень примеров существующих или потенциальных лекарств внутреннего происхождения, то есть собственных, не чужеродных веществ. К сожалению, этот перечень, в общем, невелик. Наверное, десятка два-три, не более.
Все остальные лекарства относятся к так называемым ксенобиотикам (от греческого «ксенос» — чужой) — продукции большой химии, продуктам микробного, растительного или минерального происхождения. Это всевозможные спирины, сульфаниламиды, фенацетины, элениумы, антибиотики и гликозиды. Перечень химиотерапевтических средств на сегодня почти бесконечен. Фармакологов и врачей часто упрекают в том, что они назначают очень много лекарств.
Что же делать? Необходимо снова возвратиться к иммунной системе с ее удивительной способностью продуцировать антитоксины, антияды, одним словом, антитела против любого вредоносного или нежелательного агента. Эти агенты могут проникать извне или возникать внутри организма. К первым относятся микробы, вирусы, паразиты, аллергены, вредные органические примеси в пище, в воздухе. Ко вторым — отжившие тканевые структуры, мутантные (в том числе раковые) клетки, распадающиеся при травмах или ожогах белки и другие клеточные элементы. Против всего этого вырабатываются антитела, которые связывают, нейтрализуют каждый данный агент. При попадании вируса гриппа вырабатываются противогриппозные антитела. Они больше ничего не разрушают, только вирус гриппа. При заражении холерой — противохолерные. При возникновении в организме раковой клетки — именно против этого типа раковой клетки.
Представляете? Не надо думать, как лечить, чем лечить. Нормально работающая иммунная система сама решает эти задачи. Прицельно точно. Главная забота медицины будущего — это забота о том, чтобы иммунная система работала нормально. А если сбилась, надо уметь ее подправить. И тогда десятки болезней уйдут из медицинского обихода.
Если мы научимся управлять иммунной системой, то универсальная фармацевтическая фирма обеспечит внутреннее производство тех лекарств, которые нужны организму в данный момент, в необходимом месте и в оптимальных количествах.
Будущее, я в этом убежден, за лекарствами внутреннего происхождения, за своеродными, а не чужеродными веществами.
Святослав Николаевич Федоров, член-корреспондент Академии медицинских наук СССР, генеральный директор межотраслевое го научно-технического комплекса «Микрохирургия глаза».
Подсчитано, что 80 процентов всей информации из окружающего нас мира мы получаем через зрение, утрата которого — одно из горчайших испытаний, выпадающих на долю человека. И именно здесь открываются новые перспективы перед тончайшей и точнейшей хирургией — хирургией глаза.
Врач — воин. Я часто пользуюсь этой аналогией, вижу в ней глубокий смысл. Чтобы вновь подарить человеку свет, врач каждый день ведет трудный бой с болезнью, и в этом сражении ему нужно хорошее, надежное оружие. Это оружие — техника. В самом деле, ультразвук, лазеры, электронные приборы, микрооптика (искусственный хрусталик, кератопротезы), тончайший инструментарий, ювелирные методики микрохирургии глаза — вот что позволило нам, по признанию многих зарубежных коллег, опередить мировой уровень офтальмологии на 10–15 лет. Сегодня половину успеха решает техническая оснащенность врача. Именно на этом фундаменте строится работа нашего коллектива межотраслевого научно-технического комплекса «Микрохирургия глаза».
Одно из главных достояний отечественной офтальмологии — интраокулярная линза (искусственный хрусталик), в пору своего рождения, 15 лет назад, получившая название «Спутник». Она имплантируется при катаракте, заменяя помутневший хрусталик. Линза сделана из полимерного материала, имеет толщину всего 250 микрон и диаметр пять миллиметров. Искусственный хрусталик легче естественного в 40 рак и лучше его по оптическим качествам: прозрачность природного хрусталика 65–70 процентов, с годами она уменьшается, а прозрачность линзы «Спутник» — 92 процента, и она сохраняется до конца дней ее обладателя. Благодаря линзе мы можем возвратить полноценное зрение тысячам людей.
Уже сама идея такого имплантата несла в себе и другую, параллельную задачу — конструирование микроинструментов для этой операции. Они были созданы умом и руками наших инженеров и рабочих. Сейчас экспериментально-техническое производство, действующее при институте, выпускает наборы таких инструментов. Над их совершенствованием работают не только инженеры, слесари, лекальщики, токари. Самое непосредственное участие в этом деле принимают врачи: они приносят конструкторам свои идеи, рожденные в ходе операций, и здесь, в мастерских, в совместном творчестве, мысль врача воплощается в металл. Союз врача и инженера стал нормой жизни института.
Совершенствуется и сам искусственный хрусталик. Ведутся поиски еще более физиологичного материала для линзы.
Специальный цех выпускает до 25 тысяч линз в год. Ими пользуются во всем мире. Примерно половика от общего производства идет на экспорт.
К этим цифрам можно добавить, что 90 процентов бывших слепых из-за катаракты с помощью хрусталика «Спутник» возвращаются к прежней профессии. Сейчас подобные операции делают во многих глазных клиниках нашей страны и за рубежом.
Избавиться от очков — мечта не тысяч, а миллионов близоруких. Сегодня современная наука и техника дают офтальмологам средства, позволяющие помочь этим людям. Одно из них — операция радиальной кератотомии. Суть ее состоит в том, что на роговой оболочке глаза делаются насечки (от 4 до 16). В результате кривизна ее поверхности изменяется таким образом, что проникающие в глаз световые лучи фокусируются не перед сетчаткой, как это бывает при близорукости, а на ней. То есть фокус как бы встает на место.
Когда более 10 лет назад мы начали внедрять хирургическое лечение непрогрессирующей близорукости и астигматизма, то столкнулись с такой проблемой. Без хорошего режущего инструмента немыслима ни одна операция, а для кератотомии нож должен быть особо тонким, поскольку результат операции зависит от качества насечек.
Сначала мы пользовались стальными лезвиями. Но насколько же лучший эффект получили, когда в нашем арсенале появился сверхострый алмазный нож. Создавался он сотрудниками института совместно с учеными Якутского филиала Сибирского отделения АН СССР. После таких надрезов образуются молодые волокна коллагена, и роговица как бы омолаживается.
Операция стала менее травматична, а заживление идет гораздо быстрее.
Сейчас ведутся поиски еще более совершенных моделей режущего инструмента — с другими кристаллическими лезвиями.
За 10 с лишним лет более 20 тысяч человек благодаря кератотомии сняли очки. Как правило, мы оперируем больных не моложе 18 лет с близорукостью от 2 до 12 диоптрий.
В состав МНТК войдут Московский научно-исследовательский институт микрохирургии глаза, опытный завод и 11 филиалов института в разных городах РСФСР. Каждый филиал будет оснащен автоматизированной операционной, современными микроскопами, лазерами, обеспечен самыми современными инструментами и искусственными хрусталиками разных типов. За год новый комплекс будет производить более 200 тысяч операций.
Большая потребность в радиальной кератотомии и четко отработанная техника операции натолкнули на мысль создать своеобразный хирургический конвейер. Его называют по-разному: автоматизированной линией, хирургической эстафетой, линией прозрения. Операция разделена на пять этапов. Каждый хирург бригады выполняет определенную часть работы по схеме, рассчитанной ЭВМ в ходе предварительного диагностического обследования по 12 параметрам. В схему заложены особенности каждой операции — количество насечек, их место, конфигурация, глубина. У всех пациентов они разные. Конвейер учитывает индивидуальность больного — хирургическая бригада оперирует своих больных, которых ведет до операции. Самый ответственный этап операции выполняет хирург наивысшей квалификации.
На конвейер мы вынесли также операции при типичных, неосложненных случаях катаракты и глаукомы.
Результаты говорят сами за себя. За год работы автоматизированной линии прооперировано около 6 тысяч больных. Осложнений стало в пять раз меньше, а эффективность работы хирурга увеличилась в четыре раза.
При полной загрузке одна такая линия может обеспечить в год 10 тысяч операций, а 10 линий — взять на себя 50 процентов всей глазной хирургии в Российской Федерации. Перспектива заманчивая, тут есть над чем подумать. Сейчас мы работаем над тем, чтобы и в поликлинике создать автоматизированную диагностическую линию: сядет пациент в кресло и за 2 часа проедет по всем кабинетам, где ему проведут необходимые функциональные исследования. Мечта эта вполне реальна.
Уже есть проект, и строительство поликлиники не за горами.
Медицина — творчество коллективное, и существовать изолированно, особенно сегодня, она не может. Техническое звено комплекса делит с нами и радости и неудачи. Вместе мы ищем решение вопросов, возникающих и у врачей, и у конструкторов, и у рабочих. Плоды нашего коллективного труда — изделия около 50 наименований. Многие из них запатентованы за рубежом.
Наше экспериментально-техническое производство будет расширяться — это веление времени. Оно станет опытным заводом. Строительство нового корпуса уже завершается.
Продуктивно реализовывать творческие планы помогает и сотрудничество с научно-исследовательскими, проектными и другими учреждениями. Тесные контакты связывают нас со многими зарубежными фирмами — на деловой, коммерческой основе. Будущее офтальмологии — за специализированными центрами, диагностическими и лечебными, куда придет новая, еще более совершенная техника, где будут трудиться специалисты высокой квалификации, творчески мыслящие, постоянно генерирующие идеи, испытывающие счастье от исцеления каждого больного.
Валерий Леонидович Макаров, член-корреспондент АН СССР, директор Центрального экономико-математического института АН СССР.
План — это одновременно и прогноз, и программа действий. И для его составления требуется и могучий аналитический аппарат, позволяющий предугадывать сложнейшие общественные, социальные и политические явления, и столь же основательные синтетические способности, без которых немыслима выработка обоснованных заданий научным организациям и промышленным предприятиям…
В нашей стране каждый день рождается 14 700 новых маленьких граждан. Учитывая это, государство обеспечило их питанием и игрушками на сегодняшний день, местом в яслях и детских садах на завтра, учебниками, тетрадками, портфелями на послезавтра, а в дальнейшем — станками и приборами, конкретными рабочими местами. Что нужно каждому гражданину сегодня, что понадобится завтра и какими способами удовлетворить все эти потребности — соединить, увязать, оценить все это огромное количество данных по стране помогает наука ЭКОНОМИКА.
Мы, экономисты, «заглянули» в следующий век, пожалуй, одними из первых среди других специалистов. Составлен социально-экономический прогноз развития нашей страны до 2010 года. Такое далекое планирование помогает лучше организовывать, перестраивать в расчете на завтрашний день сегодняшнее хозяйство. Понимая, на какой уровень в начале следующего века может выйти научно-технический прогресс, базу для этого мы начинаем создавать уже сейчас. Определяем требования к будущим специалистам, круг их обязательных знаний и навыков. А это влияет на то, что сегодня нужно преподавать в школе, чему учить в ПТУ.
Экономисты очень внимательно следят за развитием производства, за совершаемыми в науке и технике открытиями. Мы с вами стали свидетелями того, как внедрение в разные отрасли народного хозяйства вычислительных машин заставляет пересмотреть многие планы, изменяет нашу жизнь. Да и в самой вычислительной технике постоянно происходят крупные изменения. Например, недавно ученые нашли новый способ записи информации с помощью лазерного луча. Это позволит, например, содержание всех томов Большой Советской Энциклопедии «вместить» на диск диаметром в 10 сантиметров. Оценив достоинства открытия, экономисты рассчитали, как оно повлияет на развитие производства, что даст государству внедрение «безбумажной технологии». Пришлось пересматривать наши прогнозы и планы. В первую очередь сократить в них количество вырубаемого леса, идущего на изготовление бумаги. Ведь через каких-нибудь пятнадцать лет в магазинах начнут продаваться диско-книги.
Их выпуск и правила использования тоже нужно предусмотреть.
Конечно, не каждое научное открытие может так резко повлиять на производство. В первую очередь экономисты должны определить: выгодно ли государству и насколько внедрение новшества. Что, например, лучше: построить новый завод или реконструировать старый? Если начинать строительство нового завода, то он будет работать наряду с имеющимся старым. Новый потребует значительных затрат не только на сооружение и оборудование, но и на обеспечение соответствующими кадрами. А при реконструкции? На месте старого завода, на его площадях появится новый завод. Старый исчезнет вовсе. Поэтому при реконструкции технический прогресс происходит быстрее.
Сегодня в нашей стране начинается аттестация рабочих мест. Другими словами, проверяется соответствие их современным требованиям к труду. Труд должен быть человеку интересен, отличаться разнообразием, не утомлять монотонностью. Есть много операций, где человека должен заменить робот. А высвобожденных рабочих переводят на другой участок. Либо их переучивают. И они возвращаются в цех, но уже в роли операторов или наладчиков автоматических устройств.
Чтобы правильно оценить, что выгодно, а что невыгодно, экономисту нужно иметь под руками конкретные цифры. Регулярно в статистические органы страны поступают длинные цепочки цифр. Отчитывается каждое предприятие. Сколько выпущено продукции, сколько было затрачено на нее средств, какую прибыль получило предприятие после реализации своей продукции. Все эти данные поступают затем в ЦСУ СССР, которое может нам сказать, что представляет собой экономика одного дня нашей страны. Например, мы ежедневно производим 4077 миллионов киловатт электроэнергии, выпускаем два миллиона пар обуви и 25 тысяч телевизоров, читаем 11 миллионов экземпляров газет. День вырастает в месяц, месяц в год. Так, за 1984 год наша страна произвела продукции на 1 триллион 347,5 миллиона рублей. Национальный доход государства составил 569,6 миллиона рублей. Имея под рукой эти и другие цифры, экономисты могут предсказать, как будет развиваться производство дальше, какими темпами, что и сколько произведет страна в ближайшем будущем.
Цифры цифрами, сводки сводками, но продумывают и согласовывают их люди. Экономист — наиважнейшая в наше время профессия. Есть экономисты по научной организации труда. Они следят за наиболее эффективным использованием рабочего времени. Экономисты по организации и управлению производством ищут оптимальное взаимодействие всех звеньев. Вот, например, одна из задач, которые им приходится решать. Как выгоднее собирать тот или иной автомобиль: на конвейере или на стенде? Экономисты-финансисты занимаются учетом всего, что есть на каждом предприятии, оценкой труда работающих. Есть экономисты-товароведы, работающие в торговле, сфере услуг. Это очень важная сфера, касающаяся каждого (ведь не можем же мы бежать за новыми ботинками на фабрику). И наконец, инженеры-экономисты следят за внедрением того или иного новшества, оценивают его выгодность. Так подробно я рассказал об этой профессии потому, что и в следующем веке наряду с профессией программиста специальность экономиста будет наиважнейшей. Поднимется престижность и профессии бухгалтера. Его рабочее место в ближайшем будущем — перед дисплеем вычислительной машины.
На одной из сессий Верховного Совета СССР поднимался вопрос о необходимости формирования у сегодняшнего школьника экономического типа мышления. Что это значит? Например, правильно, с экономической точки зрения, организовав учебный процесс дома, вы могли бы усваивать знания более эффективно. Далее. Осваивая в школе экономические знания, ученик лучше будет представлять себе работу сложного государственного механизма. Прочувствует реальное значение вклада каждого работающего в общую копилку страны. А из этого вытекает, что школьники на завтрашнее производство придут грамотными, рачительными хозяевами. И стране своей смогут принести больше пользы.
Борис Александрович Рыбаков, историк и археолог, директор Института археологии АН СССР, Герой Социалистического Труда, лауреат Ленинской и Государственной премий.
«Уважение к преданиям» А. С.Пушкин считал существеннейшим признаком зрелости человека. И научно-технический прогресс не отменил этой старой истины. Только любовь к Родине, к ее природе, к ее народу и к ее истории делает обладателя научно-технических знаний общественнозначимой личностью, настоящим ученым и инженером.
Вопрос: Современная наука… Гиганты синхрофазотроны, чаши радиотелескопов, компьютеры и лазеры. Такой предстает наука в воображении нашего молодого современника. Он знает, что физика дала людям энергию расщепленного атома. Химия — горючее для миллионов моторов, одежду, предметы быта.
А история? Какую роль играет она в современном мире? Нередки еще такие утверждения, что, мол, лететь в космос, прокладывать в тайге дорогу можно и без знания «Слова о полку Игореве», «Повести временных лет»…
Ответ: Конечно, дорогу прокладывать, не зная «Слова», можно. Но жизнь человека не ограничивается только тем, что он строит дорогу. Он мыслит, чувствует, читает — словом, воспринимает культуру, постоянно соприкасается с ее ценностями, накопленными в течение веков, тысячелетий. А вот ото сделать без знания истории нельзя. Дело не в том, чтобы помнить все исторические даты. Дело не в том, что существовали римские папы, кабинеты министров, цари и короли, что были войны и восстания… История учит прежде всего историчности мышления. Дает идею развития, идею движения. Помогает молодому человеку ощутить свои корни, связь со своим народом, с его надеждами и свершениями, с его болью и радостью. Поэтому, чем бы человек ни занимался, знание истории ему необходимо.
Ведь это не просто знание. Это идейная, нравственная сила. Она связывает времена и поколения, утверждает в сознании человека исторический оптимизм, неизбежность победы нового над старым. Как раз это социальное значение истории и отрицается на Западе. В эпоху НТР, считают они, история изжила свою социальную функцию. Между тем именно истории принадлежит важнейшая роль в определении перспектив развития человечества.
Свою специальность я выбрал в трудное время, когда отгремела гражданская война и народ поднялся на борьбу с разрухой. Родители советовали мне выбрать другой путь: сейчас не время заниматься историей. Стань инженером, строителем, архитектором — это сейчас нужнее, важнее. А заниматься историей в такое время — роскошь…
Вопрос:… И как раз в это трудное время, казалось бы, такое не подходящее для занятий историей, и прозвучали знаменитые ленинские слова: «Коммунистом стать можно лишь тогда, когда обогатишь свою память знанием всех тех богатств, которые выработало человечество». Эта речь В. И. Ленина на III съезде комсомола стала программой для молодых. Ленинские заветы знает каждый! Но время отдалило от нас ту обстановку острой идейной борьбы, в которой они родились… Что за ее точными и сильными словами видите вы как историк и как комсомолец 20-х годов?
Ответ: Ленинский призыв овладевать культурным наследием прошлого прозвучал с трибуны III съезда РКСМ остро и полемично.
Революционному пролетариату, людям-созидателям инстинкт разрушения был глубоко чужд. Американский публицист Джон Рид в своей знаменитой книге «Десять дней, которые потрясли мир» рассказывает, как он с восхищением наблюдал во время штурма Зимнего чрезвычайно бережное отношение революционных рабочих и солдат к сокровищам искусства, собранным во дворце.
Уже в ноябре 1917 года была организована Коллегия по делам музеев и охране памятников, приняты первые законодательные акты в этой области…
Вопрос: И эти ленинские традиции бережного отношения к памятникам Отечества продолжаются. Принят Закон об охране и использовании памятников истории и культуры. Успешно трудятся студенческие реставрационные отряды, молодые краеведы выявляют исторические памятники, берут их под охрану, восстанавливают по крупицам детали героических дел, ставших историей.
Ответ: Да, сделано много. Но есть, к сожалению, и примеры безответственного отношения.
Выдающиеся памятники истории и культуры имеют огромное значение в нравственной жизни народа. Они учат видеть красоту, ценить труд древних мастеров, помогают глубже узнать историю своего народа. Памятники, созданные на протяжении веков, свидетельствуют о великой мудрости и большой творческой одаренности нашего народа, С утратой любого замечательного творения человеческого духа мы становимся духовно беднее.
Вопрос: Теперь, когда идеологическая борьба крайне обострилась, буржуазная пропаганда делает особую ставку на молодежь, на размытие подлинных культурных ценностей в ее представлениях. Взамен насаждаются суррогаты культуры. И все это направлено на то, чтобы духовно обеднить человека…
Ответ: И как раз в том, чтобы противостоять этому вредному влиянию, чтобы сделать невозможным само проникновение таких тенденций в сферу нашей культурной жизни, большую роль должно сыграть богатейшее культурное наследие нашего народа, воспитание у молодежи эстетического вкуса на лучших образцах искусства прошлого. Знание истории своей страны, своего народа, соприкосновение с памятниками нашей исторической славы глубоко обогащает духовный мир молодого человека, учит его отличать подлинное, самобытное и вечное от модной поделки. То прогрессивное, что создавалось поколениями наших соотечественников на протяжении веков, содержит в себе нечто абсолютно надвременное и вечное — народный дух, высокий идеал и светлую мечту, помогает каждому понять суть нашего национального и социального единства. Культурное, историческое наследие — огромная моральная сила.
Глубоко бережное отношение к истории, к прошлому — давняя традиция нашего народа. Воспринять эту прекрасную традицию, продолжить ее должно и нынешнее молодое поколение.
Вопрос: И для этого многое делается. Уже не первый год ЦК ВЛКСМ проводит поход по местам революционной, боевой и трудовой славы советского народа. Миллионы молодых участвуют в нем, соприкасаются с бесценными реликвиями героизма отцов и дедов.
Ответ: Все это — важный показатель роста общественного самосознания, высокой духовной культуры нашего народа. Осмысление своего исторического прошлого становится постоянной потребностью наших современников.
Народ — творец истории. Но эта великая миссия состоит ныне не только в том, что народ создает новые города и заводы, осваивает целину, штурмует космос, но и в том, что каждый советский человек стремится сохранить для истории, запечатлеть все детали этих героических свершений. Народ — творец истории. По-новому понимаешь это, когда, к примеру, знакомишься с 26-томной «Историей городов и сел Украинской ССР». Ее создали… сто тысяч авторов! Ученые, рабочие, колхозники, писатели, учителя, краеведы — поистине огромный авторский коллектив. В каждом городке, в каждом селе, в каждой семье появился свой историк… И все это, собранное по крупицам, сложилось в грандиозную, многоплановую картину нашей жизни, борьбы и созидания. Всенародную историю пишет сам народ. Нигде, ни в одной стране нет такого исторического труда.
Поэтому я хочу обратиться к читателям, к людям всех поколений: давайте создадим историю городов и сел нашей страны, начиная и с истории твоего рода, твоей семьи, с истории твоей улицы, твоего города.
Я предлагаю молодежи взяться за изучение своей родословной. Давайте отправимся в поход по местам исторической славы нашего Отечества, нашего народа. Его маршруты проложила история: Куликово поле, 1500-летний Киев, древние Суздаль и Новгород, Самарканд, Ереван, Мцхета.
Вопрос: Что бы вы пожелали будущему историку?
Ответ: Историку надо постоянно расширять свой кругозор. В истории не может быть узких специалистов. В наше время роль и ответственность историка возрастает. Ответственность и перед современниками, и перед будущими поколениями. Ведь историк занимается прошлым, чтобы служить современности, служить будущему.
Беседу вел писатель В. Н.ГАНИЧЕВ
Дмитрий Сергеевич Лихачев, специалист в области литературоведения, истории русской и мировой культуры, действительный член Академии наук СССР, Герой Социалистического Труда, дважды лауреат Государственных премий СССР, почетный член многих иностранных академий, председатель правления Советского фонда культуры.
Если профессор математики или механики делает грамматические ошибки в общеизвестных словах, говорил известный советский педагог А. П. Минаков, провал его курса предрешен. И отсюда вытекает еще одна обязанность настоящего технического специалиста: знать родной язык. А знать родной язык — значит знать историю своего народа, уходящую в глубокую древность…
В поселке Шолоховском Ростовской области ребята создали кружок по изучению «Слова о полку Игореве» и назвали свой кружок «Боян». Они избрали меня почетным членом кружка. Завязалась переписка. Я предложил ребятам провести диспут на тему «Что дает человеку любовь к Родине?»
Я познакомился с материалами диспута и написал ребятам:
«Дорогие члены кружка «Боян»!
Вы пишете, что любовь к Родине облегчает жизнь, приносит радости, счастье. И это все, безусловно, верно. Но одни ли радости приносит любовь к Родине?
Не заставляет ли она иногда испытывать горе, страдать? Не приносит ли она иногда трудности? Подумайте над этим. И почему все-таки любить Родину нужно? Заранее вам скажу: трудности в человеческой жизни неизбежны, но, имея цель, заботясь о других, а не о себе, всегда легче переносить любые трудности. Вы к ним готовы, вы не прозябаете, а деятельно живете.
Любовь к Родине дает смысл жизни, превращает жизнь из прозябания в осмысленное существование».
Патриотизм — начало творческое, начало, которое может вдохновить всю жизнь человека: избрание им своей профессии, круг интересов.
Патриотизм — это тема, если так можно сказать, жизни человека, его творчества.
Патриотизм непременно должен быть духом всех гуманитарных наук, духом всего преподавания. С этой точки зрения мне кажется, что работа в сельской школе очень показательна.
Я придерживаюсь того взгляда, что любовь к Родине начинается с любви к своей семье, к своему дому, к своей школе. Она постепенно растет. С возрастом она становится также любовью к своему селу, к родной природе, к своим землякам, а созрев, становится сознательной и крепкой, до самой смерти, любовью к своей стране и ее народу. Нельзя перескочить через какое-либо звено этого процесса, и очень трудно скрепить вновь всю цепь, когда что-нибудь в ней выпало или, больше того, отсутствовало с самого начала.
Почему я считаю интерес к культуре и литературе нашего прошлого не только естественным, но и необходимым?
Русской литературе без малого тысяча лет. Это одна из самых древних литератур Европы. Она древнее, чем литература французская, английская, немецкая. Ее начало восходит ко второй половине X века. Из этого великого тысячелетия более семисот лет принадлежит периоду, который принято называть «древнерусской литературой».
Художественная ценность древнерусской литературы еще до сих пор по-настоящему не определена. Пути к открытию уже найдены. Мы стоим на пороге открытия, пытаемся прервать Молчание, и это молчание, хотя еще и не прерванное, становится все более и более красноречивым.
То, что вот-вот скажет нам сейчас древнерусская литература, не таит эффектов гениальности. Авторское начало было приглушено в древнерусской литературе. В ней не было ни Шекспира, ни Данте. Это хор, в котором совсем нет или очень мало солистов и в основном господствует унисон. И тем не менее эта литература поражает нас своей монументальностью и величием целого.
Перед нами литература, которая возвышается над своими семью веками как единое грандиозное целое, как одно колоссальное произведение, поражающее нас подчиненностью одной теме, единым борением идей, контрастами, вступающими в неповторимое сочетание. Древнерусские писатели — не зодчие отдельно стоящих зданий. Это градостроители. Они работали над одним общим грандиозным ансамблем. Они обладали замечательным «чувством плеча», создавали циклы, своды и ансамбли произведений, в свою очередь, слагавшихся в единое здание литературы, в котором и самые противоречия составляли некое органическое явление, эстетически уместное и даже необходимое. Это своеобразный средневековый собор, в строительстве которого приняли участие в течение нескольких веков тысячи вольных каменщиков, с их подвижными, переезжавшими из страны в страну артелями, позволявшими использовать опыт всего европейского мира в целом. Мы видим в этом соборе и контрфорсы, сопротивляющиеся силам, раздвигающим его, и устремленность к небу, противостоящую земному тяготению. Фигуры святых внутри соотносятся с фигурами химер снаружи. Одни устремлены взорами к небу, другие тупо смотрят в землю, озабочены повседневностью. Витражи как бы отторгают внутренний мир собора от того, что находится за его пределами. Он вырастает среди тесной застройки города. Его пышность противостоит бедности «земных жилищ» простых горожан. Его росписи отвлекают их от земных забот, напоминают о вечности. Но все-таки это творение рук человеческих, и горожанин чувствует рядом с этим собором не только свою ничтожность, но и силу человеческого единства. Он построен людьми, чтобы подняться над ними и чтобы возвысить их одновременно.
Тяга к древнерусской культуре — явление симптоматичное. Эта тяга вызвана прежде всего стремлением обратиться к своим национальным традициям. Современная культура отталкивается от всяческого обезличивания, связанного с развитием стандартов и шаблонов: от безликого «интернационального» стиля в архитектуре; от американизирующего быта, от постепенного выветривания национальных основ жизни.
Но дело не только в этом. Каждая культура ищет связей с прошлым, обращается к одной из культур прошлого. Ренессанс и классицизм обращались к античности. Барокко и романтизм обращались к готике. Наша современная культура обращается к эпохам большого гражданского подъема, к эпохам борьбы за национальную независимость, к героическим темам. Все это как раз глубоко представлено в культуре Древней Руси.
Наконец, отметим такое, казалось бы, частное, но очень важное явление. Древняя Русь привлекает наших современников эстетически. Древнерусское искусство, как и искусство народное, отличается лаконичностью, красочностью, жизнерадостностью, смелостью в решении художественных задач.
Интерес к древнерусской культуре характерен сейчас для молодежи всего мира. Книги по древнерусской культуре, литературе, искусству издаются и переиздаются повсюду. Достаточно сказать, что первые двадцать томов «Трудов Отдела древнерусской литературы» переизданы за рубежом дважды — в США и ФРГ. Неоднократно издаются за рубежом такие памятники, как «Повесть временных лет», «Киево-Печерский патерик», «Слово о полку Игореве», «Слово о Законе и Благодати» Илариона, «Моление Даниила Заточника», многие жития русских святых, и прежде всего, конечно, Аввакума. Много раз изданы в переводах и в подлиннике послания Ивана Грозного. Отмечу, что литературные памятники Древней Руси переводятся и издаются даже в Японии. В старой столице Японии Киото выходит журнал «Древняя Русь». Невозможно перечислить всех изданий и переизданий памятников Древней Руси на Западе и на Востоке.
Изучение нашего прошлого способно — и должно обогатить современную культуру. Современное прочтение забытых идей, образов, традиций, как это часто бывает, может подсказать нам много нового. И это не словесный парадокс…
«Мода» на древнерусское перестает быть поверхностной модой, становится более глубоким и широким явлением, к которому стоит присмотреться.
Я самым решительным образом утверждаю: для того чтобы глубоко приобщиться к какой-либо из культур прошлого, нет необходимости отречься от современности, переселиться (духовно) в это прошлое, стать человеком прошлого. Это и невозможно, это и обеднение себя, это и неуважение к древнерусской культуре, которая сама была обращена в будущее, искала осуществления своих идеалов не только непосредственно в настоящем, но и в отдаленном будущем. Было бы бессмысленно стремиться в прошлое, когда это прошлое само устремлялось в будущее.
Обращение к культуре прошлого — это не измена своей культуре, а дополнение и обогащение ее. Понимание чужих убеждений не есть принятие этих убеждений. Познание не есть растворение познающего в познаваемом.
Одна культура может понимать и глубоко проникать в другую.
Это очень важное явление, необходимое для движения вперед. Не только целые народы и эпохи, но и отдельный человек может до конца познать другого человека, не переставая быть самим собой, а лишь обогащаясь познавательно. Мы способны понять не только другое существо, но другую сущность, оставаясь вместе с тем отграниченными от этой другой сущности. Для меня это одно из самых удивительных и самых значительных свойств человеческого познания.
Не следует думать, что весь интерес изучения Древней Руси состоит в извлечении разного рода «уроков истории». Необходима еще простая и добросовестная работа по «воскрешению» памятников письменности, материальной культуры, сведений самого различного характера. Многое забыто, многое не изучено, а потому и неясно, многое погребено в рукописных хранилищах или под землей (яркий пример: берестяные грамоты), под новой застройкой; многое просто надо сохранить для будущих исследований и для того, чтобы эти памятники могли быть действенными участниками в строительстве современной культуры, быть нашими союзниками. Многое мы должны защитить от непонимания, от несправедливых оценок, обывательских представлений, которые, к несчастью, проникают даже в фильмы…
Наши рукописные богатства бесценны. Мы обладаем десятками тысяч совершенно неисследованных или исследованных плохо, поверхностно русских и славянских рукописей. Любой исследователь, самый скромный, если он только добросовестен и трудолюбив, имеет возможность сделать многие и многие открытия новых списков памятников, новых памятников, новых соотношений между памятниками, раскрыть новое в истории текста и т. д. Область изучения древней русской литературы, если только это изучение начинать непосредственно с поисков в рукописных хранилищах, необыкновенно благодарна в смысле возможностей самых различных открытий. Нужда в исследователях рукописей Древней Руси очень велика, велика нужда в работниках рукописных хранилищ, нужда в заботливых исследователях.
В заключение мне хотелось бы заметить: понять современность, понять современную эпоху, ее величие, ее значение можно только на огромном историческом фоне. Если мы будем смотреть на современность с расстояния десяти, двадцати, сорока или даже пятидесяти лет, мы увидим немногое. Современную эпоху можно по-настоящему оценить только в свете тысячелетий.
Актуальность страниц древней истории впервые поразила меня в блокадную зиму 1942 года. Тогда вместе с археологом М. А. Тихановой я написал брошюру «Оборона древнерусских городов». Осенью того же года стали поступать отклики на нее прямо с передовой.
Я был потрясен. Значит, мои узкотекстологические занятия древними русскими летописями и историческими повестями становились чем-то не менее важным, чем личное письмо, на которое нельзя не ответить… Почему же мысль от тяжких событий ленинградской блокады обращалась к Древней Руси?
Великая Отечественная война потрясла своими неслыханными размерами. Поражали не только размеры нападения, но и размеры обороны. И вдруг в жизнь стали входить древнерусские слова: рвы, валы, надолбы, Таких сооружений не было в первую мировую войну, но всем этим оборонялись древнерусские города. Появилось, как и во времена обороны от интервентов начала XVII века, народное ополчение.
Тогда и вспомнились страницы летописи, где даже рассказы об отдельных событиях кажутся выбитыми на камне или написанными четким уставом на прочнейшем пергаменте. Понять те 900 дней обороны Ленинграда можно было только в масштабе всей тысячелетней истории России.