62629.fb2
БЕЗ КОСТОЧЕК
Метод выращивания фруктов и овощей без косточек разработан в Институте генетики болгарской Академии "аук. Путем мутации генов и искусственного осеменения обычных растений получают сорта, не содержащие косточек. Для чего это нужно? Фрукты и овощи без твердого содержимого внутри лучше поддаются промышленной "ереработке и позволяют экономить Рабочую силу.
РАСТЕНИЯ НА "СОЛЕНОЙ" ДИЕТЕ
Может ли морская вода заменить пресную в орошении сельскохозяйственных культур? Для районов, в которых ощущается нехватка пресной воды, этот вопрос очень актуален.
Цикл исследований в данном направлении был проведен во Всесоюзном научно-исследовательском институте по применению полимерных материалов в мелиорации и водном хозяйстве в Елгаве. Экспериментальные работы проводились в совхозе-техникуме "Булдури" близ Риги и в совхозе "Салацгрива" Лимбажского района. Орошение производилось водой Балтийского моря либо эквивалентной ей по уровню солености.
Наиболее солеустойчивыми показали себя многолетние травы - овсяница луговая, овсяница красная, тимофеевка, мятлик луговой, люцерна; овощи - столовая, сахарная и кормовая свекла, кочанная капуста, морковь. Несколько хуже "отреагировали" на соленую воду помидоры и цветная капуста. В целом же культуры не потеряли ни в урожайности, ни в качестве конечного продукта, хотя химический состав растений и плодов несколько изменился. Не произошло существенных перемен и в агрохимических свойствах песчаной почвы. Отсюда можно сделать вывод, что для полива культур с хорошей и средней солеустойчивостью, возделываемых на супесчаных и песчаных почвах, вполне можно использовать воду Балтийского моря.
"ОРОШЕНИЕ" БЕЗ ВОДЫ
Растения, как и все живое на Земле, не могут жить без воды. И ее дают посевам: зимой-задерживая снег на полях, летом - подводя по оросительным каналам, поливая искусственным дождем. Чем теплее климат и жарче дни, тем суше почва, сильнее нагреваются листья и большей влаги требуют растения.
А нельзя ли помочь растениям лучше сохранять уже имеющуюся влагу? Такой оригинальный метод орошения без воды разработан во Всесоюзном научно-исследовательском институте гидротехники и мелиорации имени А. Н. Костякова.
Два года подряд, вызывая повышенный интерес колхозников, сотрудники института... белили листья сахарной свеклы на выделенных им участках в Чуйской долине. Конечно, все делалось на современном техническом уровне, с помощью соответствующих машин. Специально для этой цели переоборудован полевой опрыскиватель. Обработку производили суспензией гашеной извести такой слабой концентрации, чтобы она практически не влияла на кислотность почвы.
Белое поле, естественно, лучше отражало палящие солнечные лучи, листья побеленной свеклы и почва под ними нагревались слабее, а влажность в гуще растений сохранялась более высокой по сравнению с контрольными зелеными участками.
Растения благодарно реагировали на "побелку". К уборке они имели намного больше листьев, чем в контроле, да и сами листья были почти в полтора раза крупнее неокрашенных. Конечно,
свеклу ценят не за размеры ботвы. Н у хорошо развитых растений и корн добрые: урожай на опытных делянка более чем на 10 процентов превыси контрольный. Успех заметный.
СТОЛЯРНЫЙ КЛЕЙ НА ПОЛЕ
Оказывается, столярный клей-неплохой стимулятор роста. Этот эффект случайно заметили румынские биологи и уже широко проверили его на практике. Сначала нужно сварить густой бульон из хрящей, сухожилий, костей и копыт домашних животных. Когда он насытится коллагеновыми белками, то есть достигнет густоты столярного клея, варка прекращается. Затем кубический сантиметр продукта растворяют в литре воды - и стимулятор готов. Обработанные коллагеновым раствором семена овощных и зерновых культур значительно быстрее растут и более жизнеустойчивы. После опрыскивания им листьев ускоряется рост растений и сокращаются сроки созревания урожая.
ЛУК СОХРАНЯЕТ МОРКОВКУ
Выращивание нескольких, но точно определенных сельскохозяйственных
культур на одной и той же площаД^ приводит к изменению популяции вредителей. Дело в том, что взрослые насекомые направляются с целью п°"
^виться к Другим растениям, которые оказываются, однако, совсем неподкодящими для них. Обнаружив ошибку, Дедители поспешно разбегаются, не успевая подчас отложить яйца. Так, напимер, для защиты капусты хорошо ^пользовать фасоль, а моркови лук, о^орый не только отвлекает внимание редителей, но и блокирует их обоняние острым запахом.
УДОБРЯТЬ ОВЕС УГЛЕМ
Пожалуй, мало кто верил в успех эксперимента, который проводила недавно группа польских химиков. И все же конечный результат оказался убедительным: урожай овса увеличился на 30 процентов, картофеля и ячменя - на 22 процента. Культуры подкармливали необычными удобрениями-накрошенным бурым углем. В качестве топлива этот уголь не очень пригоден из-за низкой калорийности, однако содержит фосфор и кальций и вполне годится как удобрение. Кроме того, что он питает землю микроэлементами, бурый уголь улучшает структуру тяжелых почв.
ПО МАРШРУТУ ГОРОД - ПОЛЕ
^временным городам все труднее ^ Р^яться с проблемой домашнего У °Ра. Большинство предложенных
для ее решения проектов предусматривает его сжигание, что требует немалых затрат топлива. По иному пути пошли специалисты ГДР. Тщательно изучив состав отходов, коллектив исследователей пришел к выводу, что с помощью биотехнологии их можно превратить в органические удобрения. Уже разработана установка, позволяющая за год переработать 30 тысяч тонн мусора в 26 тысяч тонн "питания" для полей. Попутно всевозможные условия и фильтры возвращают народному хозяйству до тысячи тонн металла.
ЯИЧНУЮ СКОРЛУПУ
В ОЗЕРО
Шведское озеро Холмсё сильно за-. грязнено кислотными дождями и прочими современными промышленными отходами. Экологи предложили восстановить жизнь в озере, нейтрализовав его воды большим количеством извести. Местные власти нашли остроумное решение. На берегу Холмсё есть кондитерская фабрика, во дворе которой скапливается по нескольку тонн яичной скорлупы - прекрасного известкового материала. Сброшенная в озеро, скорлупа, по мнению ученых, может постепенно очистить его от промышленного загрязнения.
ПОЛЯРИЗОВАННЫЙ СВЕТ В ПРИРОДЕ
Человеческий глаз весьма чувствителен к окраске (то есть длине волны) и яркости света, но третья характеристика света, поляризация, ему практически недоступна. Мы страдаем "поляризационной слепотой". В этом отношении некоторые представители животного мира гораздо совершеннее нас. Например, пчелы различают поляризацию света почти так же хорошо, как цвет или яркость. И так как поляризованный свет часто встречается в природе, им дано увидеть в окружающем мире нечто такое, что человеческому глазу совершенно недоступно. Человеку можно объяснить, что такое поляризация, с помощью специальных светофильтров он может увидеть, как меняется свет, если "вычесть" из него поляризацию, но представить себе картину мира "глазами пчелы" мы, видимо, не можем (тем более что зрение насекомых отличается от человеческого и во многих других отношениях).
Поляризация - это ориентированность колебаний световой волны в пространстве. Эти колебания перпендикулярны направлению движения луча света. Элементарная световая частица (квант света) представляет собой волну, которую можно сравнить для наглядности с волной, которая побежит по канату, если, закрепив один его конец, другой встряхнуть рукой. Направление колебаний каната может быть различным, смотря по тому, в каком направлении встряхивать канат. Точно так же и направление колебаний волны кванта может быть разным. Пучок света состоит из множества квантов. Если их
колебания различны, такой свет не ляризован, если же все кванты име^ абсолютно одинаковую ориентаций свет называют полностью поляризова ным. Степень поляризации может бы различной в зависимости от того как доля квантов в нем обладает одинаковой ориентацией колебаний.
Существуют светофильтры, пропускающие только ту часть света, волны которой ориентированы определенным образом. Если через такой фильтр смотреть на поляризованный свет и при этом поворачивать фильтр, яркость пропускаемого света будет меняться. Она будет максимальна при совпадении направления пропускания фильтра с поляризацией света и минимальна при полном (на 90 градусов) расхождении этих направлений. С помощью фильтра можно обнаружить поляризацию, превышающую примерно 10 процентов, а специальная аппаратура обнаруживает поляризацию порядка 0,1 процента.
Поляризационные фильтры, или поляроиды, продаются в магазинах фотопринадлежностей. Если через такой фильтр смотреть на чистое голубое небо (при облачности эффект выражен гораздо слабее) примерно в 90 градусах от направления на Солнце, то есть чтобы Солнце было сбоку, и при этом фильтр поворачивать, то ясно видно, что при некотором положении фильтра на небе появляется темная полоса. Это свидетельствует о поляризованности света, исходящего от этого участка неба. Поляроидный фильтр открывает нам явление, которое пчелы видят "простым глазом". Но не надо думать, что пчелы видят ту же темную полосу на небе. Наше положение можно сравнить с положением полного дальтоника, человека, неспособного видеть цвета. Тот, кто различает только черное, белое и различные оттенки серого цвета, мог бы, смотря на окружающий мир попеременно через светофильтры раз' личного цвета, заметить, что картина мира несколько меняется. Например)
вз красный фильтр иначе выглядел ^ красный мак на фоне зеленой тра^ерез желтый фильтр стали бы "" ^ выделяться белые облака на мбом небе. Но фильтры не помогли ^дальтонику понять, как выглядит о человека с цветным зрением. Так емк цветные фильтры дальтонику, оляризационный фильтр может лишь подсказать нам, что у света есть каДое-то свойство, не воспринимаемое
глазом. Поляризованность света, идущего от
голубого неба, некоторые могут заметить и простым глазом. По данным известного советского физика академика С. Вавилова, этой способностью обладают 25-30 процентов людей, хотя многие из них об этом не подозревают. При наблюдении поверхности, испускающей поляризованный свет (например, того же голубого неба), такие люди могут заметить в середине поля зрения слабо-желтую полоску с закругленными концами. Еще слабее заметны голубоватые пятнышки в ее центре, по краям. Если плоскость поляризации света поворачивается, то поворачивается и желтая полоска. Она всегда перпендикулярна к направлению световых колебаний. Это так называемая фигура Гайдингера, она открыта немецким физиком Гайдингером в 1845 году. Способность видеть эту фигуру можно развивать, если хотя бы раз удастся ее заметить. Интересно, что еще в 1855 ГОДУ, не будучи знакомым со статьей Гайдингера, напечатанной за девять лет до того в одном немецком физическом журнале, Лев Толстой писал ("Юность", глава XXXII): "...я невольно оставляю книгу и вглядываюсь в растворенную Дверь балкона, в кудрявые висячие ветви высоких берез, на которых уже заходит вечерняя тень, и в чистое небо, ^ котором, как смотришь пристально, вдруг показывается как будто пыльное ^"товатое пятнышко и снова исчеза^"- " Такова была наблюдательность великого писателя. ^"Уру Гайдингера можно увидеть
гораздо яснее, если смотреть через зеленый или синий светофильтр.
Поляризация света неба была открыта в 1871 году (по другим источникам, даже в 1809 году), но подробное теоретическое объяснение этого явления было дано лишь в середине нашего века. Тем не менее, как обнаружили историки, изучавшие древние скандинавские саги о плаваниях викингов, отважные мореходы почти тысячу лет назад пользовались поляризацией неба для навигации. Обычно они плавали, ориентируясь по Солнцу, но, когда светило было скрыто за сплошной облачностью, что не редкость в северных широтах, викинги смотрели на небо через специальный "солнечный камень", который позволял увидеть на небе темную полоску в 90 градусах от направления на Солнце, если облака не слишком плотны. По этой полосе можно судить, где находится Солнце. "Солнечный камень" - видимо, один из прозрачных минералов, обладающих поляризационными свойствами (скорее всего распространенный на севере Европы исландский шпат), а появление на небе более темной полосы объясняется тем, что, хотя за облаками Солнца и не видно, свет неба, проникающий через облака, остается в какой-то степени поляризованным. Несколько лет назад, проверяя это предположение историков, летчик провел небольшой самолет из Норвегии в Гренландию, пользуясь в качестве навигационного прибора только кристаллом минерала кордиерита, поляризующего свет.
Уже говорилось, что многие насекомые в отличие от человека видят поляризацию света. Пчелы и муравьи не хуже викингов пользуются этой своей способностью для ориентировки в тех случаях, когда Солнце закрыто облаками. Что придает глазу насекомых такую способность? Дело в том, что в глазе млекопитающих (и в том числе человека) молекулы светочувствительного пигмента родопсина расположены беспорядочно, а в глазе насекомого те же
молекулы уложены аккуратными рядами, ориентированы в одном направлении, что и позволяет им сильнее реагировать на тот свет, колебания которого соответствуют плоскости размещения молекул. Фигуру Гайдингера можно видеть потому, что часть нашей сетчатки покрыта тонкими, идущими параллельно волокнами, которые частично поляризуют свет.
Любопытные поляризационные эффекты наблюдаются и при редких небесных оптических явлениях, таких, как радуга и гало. То, что свет радуги сильно поляризован, обнаружили в 1811 году. Вращая поляроидный фильтр, можно сделать радугу почти невидимой. Поляризован и свет гало светящихся кругов или дуг, появляющихся иногда вокруг Солнца и Луны. В образовании и радуги и гало наряду с преломлением участвует отражение света, а оба эти процесса, как мы уже знаем, приводят к поляризации. Поляризованы и некоторые виды полярного сияния. Наконец, следует отметить, что поляризован и свет некоторых астрономических объектов. Наиболее известный пример - Крабовидная туманность в созвездии Тельца. Свет, испускаемый ею,- это так называемое синхротронное излучение, возникающее, когда быстро летящие электроны тормозятся магнитным полем. Синхротронное излучение всегда поляризовано.
Вернувшись на Землю, отметим, что некоторые виды жуков, обладающие металлическим блеском, превращают свет, отраженный от их спинки, в поляризованный по кругу. Так называют поляризованный свет, плоскость поляризации которого закручена в пространстве винтообразно, налево или направо. Металлический отблеск спинки такого жука при рассмотрении через специальный фильтр, выявляющий круговую поляризацию, оказывается левозакрученным. Все эти жуки относятся к семейству скарабеев. В чем биологический смысл описанного явления, пока неизвестно.
КОГДА ЖЕЛЕЗО ОГНЕОПАСНО
Морякам известны случаи самовозгорания груза. Такое бывает, например, с зерном. Пожары вызываются особыми микроорганизмами. Размножившись в толще зерна, микробы потребляют его жировые вещества, причем из-за активной деятельности микробов масса зерна сильно разогревается и может загореться. Но чтобы пожар на судне был вызван грузом железа такое трудно себе представить. Однако такие случаи бывают. Д
В гавань города Вишакхапатнам, рас^ положенного на восточном побережь^ Индии, вошло Панамское грузовое суд-j но "Сэникс Эйс". Когда открыли судовые люки, из трюмов пахнуло палящи*/ жаром. В трюмах находились пористые гранулы железа, служащие полуфабри^ катом для производства стали. Залить трюмы, в которых находился груз, во-' дои оказалось невозможно, так как судно и без того было перегружено. Из него выгрузили все, что удалось, и отбуксировали за пределы порта. Около пятисот тонн гранул, оставшихся в трюмах, продолжали тлеть почти месяц. Использованные для тушения пожара средства - вода, пена и огнегасящий порошок - оказались малоэффективными.
Подробно документирован случай самовозгорания железа на борту греческого грузового судна "Агиос Гиоргис". Большая часть трюмов судна была загружена такими же пористыми гранулами с большим содержанием чистого железа. В порту назначения обнаружилось, что температура в трюмах суд-1 на превысила 65 градусов, а еще через j
несколько часов она перевалила за 100 градусов. В последующие дни температура поднялась до 540 градусов. Спешно произвели подсчеты и установили, что обшивка корабля сдаст при температуре около 700 градусов. Было решено освободить от груза три трюма, температура в которых оказалась самой высокой. Остальные трюмы залили водой. После этого температура постепенно снизилась до 90 градусов, и "Агиос Гиоргис" взял курс на близлежащий город, в порту которого и был разгружен. Во время разгрузки было замечено, что гранулы, уже более десяти дней находившиеся под водой, на открытом воздухе вновь начали тлеть и дымиться.
Чем же объяснить эти странные случаи?
Один из самых ярких и запоминающихся опытов в школьном курсе химии горение стальной проволоки. Ее конец раскаляют на огне и опускают в колбу с кислородом. В достаточно большом объеме кислорода может сгореть и крупный железный предмет. Например, во время пожара, случившегося на одном химическом заводе в конце прошлого века, от нагревания бочек с бертолетовой солью выделилось много кислорода, так что весь завод оказался в среде с повышенным содержанием этого газа. Горели даже стальные лебедки.