Психология стресса - читать онлайн бесплатно полную версию книги . Страница 15

Т-клетки и В-клетки атакуют возбудителей инфекции по-разному. Т-клетки создают клеточный иммунитет (рис. 25). Когда возбудитель инфекции вторгается в организм, его распознает моноцит, который называют макрофагом. Он сообщает о чуждой частице клетке Т-хелперу. Включается тревожная сирена, и в ответ на вторжение «чужака» Т-клетки начинают рассредоточиваться по организму. Эта система сигнализации приводит к активации и быстрому распространению цитотоксичных Т-киллеров. В соответствии со своим названием они атакуют возбудителей инфекции и уничтожают их. Кстати, вирус СПИДа убивает как раз Т-клетки иммунной системы.

В-клетки действуют иначе. Они поддерживают иммунитет путем создания антител (рис. 26). Если макрофаги и Т-хелперы начали действовать, они стимулируют распространение В-клеток. Основная задача В-клеток—дифференцировать и производить антитела—большие белки, распознающие те или иные особенности вторгшегося возбудителя инфекции (как правило, его специфический белок) и присоединяющиеся к нему. Такая избирательность очень важна — форма образующегося антитела точно «подходит» к форме того или иного отличительного признака захватчика, как ключ к замку. Таким образом, антитела присоединяются к клеткам возбудителя инфекции, блокируют их и готовят к уничтожению.

Рис. 25. Каскад клеточного иммунитета. (1) Возбудителя инфекции атакует моноцит особого типа, который называется макрофагом. (2) Макрофаг сообщает о возбудителе инфекции клетке Т-хелперу (тип лейкоцита) и вырабатывает интерлейкин-1 (IL-1), стимулирующий активность Т-хелпера. (3) ЗатемТ-хелпер вырабатывает интерлейкин-2 (IL-2), который запускает распространение!- клеток. (4) Это приводит к распространению лейкоцитов другого типа, цитотоксичных Т-киллеров, и они уничтожают возбудителя инфекции

Рис. 26. Иммунный каскад на основании антител. (1) Возбудитель инфекции сталкивается с макрофагом. (2) Макрофаг сообщает о возбудителе инфекции клеткам Т-хелперам, и они вырабатывают интерлейкин-1 (IL-1), стимулирующий активность Т-хелперов. (З)Т-хелперы вырабатывают фактор роста В-клеток, и это запускает дифференциацию и быстрое распространение лейкоцитов другого типа, В-клеток. (4) В-клетки вырабатывают специфические антитела, которые присоединяются к белкам возбудителя инфекции, подготавливая его к уничтожению многочисленной группой белков, циркулирующих в крови, которые называются комплементом

У иммунной системы есть еще один интересный аспект. Например, если разные части печени должны скоординировать ту или иную активность, у них есть преимущество соседства. Но клетки иммунной системы свободно циркулируют в крови. Чтобы тревожную иммунную сирену услышали во всех частях этой обширной системы, организм создал химические посредники (цитокины). Они также циркулируют в крови и переносят сообщения между иммунными клетками разных типов. Например, когда макрофаги впервые распознают возбудителя инфекции, они вырабатывают посредника, который называется интерлейкин-1. Он побуждает Т-хелперы вырабатывать интерлейкин-2, который стимулирует рост Т-клеток (чтобы еще больше усложнить эту схему, есть как минимум штук пять дополнительных интерлейкинов с более узкими функциями). На фронте антител Т-клетки также вырабатывают фактор роста В-клеток. Другие классы посредников, например интерфероны, активируют разные типы лимфоцитов.

Процесс сортировки, когда иммунная система проводит разграничение между «своими» и «чужими», обычно довольно эффективен (хотя некоторые коварные тропические паразиты, например возбудители шистосо- моза, научились обманывать иммунную систему, присваивая «подпись» собственных клеток организма). Иммунная система постоянно занята отделением «своих» от «чужих»: эритроциты — это мое. Брови — мои. Вирус — гадость, атакуем. Мышечные клетки — наши ребята... (рис. 27).

Но что, если в процессе иммунной сортировки случится сбой? Один очевидный тип ошибки — когда иммунная система не может распознать инфекцию-захватчика; конечно, это очень плохо. Не менее опасно, если иммунная система по ошибке признает вредным захватчиком того, кто на самом деле им не является. Например, какое-то совершенно безвредное вещество вызывает реакцию аварийного сигнала. Это может быть что-то съедобное, скажем арахис или моллюски, или что-то распыленное в воздухе и безвредное, вроде цветочной пыльцы. Но иммунная система по ошибке решила, что это не только «чужое», но и опасное, и начала активно с этим бороться. В таком случае возникает аллергия.

При втором типе гиперреакции иммунной системы за возбудителя инфекции принимается нормальная часть нашего собственного тела, и в результате она подвергается атаке. Когда иммунная система по ошибке нападает на нормальную часть тела, это может привести к самым разным и очень неприятным «аутоиммунным» заболеваниям. Например, при рассеянном склерозе нападению подвергается нервная система; при ювенильном диабете — клетки поджелудочной железы, обычно вырабатывающие инсулин. Как мы скоро увидим, стресс, как ни странно, влияет на течение аутоиммунных заболеваний.

До сих пор в этом кратком обзоре иммунной системы мы говорили о приобретенном иммунитете. Предположим, что вы в первый раз подвергаетесь действию некоего нового, опасного болезнетворного микроорганизма, назовем его патогеном X. У приобретенного иммунитета есть три особенности. Во-первых, он позволяет «научиться» атаковать именно патоген X с помощью специфических антител и иммунных клеток, способных распознавать именно этот патоген. Это дает важное преимущество: у нас появляется «маркер», на котором написано название патогена X. Во-вторых, для создания такого иммунитета нужно время: когда мы впервые сталкиваемся с патогеном X, нужно выяснить, какие антитела лучше всего ему соответствуют, и создать миллионы его копий. После этого мы можем выявлять и уничтожать патоген X в течение многих лет, и если эта специфическая защита уже есть, повторное воздействие патогена X будет только укреплять эту защиту.

Такой приобретенный иммунитет — весьма необычное изобретение, и он есть только у позвоночных животных. Но у нас есть еще и более простой, более древний механизм иммунной системы, такой же, как у живых существ совсем другого вида — у насекомых. Он называется врожденным иммунитетом. Он не предусматривает средств защиты, предназначенных специально для патогена X и особых антител, которые отличаются от тех, которые предназначены, скажем, для патогена Y. Но когда какой-то патоген поражает нас во второй раз, эта неспецифическая иммунная реакция тоже вступает в действие.

Такая общая иммунная реакция чаще всего возникает на переднем крае, где патоген завоевывает первый плацдарм, например в коже либо в ткани слизистой оболочки во рту или в носу. Как только это произошло, антитела, содержащиеся в слюне, атакуют любые «чужие» микробы. Это неспецифическая реакция, не отличающая захватчиков друг от друга. Такие антитела вырабатываются в слизистой оболочке и покрывают ее антисептическим слоем. Кроме того, в месте инфекции расширяются капилляры и иммунные клетки могут свободно поступать сюда из крови, пропитывая область инфекции. Среди этих клеток—макрофаги, нейтрофилы и неспецифические клетки-киллеры, атакующие вредоносных микробов. Расширение капилляров также увеличивает приток жидкости, содержащей белки, препятствующие попаданию агрессивных микробов в кровь. Что происходит в результате? Белки борются с микробами, а жидкость вызывает отек. Так действует врожденная иммунная система: она вызывает воспаление[53].

Итак, теперь у нас есть общее представление о том, как функционирует иммунная система. Пришло время рассмотреть, как стресс влияет на иммунитет. Естественно, этот процесс намного сложнее, чем может показаться.

Как стресс угнетает иммунную функцию?

С тех пор как Селье обнаружил первые доказательства того, что стресс способен подавлять иммунитет, прошло почти 60 лет. Селье обнаружил, что у крыс, подвергавшихся воздействию различных неприятных факторов, могут атрофироваться иммунные ткани, например тимус. С тех пор ученые намного больше узнали об иммунной системе, и оказалось, что стресс нарушает очень многие иммунные функции.

Стресс подавляет формирование лимфоцитов, замедляет их циркуляцию в крови и сокращает время, в течение которого лимфоциты, уже находящиеся в крови, в ней остаются. Это угнетает производство новых антител в ответ на возбудителя инфекции и нарушает коммуникацию между лимфоцитами, уменьшая выработку соответствующих посредников. А это подавляет врожденную иммунную реакцию, поэтому воспаления не возникает. Так действуют самые разные стрессоры — физические и психологические, у приматов, крыс, птиц и даже рыб. И конечно, у человека.

Лучше всего такой процесс подавления иммунитета виден на примере глю- кокортикоидов. Например, глюкокортикоиды могут вызывать уменьшение размеров тимуса; этот факт установлен вполне надежно. В былые времена (около 1960 года), когда мы еще не умели напрямую измерять количество глюкокортикоидов в крови, для этого использовали один косвенный способ: диагностику размеров тимуса. Чем меньше тимус, тем больше в крови глюкокортикоидов. Глюкокортикоиды угнетают формирование в тимусе новых лимфоцитов, а ведь ткань тимуса состоит преимущественно из этих новых клеток, готовых выйти в кровь. Глюкокортикоиды подавляют выработку посредников — интерлейкинов и интерферонов — и поэтому снижают чувствительность лимфоцитов к сигналу тревоги при возникновении инфекции.

Глюкокортикоиды, кроме того, вымывают лимфоциты из крови и заставляют их возвращаться в «хранилища» в иммунных тканях. Такое действие глюкокортикоидов угнетает в первую очередь Т-клетки, а не В-клетки. Это значит, что оно больше вредит клеточному иммунитету, а не иммунитету антител. И что самое интересное, глюкокортикоиды могут уничтожать лимфоциты. Это одна из самых горячих тем в медицине, получившая название запрограммированной гибели клеток[54]. Клетки запрограммированы на то, чтобы иногда совершать самоубийство. Например, если клетка начинает превращаться в злокачественную, в ней активируется функция самоуничтожения, нейтрализующая ее до того, как она начнет процесс неконтролируемого деления; несколько типов раковых образований связаны с нарушением функции запрограммированной гибели клеток. Оказывается, что глюкокортикоиды с помощью нескольких механизмов способны запускать программу самоуничтожения у лимфоцитов.

Гормоны симпатической нервной системы, бета-эндорфин и КРГ в мозге также принимают участие в подавлении иммунитета во время стресса. В отличие от воздействия на иммунитет глюкокортикоидов механизмы такого влияния пока мало изучены. Эти гормоны традиционно считались менее важными, чем глюкокортикоиды. Однако множество экспериментов показывают, что стрессоры способны подавлять иммунитет независимо от секреции глюкокортикоидов с помощью других механизмов.

Почему иммунитет подавляется во время стресса?

Механизм, с помощью которого глюкокортикоиды и другие гормоны стресса подавляют иммунитет, — очень горячая тема современной цитобиологии и молекулярной биологии, особенно что касается уничтожения лимфоцитов. Но среди всех увлекательных открытий ультрасовременной науки было бы разумно задать вопрос о том, почему организм вообще допускает, чтобы его иммунная система была подавлена во время стресса. В первой главе я предложил одно объяснение; теперь, когда мы немного лучше представляем себе процесс стрессогенного подавления иммунитета, должно быть очевидно, что то мое объяснение не имеет никакого смысла. Я предположил, что во время стресса логично «закрыть» долгосрочные строительные проекты и направить энергию на более неотложные задачи — это касается и иммунной системы. Она прекрасно умеет находить опухоли, которые могли бы убить нас через шесть месяцев, или вырабатывать антитела, которые понадобятся нам через неделю, но не нужна в чрезвычайной ситуации, возникшей прямо сейчас.

Такое объяснение имеет смысл лишь в том случае, если стресс «заморозил» иммунную систему именно в том состоянии, в котором она находится сейчас, — больше никаких расходов на иммунитет, до тех пор пока чрезвычайная ситуация не закончится. Но на самом деле происходит иначе. Стресс приводит к большому расходу энергии, необходимой для демонтажа тканей иммунной системы — эти ткани съеживаются, их клетки разрушаются. Это нельзя объяснить простой «экономией» — ведь мы платим своей энергией за разрушение иммунной системы. И это приводит нас к теории, указывающей на более долгосрочные последствия этого процесса.

Почему эволюция позволила нам заниматься такими вопиющими глупостями? Уничтожать иммунную систему во время стресса! Возможно, для этого нет никаких серьезных причин. Но это не так глупо, как кажется. Не все функции организма можно объяснить с точки зрения эволюционной адаптивности. Возможно, стрессогенное подавление иммунитета — просто побочный продукт другой, вполне адаптивной функции; оно просто идет «в нагрузку».

Но вряд ли это так. Когда возникает инфекция, иммунная система вырабатывает химический посредник интерлейкин-1. Наряду с другими функциями он стимулирует гипоталамус к выработке КРГ. Как мы говорили в главе 2, КРГ стимулирует гипофиз, заставляя его вырабатывать АКТГ, который затем вызывает выработку глюкокортикоидов надпочечниками. Они, в свою очередь, подавляют иммунную систему. Другими словами, при некоторых обстоятельствах иммунная система побуждает организм вырабатывать гормоны, которые в итоге подавляют иммунную систему. Независимо от причин этого явления иммунная система иногда поощряет подавление иммунитета. Вероятно, это не случайно[55].

В последние годы возникло множество гипотез в попытках объяснить, почему же во время стресса мы активно разрушаем собственный иммунитет при добровольном содействии самой иммунной системы. Некоторые из этих гипотез казались довольно вероятными, пока мы не узнали немного больше об иммунитете и не смогли их исключить. Другие были просто безумными, и даже я сам опрометчиво продвигал некоторые из них в первом издании этой книги. Но в последние 10 лет ответ был найден, и он перевернул все представления об этой сфере.

Сюрприз, сюрприз

Оказывается, что в первые несколько минут (скажем, около получаса) после начала действия стрессора мы не подавляем иммунитет как таковой — наоборот, мы улучшаем множество его аспектов (фаза А на приведенном ниже графике) (рис. 28). Это касается всех аспектов иммунитета, но прежде всего врожденного иммунитета. Это вполне логично — полезно активировать те аспекты иммунной системы, которые будут создавать для нас антитела в следующие несколько недель. Но еще полезнее немедленно активировать те элементы иммунной системы, которые могут выручить нас прямо сейчас. Чем больше иммунных клеток срочно отправляются в кровь, когда нервная система переживает травму, тем более сильное воспаление возникает в поврежденной ткани. Кроме того, циркулирующие в крови лимфоциты лучше вырабатывают иммунные посредники и лучше на них реагируют. И в слюну выделяется еще больше неспецифических антител врожденной иммунной системы. Такое повышение иммунитета происходит не только в ответ на инфекцию. Физические и психологические стрессоры, по-видимому, также запускают раннюю стадию активации иммунитета. Что еще интереснее, главные злодеи, подавляющие иммунитет, — глюкокортикоиды — играют в этом процессе важнейшую роль (вместе с симпатической нервной системой).

Итак, с началом действия любого стрессора наша иммунная защита усиливается. Но если стресс продолжается долго, ситуация меняется на прямо противоположную. Примерно через час продолжающаяся активация глюкокортикоидов и симпатической системы начинает подавлять иммунитет. Если действие стрессора в это время заканчивается, что нам даст подавление иммунитета? Иммунная функции вернется в то состояние, с которого началась реакция, — назад к базовой линии (фаза В). Если

сильные стрессоры действуют дольше или уровень глюкокортикоидов очень высокий, иммунная система не просто возвращается к базовой линии, а резко падает к тому уровню, где начинается подавление иммунитета (фаза С). Для большинства аспектов иммунной системы, которые можно измерить, длительное действие сильных стрессоров снижает показатели на 40-70% ниже базовой линии.

Рис. 28. Стресс ненадолго стимулирует иммунную систему

стресса длительность стресс стресса

Гипотеза о временной активации иммунной системы в начале действия стрессора вполне логична (по крайней мере не меньше, чем некоторые замысловатые теории о том, почему имеет смысл подавление иммунитета). Как и идея о том, что все, что повышается, должно в итоге снизиться. И, как мы часто видим на страницах этой книги, если у нас есть стрессор, который действует слишком долго, адаптивное снижение к базовой линии может зайти слишком далеко. И тогда мы попадаем в беду.

Почему нам потребовалось так много времени, чтобы это выяснить? Вероятно, по двум причинам. Во-первых, потому что многие методы измерения различных показателей иммунной системы только недавно стали достаточно чувствительными, чтобы отмечать небольшие, быстрые различия. Раньше ученым не удавалось «поймать» фазу А, эту быструю вспышку стимуляции иммунной системы в начале действия стрессора. Поэтому в течение многих десятилетий мы думали, что изучаем иммунную реакцию на стресс, а на самом деле изучали восстановление иммунной реакции на стресс. Во-вторых, в этой области ученые обычно исследуют действие сильных, длительных стрессоров или влияние большого количества глюкокортикоидов в течение

длительных периодов. Это создает определенный перекос в планировании и проведении экспериментов — они обычно предполагают сильное воздействие. Если при этом ничего не происходит, выбирается новая область исследований. А если что-то происходит, повторяется достаточно много раз и вы уверены, что это происходит, только после этого можно начинать думать о более тонких нюансах. Поэтому в начале исследований в этой сфере ученые изучали только те стрессоры или паттерны воздействия глюкокортикоидов, которые переводят организм в фазу С, и только позже пришло время для изучения более тонких аспектов, возникающих на фазе В.

Это произошло благодаря экспериментам Аллана Мунка из Дартмутского университета, одного из крестных отцов данной области, еще в середине 1980-х предсказавшего почти все недавние открытия. Он также предсказал ответ на другой важный вопрос. Зачем возвращать иммунную функцию к дострессовому уровню (фаза В на диаграмме)? Почему просто не оставить ее на более активированном, более высоком уровне, достигнутом в первые 30 минут, и не воспользоваться этой активацией на следующих фазах? Выражаясь метафорически, почему бы и дальше не держать армию в состоянии максимальной мобилизации? Прежде всего, это очень дорого. Что еще важнее, система, постоянно находящаяся в состоянии максимальной готовности, в какой-то момент не выдержит, и в результате «дружественного огня» может пострадать кто-то из «своих». Так может случиться и с иммунной системой, если она хронически активирована: она начинает путать с агрессором части собственного организма. Так возникают аутоиммунные заболевания.

Такие рассуждения привели Мунка к гипотезе о том, что если вы не прошли фазу В и не вернули активированную иммунную систему к базовой линии, то у вас растет риск аутоиммунных заболеваний. Эта идея была подтверждена по крайней мере в трех областях. Во-первых, можно искусственно заблокировать у крыс уровень глюкокортикоидов в низком базовом диапазоне, а затем подвергнуть их стрессу. При этом у животных возникнет фаза А (по большей части под воздействием адреналина), но не будет расти уровень глюкокортикоидов, и это не позволит им полностью перейти в фазу В. При этом у крыс возрастет риск аутоиммунных заболеваний. Во-вторых, врачам иногда приходится удалять пациенту один из двух надпочечников (источник глюкокортикоидов), как правило, из-за опухоли.

Сразу же после этого уровень глюкокортикоидов в крови падает вдвое и остается таким до тех пор, пока оставшийся надпочечник не начнет вырабатывать их вдвое больше. В период низкого уровня глюкокортикоидов у пациентов чаще возникают симптомы аутоиммунных или воспалительных заболеваний — в организме недостаточно глюкокортикоидов, чтобы перейти в фазу В, когда возникает какой-то стресс (рис. 29). Наконец, если исследовать популяцию крыс или, как ни странно, цыплят, у которых спонтанно возникают аутоиммунные заболевания, у них отмечаются нарушения глюкокортикоидной системы — или уровень этого гормона слишком низкий, или иммунные клетки нечувствительны к глю- кокортикоидам. То же самое касается людей, страдающих аутоиммунными заболеваниями, например ревматоидным артритом.

Рис. 29. Схематическое изображение того, как неспособность подавить иммунную функцию во время стресса может привести к аутоиммунным заболеваниям

Таким образом, в начале реакции на стресс иммунная система активируется, а не подавляется. Оказывается, благодаря реакции на стресс активация иммунной функции не перерастет в аутоиммунный процесс.

Это открытие привело к некоторому пересмотру представлений в данной области. Если стресс продолжается достаточно долго и начинает подавлять иммунитет, некоторые элементы, традиционно считавшиеся свидетельством подавления иммунитета, на самом деле оказались признаками его укрепления.

Это проявляется двумя способами. Если кто-то принимает большую дозу глюкокортикоидов или в течение многих часов подвергается действию очень мощного стрессора, то его гормоны начнут уничтожать лимфоциты без разбора, просто убивать их. Если ненамного повысить уровень глюкокортикоидов (так происходит в начале фазы В), то гормоны будут уничтожать только определенную подгруппу более старых лимфоцитов, которые и так неэффективны. На этом этапе глюкокортикоиды помогают укреплять иммунную реакцию, избавляясь от лимфоцитов, бесполезных в текущей чрезвычайной ситуации. Это является косвенным подтверждением укрепления иммунной функции.

Вторая тонкость отражает новую интерпретацию того, что люди знали испокон веков (по крайней мере во времена Селье). Как мы уже знаем, глюкокортикоиды не только уничтожают лимфоциты, но и вытесняют из крови еще оставшиеся в ней лимфоциты. Фирдаус Дабар из Университета штата Огайо решил выяснить, куда деваются иммуноциты, которые вытеснены из крови. Всегда считалось, что все они оправляются в хранилища в иммунных тканях (например, в тимус). Они дезактивируются, и от них уже нет никакой пользы. Но работа Дабара показывает, что не все они отправляются на консервацию. Глюкокортикоиды и адреналин отправляют многие из этих лимфоцитов к месту инфекции, например в кожу. То есть иммуноциты не дезактивируются, а отправляются на передовую. Поэтому, например, царапины на коже заживают быстрее.

Таким образом, в начале действия стрессора глюкокортикоиды и другие гормоны, реагирующие на стресс, ненадолго активируют иммунную систему, улучшая иммунную защиту, оттачивая ее, доставляя иммунные клетки к месту битвы с инфекцией. Но если действие глюкокортикоидов продолжается, система может промахнуться и войти в аутоиммунное состояние. Поэтому при длительном стрессе возникает обратный эффект: система возвращается к базовой линии. Во время патологического сценария, когда на организм действуют сильные и длительные стрессоры, иммунитет падает ниже базовой линии.

Эти новые открытия помогают объяснить один из самых упрямых парадоксов в этой области. Он касается аутоиммунных заболеваний.

Вот два факта об аутоиммунных процессах:

1.                       Поскольку аутоиммунные заболевания связаны с избыточной активацией иммунной системы (до такой степени, что здоровые функции и органы тела она начинает воспринимать как агрессора), самое распространенное и освященное веками лечение таких болезней состояло в том, чтобы посадить пациента «на стероиды», давая ему большие дозы глюкокортикоидов. Логика здесь очевидна: это резко подавляет иммунную систему и она больше не может нападать на поджелудочную железу, нервную систему или на какой-то другой объект своего неуместного рвения (и, как очевидный побочный эффект этого подхода, иммунная система также будет не слишком эффективно защищать пациента от реальных патогенов). Поэтому назначение больших доз гормонов стресса облегчает симптомы аутоиммунных болезней. Кроме того, выяснилось, что длительное действие сильных стрессоров снижает симптомы аутоиммунных заболеваний у лабораторных крыс.