62646.fb2 Эйнштейн - читать онлайн бесплатно полную версию книги . Страница 7

Эйнштейн - читать онлайн бесплатно полную версию книги . Страница 7

Как мог он всю войну оставаться в стране, которую заклеймил позором? Работать в своем кабинете, ходить по этим улицам, где возгласы людей, которых он столь решительно покинул в свое время, раздавались, точно военные кличи или крики боли. Можно с легкостью заключить, что теперь для Эйнштейна было важно только одно: воздвигнуть памятник мысли, а его юношеский бунт ничего не значил по сравнению с его мечтой: произвести переворот в человеческой мысли. Прагматизм — тоже добродетель. Можно говорить об измене юношеским мечтам, даже о трусости. Можно вообразить, что честолюбие медленно подавляет моральные принципы. Но главное — в период с 1910 по 1915 год Альберт предчувствовал, что математическая конструкция, выстраивавшаяся в его уме, станет одним из памятников человеческой мысли, получит всемирное значение.

Духовный порыв, давший толчок его мысли, не оставлял места для других чувств. Все прочие соображения — морального, философского, сентиментального порядка — следовало принести в жертву на алтарь этого собора, который он возводил. На протяжении пяти лет все нейроны его мозга горели творческим огнем. Загадку его гения, наверное, следует искать именно в этом. Убежденный одиночка приближается к разгадке тайны, которая преобразит всё человечество. Париж стоит мессы[50], Берлин — теории относительности, забвения юношеского бунта, уничтожения семьи. Будущее докажет, что как только его труд был свершен, приверженность к общим и семейным ценностям, к гуманизму снова взяла верх. Наверное, только этот дуализм научного гения, выходящего за рамки общепринятых убеждений и гуманизма, с риском для жизни оставит в коллективной памяти образ уникального ума. Вот человек, ломающий догмы, показывающий язык устоявшимся аксиомам и заново создающий концепцию Вселенной.

1915 год. Эйнштейн вынужден укрыться в своих пределах, которые хорошо знает, где чувствует себя как дома. В своем внутреннем изгнании Эйнштейн посвящает себя исследованиям. Он знает, что не сможет переломить ход событий, и предается более высокому, но и более доступному ему устремлению: изменить представление о мире, найти закон, который руководит ходом планет, сформулировать закон гравитации. Весь 1915 год, среди лишений войны и полнейшего хаоса чувств, Эйнштейн одержим неким творческим безумием. Это состояние транса похоже на то, в какое он впал десятью годами раньше, во время написания пяти основополагающих статей. В ноябре ученый изложил в трех работах свою общую теорию относительности. Сформулировал уравнения гравитационного поля (уравнения Эйнштейна). В 1916-м круг замкнулся. В последней работе он завершил свою релятивистскую теорию гравитации и утвердил принцип эквивалентности между гравитационным полем и ускорением. Общая теория относительности завершена. Труд Эйнштейна закончен. Он будет вознагражден 6 ноября 1919 года в Кембридже на заседании Лондонского королевского общества — Английской академии наук.

Следует обратиться к этому творческому процессу, разъяснить его начала, чтобы понять переворот, который несли в себе эти идеи.

Общая теория относительности — это применение правил ограниченной относительности ко всем существующим системам отсчета.

Перейти от специальной теории относительности к общей — значит изобрести глобальную теорию гравитации, это значит низвергнуть Ньютона.

Это устремление заложено в концепции о том, что сила притяжения воздействует на свет. Световой луч смещается из-за гравитации. Но как сила притяжения может действовать на волну?

Еще в 1912 году Эйнштейн написал две статьи, в которых набросал основы своей теории гравитации. В 1913-м он хотел поставить свои физические теории на прочную математическую основу и упорно работал со своим другом Марселем Гроссманом, ставшим выдающимся математиком, с которым он снова встретился во время краткого пребывания в Цюрихе. Цель: создать формулу движения материальной точки, каким бы ни было гравитационное поле, воздействующее на нее. Теория 1916 года станет его самой совершенной работой, потому что она опиралась на солидные математические доводы. Он «скромно» поставит себе задачу сформулировать законы природы вне зависимости от выбранной системы пространство — время.

Математические уравнения рассчитаны. Остается проверить их опытным путем. От ограниченной относительности к общей: скачок вперед, который поможет осуществить только изучение Вселенной.

Большой скачок: выстроить теорию гравитации, применимую также и к свету. Доказать, что сила притяжения воздействует на распространение светового излучения. Воздействие гравитационного поля на свет выражается в отклонении траектории светового излучения в связи с присутствием некой массы. Отклонение светового луча под воздействием гравитационного поля, создаваемого небесным телом, — вот что утверждал Эйнштейн.

Гравитационное поле воздействует на инертные тела. Сила тяжести, притягивающая человека к Земле, воздействует на движущиеся тела. Ньютон это доказал. Но, по Ньютону, сила тяжести никак не действует на световое излучение. Эйнштейн хотел доказать, что некая масса, отстоящая на несколько тысяч километров, может отклонить световой луч — корпускулярную волну, распространяющуюся со скоростью 300 тысяч км/с. Его предположение означало, что положение видимых небесных тел не «абсолютно»: оно складывается из местонахождения тела в определенный момент его движения и воздействия гравитационного поля. Это воздействие изменяет траекторию светового луча и «искажает» наше зрительное восприятие и определение нами положения небесного тела. Во Вселенной тоже нет ничего абсолютного. По Эйнштейну, небесные тела, наблюдаемые в телескоп, движение планет — всё это оптический «обман», ни в коей мере не соответствующий реальному движению звезды или ее положению.

Короче говоря, если обобщение релятивистской теории истинно, тогда некая гигантская масса излучает поле, воздействующее на движущееся тело. Проблема в том, чтобы понять, каким образом масса излучает поле, какого рода волнами она отклоняет свет. Выражается ли гравитационное поле в «гравитационных волнах»? Существуют ли волны, излучаемые солнечной массой, которые искажают траекторию света звезд? Если теория Эйнштейна верна, они существуют. Они «излучаются» всеми телами в мире. Значит, их можно улавливать. Но если они оказывают ничтожно малое воздействие (в доли секунды) на огромные скорости, значит, они одновременно малочисленны и трудно улавливаемы. Этот вопрос, поставленный позже открытием Эйнштейна, и сегодня бросает вызов современной науке. Как уловить «гравитационные волны»? В Италии построили огромные одномерные датчики для их измерения. Ничего не удалось записать до сих пор. И всё же эти волны существуют[51]. Европейское космическое агентство собирается запустить в космос огромный датчик с единственной целью: сделать запись хотя бы одной гравитационной волны[52]. Альберт по-прежнему держит в напряжении умы…

В 1910-х годах Эйнштейн хотел просто подтвердить свою общую теорию. Отклонение солнечного луча, пришедшего из космоса, под воздействием некой массы. Воздействие силы притяжения на свет.

В процессе поисков будет разрешена загадка, не дававшая покоя физикам со времен Кеплера. Эта тайна занимала Ньютона всю его жизнь: секрет, заключенный в орбите Меркурия. Вопрос о смещении перигелия[53] этой планеты.

В начале XVII века великий физик Кеплер описал орбиту Меркурия как эллипс. Но вот необъяснимая странность: орбита не вполне эллиптическая. В конце каждого оборота планета не возвращается в «исходную» точку. При каждом обороте точка перигелия смещается.

И Ньютон исследовал движение Меркурия, смещение перигелия.

Астрономы измерили «опережение» в 1,38 дуговой секунды при каждом обращении.

Чтобы объяснить это смещение, Ньютон опирался на собственную теорию гравитации. Она основывалась на том, что одни тела притягивают другие с силой, обратно пропорциональной расстоянию между ними и прямо пропорциональной их массе. Ньютон выдвинул гипотезу о том, что Юпитер, самая большая из планет, воздействует своей массой на Меркурий, одну из самых маленьких планет Солнечной системы. Юпитер «притягивает» к себе Меркурий при каждом обращении вокруг Солнца, вот почему перигелий смещается.

Ньютон произвел свои расчеты.

Эйнштейн знал приблизительную массу каждой планеты. В ответе уравнения получилось смещение в 1,28 секунды при каждом обороте. Но астрономы говорили о 1,38 секунды. Оставалась разница в 0,1 секунды. Цифра может показаться смешной, но в масштабе Вселенной разница громадная, способная потрясти основы ньютоновской теории. Ньютон заблуждался. Ни он, ни один из его современников или последователей не объяснили этой погрешности в расчетах.

Ньютон даже предположить себе не мог, что свет может подвергаться воздействию силы тяжести. Свет — не яблоко.

У многих поколений астрономов и физиков голова шла кругом от орбиты Меркурия. В 1910 году было отмечено, что отклонение света вблизи Солнца составляет 0,84 дуговой секунды, но никто не мог объяснить почему. В 1914–1915 годах Эйнштейн заново провел свои расчеты в свете новой теории и наконец дал ответ: свет тоже подвержен воздействию гравитационного поля.

Дав революционное объяснение опережению перигелия Меркурия, он привел величину отклонения, которой теперь следовало ожидать. Свет, проходящий по краю Солнца, должен отклоняться под углом в 1,75 секунды под воздействием притяжения этого небесного тела.

Но его релятивистскую теорию гравитации можно доказать только опытным путем, путем «наблюдений». Свет, излучаемый Солнцем, — словно лаборатория «в полный рост», где можно проводить измерения. Доказательство отклонения световых лучей гравитационным полем Солнца станет определяющим для того, чтобы разделить теорию Ньютона и теорию Эйнштейна. Абсолютное и относительное.

Судя по массе Солнца, оно обладает гигантским гравитационным полем. Это поле позволяет ему притягивать к себе планеты Солнечной системы обратно пропорционально квадрату расстояния между ними и их весу. Солнце притягивает планеты. Если Эйнштейн прав, масса Солнца будет также воздействовать на свет, изгибать его, искажать. Любой световой луч, посланный звездой, отклонится от заданной траектории, проходя мимо Солнца. Видимое положение звезды отличается от того, каким оно казалось бы в отсутствие солнечной массы.

Отклонение достигает максимальной величины, когда луч света проходит вблизи Солнца, и уменьшается с расстоянием. Но свет Солнца ослепляет и не позволяет произвести замеры. Только во время затмения сияние светила будет приглушено и можно будет разглядеть ближайшие к краю диска звезды.

Смещение положения видимых звезд будет бесконечно малым. И всё же будет возможно сравнить фотографию, сделанную во время затмения, с другим снимком, снятым позже, вне присутствия Солнца. Изменение положения звезд на двух снимках позволило бы подтвердить эффект присутствия солнечной массы, воздействие гравитации на свет.

Иначе говоря, отклонение света гравитационным полем может стать очевидным и быть измерено. «Достаточно» будет изменить видимое изменение положения звезды между первым снимком (во время затмения) и вторым (вдали от затмения).

Молодой немецкий астроном Эрвин Фрейндлих, младший сотрудник Берлинской обсерватории, был заворожен гипотезой Эйнштейна. Он захотел стать тем человеком, который докажет этот тезис и совершит переворот в науке. В июле 1914 года он отправился в экспедицию из Берлина к Северному полюсу. Но планы отчаянного астронома были сорваны продвижением русской армии к немецкой границе.

К 1917 году теории Эйнштейна снискали международную известность. Ставка была высока. Подтверждение этих принципов отменило бы ньютоновский закон всемирного тяготения. Берлинские ученые пытаются предотвратить поражение в войне, которое стало неминуемым после вступления в нее США. Жители Берлина испытывают лишения. Всюду нищета. Соединенное Королевство, хотя и участвует в войне, всё же пострадало меньше остальной Европы. В Кембридже поняли значение работ Эйнштейна. Там увлечены относительностью. Королевское астрономическое общество, подталкиваемое сэром Фрэнком Дайсоном[54], решило устроить экспедицию, чтобы проверить теорию Эйнштейна во время большого затмения, которое должно состояться в мае 1919 года. Опыт в масштабах Галактики, основанный на одном-единственном предположении одного человека! Президенту Королевского астрономического общества нужно найти обоснование для колоссальных затрат на столь непредсказуемый опыт, построенный на интуиции кабинетного ученого, к тому же еще и немца. В его представлении, масштабность экспедиции, несомненно, оправдана важностью вопроса, на который даст ответ этот опыт: узнать, подвержен ли свет воздействию гравитации, что имеет фундаментальное значение для исследования Вселенной.

В 1918 году две экспедиции отправились к экватору, где солнечное затмение можно будет наблюдать яснее всего. Первую, в африканскую Гвинею, возглавил профессор Эддингтон, вторую, на северо-восток Бразилии, — Дэвидсон.

В назначенный день астрономы направили свои инструменты к небу. Но погода подкачала. Небо затянуло тучами, сделать хорошие снимки было сложно. И там, и здесь опасались неудачи. Неужели всё было затеяно впустую? В момент времени t, в секунду t' на двух противоположных сторонах Земли щелкнули затворы фотоаппаратов. Удалось сделать только две серии снимков. Лагерь сворачивали без особого энтузиазма. Следующее солнечное затмение будет в 1922-м…

Через несколько недель экспедиции вернулись. Пленки отдали в проявку, молясь о том, чтобы свершилось чудо.

Пока проявляли снимки, в голове стучал один вопрос, ставка была колоссальной: будет ли отклонение световых лучей и какое? Дурной знак: двум экспедициям, которые должны были наблюдать затмение 29 мая 1919 года, удалось сделать только два отчетливых снимка!

Два единственных получившихся снимка наложили друг на друга. Измерили гипотетическое смещение положения каждой звезды.

Уравнения Эйнштейна приводили четкие цифры, с точностью до секунды. Сравнение с результатами измерений, сделанных астрономическими приборами, не оставит никаких сомнений. Эйнштейна ославят как очковтирателя или провозгласят величайшим ученым тысячелетия.

6 ноября 1919 года Королевское общество представило результаты экспедиции и сопоставление с цифрами, предсказанными в уравнениях Эйнштейна.

Средняя величина отклонения света заключена в интервале от 1,98 до 1,61… Предсказания Эйнштейна подтвердились.

Свет отклонился от своего направления в соответствии с новым законом тяготения. Загадка опережения перигелия Меркурия наконец-то разъяснена![55]

Эйнштейн прав. Ньютон пал.

Новость распространилась в мгновение ока. От Берлина до Нью-Йорка прославляли новую теорию, перевернувшую общепринятые представления о движении Вселенной, о пространстве и времени.

Вечером того дня, когда было возвещено о научной революции, из которой он вышел победителем, первым человеком, узнавшим новость от самого Эйнштейна, стала его тяжелобольная мать, лежавшая в больнице в Люцерне. Паулина Эйнштейн отправилась в Берлин, чтобы разделить минуту радости со своим сыном. Счастье продлится недолго.

Мать Альберта, самая дорогая для него женщина, угаснет через несколько недель после триумфа ее сына…

В ПУТЬ К СЛАВЕ

«Наш Исаак Ньютон повержен!» — надрывались на улицах Лондона мальчишки-газетчики 7 ноября 1919 года. Эйнштейн на первой полосе журнала «Тайм»! Три дня спустя, увидев шапку «Нью-Йорк тайме» на Медисон-авеню, американцы узнали о свершившейся революции: свет падает косо! Это доказали, наблюдая за небом в глухом лесу по ту сторону экватора. Читатель с изумлением узнал, что все его прежние познания — наши представления о пространстве и времени — оказались ложны. Евклидову геометрию, которую учат в старших классах, — на свалку, ньютоновский закон всемирного тяготения — на помойку! Всё, чему учили из поколения в поколение, попрано ногами. Авторы редакционных статей, специалисты утверждали, что гений по имени Эйнштейн на этом не остановится. За отклонением света под действием гравитации последует отклонение времени в результате притяжения. Мысль гения пытались разъяснить упрощенными схемами: если ты находишься в покое по отношению к центру притяжения, время течет тем медленнее, чем ближе ты к этому центру. В комнате, например, время течет медленнее на полу и быстрее под потолком!

Заговорили об идеальном мире без силы тяжести.

Появился термин «принцип эквивалентности».

Сила тяготения заставляет отклоняться от своего пути свет, а не только планеты.

Гравитация растягивает время.

Пространство искривлено.

Материя — не материя, а искривление нового измерения: пространства-времени.