63937.fb2 Бег за бесконечностью - читать онлайн бесплатно полную версию книги . Страница 14

Бег за бесконечностью - читать онлайн бесплатно полную версию книги . Страница 14

На этот вопрос пока не существует окончательного ответа. Ведь мы не знаем еще, как выглядит полностью удовлетворительная теория адронов, а только такая теория будет способна согласовать между собой все известные из опыта данные, превратить множество отдельных набросков в полную картину строения частиц.

Однако само по себе сильное различие в трех картинах адронной структуры не служит основанием для каких-то противоречий между ними. Ведь представления о кварковой и партонной структуре и об адроне-облаке первоначально были развиты на основе несколько разных экспериментов и являются как бы разными проекциями одного объекта.

Скажем, профессиональный фотограф способен снять какой-либо предмет совершенно различным образом, так что почти никто и не догадается, что на двух фотографиях запечатлен, например, один и тот же мотоцикл. В одном случае обычная «Ява» будет похожа на себя, а в другом — на техническое чудо внеземной цивилизации. Все дело, как говорится, в ракурсе…

Современная точка зрения на структуру адронов сводится к тому, что все три картины их строения, в принципе, могут быть согласованы.

Попробуем теперь несколькими штрихами набросать ту приближенную схему, которую можно было бы назвать «адрон в разрезе». Для определенности будем говорить о протоне.

Итак, начнем с внешней оболочки. Она наиболее плотная и состоит из множества виртуальных мезонов. Эти мезоны непрерывно рождаются и гибнут и создают нечто вроде пульсирующего облака размером около 10–13 сантиметра. Наряду с мезонами и несколько глубже их могут существовать более тяжелые виртуальные частицы, скажем, пары протон — антипротон и т. д.

Если перенестись сразу к центру адрона, то там мы обнаружим три кварка — два пэ-кварка и один эн-кварк, которые обеспечивают определенное зарядовое состояние протона. Как вы помните, его электрический и барионный заряды равны плюс единице каждый, а «странность» равна нулю.

Таким образом, внешняя оболочка из виртуальных адронов полностью нейтральна — ее электрический, барионный и прочие заряды должны быть в среднем равны нулю, чтобы не нарушать привилегии кварков, которые и определяют величины наблюдаемых зарядов.

Эти три кварка в центре протона часто называют валентными именно потому, что они полностью задают заряды протона и определяют тем самым многие «правила игры», то есть ряд закономерностей, которым следует протон, взаимодействуя с другими частицами.

Такая аналогия заимствована из химии, где валентность атомов задает основные законы химических реакций. Правда, данной аналогией не стоит особенно увлекаться. В химии валентность связана просто с числом электронов во внешней оболочке атомов. Скажем, натрий (Na) имеет во внешней оболочке один электрон и активно стремится ее заполнить еще семью электронами. Поэтому он охотно вступает в контакт с хлором (Сl), имеющим во внешней оболочке как раз семь электронов. В результате соединения у атомов натрия и хлора образуется как бы единая внешняя оболочка из восьми электронов, а мы благодаря этим электронным правилам получаем необходимый продукт поваренную соль (NaСl).

Пока неизвестно, образуются ли настоящие кварковые молекулы, то есть существуют ли элементарные частицы, состоящие из нескольких кварковых атомов. Скажем, если протон рассматривать как трехкварковый атом, тогда атомные ядра, состоящие из протонов и нейтронов, в определенном смысле можно считать кварковыми молекулами. Как вы помните, например, дейтрон в некоторых случаях ведет себя как шестикварковая система.

Однако в одном отношении химическая аналогия, несомненно, полезна. Раз есть валентные кварки, значит, должны быть и какие-то невалентные!

Действительно, наряду с тремя кварками, определяющими все заряды протона, необходимо ввести в нашу картину еще множество кварков и антикварков, которое так и называют — кварковым морем. Кварковое море формирует свою оболочку, которую условно можно поместить между внешней, состоящей из виртуальных адронов, и центральной областью, где заключены валентные кварки. В этой же оболочке находятся глюоны — переносчики взаимодействия между кварками.

Разумеется, кварковое море и внешняя оболочка должны быть в целом полностью нейтральны — ведь все зарядовые свойства протона определяются именно валентными кварками.

Необходимость в промежуточной оболочке связана с простыми соображениями, следующими из теории относительности. Как вы помните, мы не можем утверждать просто, что «протон состоит из трех кварков» — это лишь удобная форма представления о его зарядах. Протон с определенной вероятностью может включать в себя не только три валентных кварка, но и сколь угодно большое количество кварк-антикварковых пар. Если бы рождались реальные кварки, то из протона можно было бы выбивать не обязательно три, но и пять, семь и более кварков, лишь бы при ударе выделялась достаточно большая энергия.

Теперь на основе трехслойной структуры — виртуальные адроны, кварковое море, валентные кварки — получается довольно логичная картина протона.

Валентные кварки играют роль тех самых партонов, которые видны электрону, пытающемуся проникнуть в самую сердцевину протона. Электроны, которые проникли не столь глубоко, могут рассеиваться на кварках-партонах из кваркового моря. Если же электрон только скользит по поверхности протона, он чувствует только внешнюю оболочку из виртуальных адронов и естественно, что протон предстает перед ним как рыхлое облако определенных размеров.

Нечто подобное происходит и при рассеянии протонов друг на друге. Если они пролетают на достаточно большом расстоянии (между центрами) друг от друга, то взаимодействуют главным образов внешними оболочками и при этом формируются довольно сложные закономерности рассеяния «размазанных» объектов. Если же протоны испытывают лобовой удар и буквально вынуждены пройти друг сквозь друга, то непременно сталкиваются их валентные кварки, а сами они разлетаются на большие углы, следуя за своей кварковой сердцевиной.

Нарисованная схема устройства протона, конечно очень упрощена, но, как вы видите, она помогает связать единым образом различные структурные представления о нем.

Эта схема полезна и еще в одном отношении. Обратите внимание, что по мере движения из внутренних областей адрона во внешние мы встречаем все более усложняющиеся частицы.

Если в центре протона находятся три бесструктурных кварка, то следующая промежуточная оболочка включает в себя множество кварков, которые могут образовывать всевозможные комбинации: пары кварк — антикварк, тройки кварков и антикварков. Это, в сущности, кварковые атомы — сердцевины возможных адронов.

Между кварковым морем и внешней оболочкой виртуальных адронов, конечно, не существует резкой границы. Видимо, условное пограничье между морем и внешней оболочкой определяется тем, что большинство морских кварков (физики так и называют кварки из моря!) комбинируются в зародыши будущих частиц, своеобразные кварковые атомы. Виртуальные адроны из внешней оболочки уже обладают каждый своими зарядами, то есть кварковой сердцевиной. Скажем, всякий виртуальный мезон можно рассматривать как комбинацию кварка и антикварка, а каждый виртуальный барион — как комбинацию из трех кварков.

Более того, каждая виртуальная частица из внешней оболочки протона, видимо, успевает обзавестись и собственным кварковым морем (по крайней мере, собственным озером). Поэтому она ведет себя почти как реальная частица, но, чтобы стать по-настоящему реальной, она должна получить энергию извне. Именно это и происходит в результате соударения, например, двух протонов — в среднем половина энергии столкновения уходит на образование новых адронов. Эта энергия в основном и расходуется на формирование реальных частиц.

Итак, получается, что во внешней оболочке протона свободные кварки практически отсутствуют, хотя в центре нет ничего, кроме кварков. Видимо, законы взаимодействия кварков устроены таким образом, что сами кварки просто не могут поодиночке выходить наружу. Например, очень велика вероятность того, что кварк, попытавшийся вырваться из адрона самостоятельно, просто будет захвачен и увлечен в кварковое море одной из частиц внешней оболочки. Оказывается, что эта вероятность велика настолько, что отдельный кварк не способен пройти без захвата расстояние порядка размера протона, то есть не может выскочить наружу в виде реальной частицы.

Вот как хитро может быть устроена «адронная темница» для кварков! Кварк словно мощной резиновой лентой привязан к другим кваркам.

Действительно, валентные кварки практически движутся свободно в центре адрона. В кварковом море взаимодействие между ними тоже не очень сильно. Но оно резко усиливается, когда какой-либо кварк пытается отойти от других на большое расстояние. Силы, действующие между кварками, могут стать столь же большими, как и силы, действующие между адронами, если не больше! И такой кварк просто не сможет прорваться сквозь плотную среду виртуальных адронов внешней оболочки.

Теперь длительный неуспех в поисках реальных кварков может показаться не столь уж удручающим. Они могут быть полностью или почти полностью заперты в адронах и, тем не менее, рассматриваться… как реальные частицы.

Нет ли здесь противоречия? Как можно считать реальными частицы, которые не то что не оставляют следов, но и вообще не способны выделиться в чистом виде? Что за необычные силы могут действовать между кварками?..

И вправду, накопилось множество вопросов, которые связаны с новыми представлениями, сформировавшимися в физике буквально за последнее десятилетие. Пора обсудить, что же нового мы можем сказать сегодня о законах сил, действующих между частицами, и о том, какие частицы и в каком смысле следует считать реальными…

Что делать с эталонами и аналогиями?

Итак, основная проблема связана с пониманием природы сил, действующих между частицами и внутри частиц.

Современная физика имеет дело с четырьмя различными типами взаимодействия, которые резко отличаются по интенсивности — сильными, электромагнитными, слабыми и гравитационными. Начнем с конца.

Гравитационные взаимодействия определяют структуру планетных систем, галактик и, видимо, вселенной в целом, но в микромире они практически не заметны. Во всяком случае, считается, что на данном этапе исследования процессов с элементарными частицами этими силами можно пренебречь.

Три остальных типа взаимодействия, несомненно, играют существенную роль в устройстве микромира, но до настоящего времени ни одно из них не получило последовательной и удовлетворительной теоретической трактовки. Причины такого положения дел очень интересны и отнюдь не лежат на поверхности.

В каждый период развития физики формировался определенный эталон в понимании механизма взаимодействия.

До недавнего времени таким эталоном в физике микромира, несомненно, была квантовая электродинамика — квантовая теория взаимодействия элементарных электрических зарядов с электромагнитным полем. Эта теория приобрела несколько выделенное положение отчасти по наследству благодаря хорошему развитию классической электродинамики.

Сильные и слабые взаимодействия элементарных частиц были открыты и подверглись глубокому исследованию значительно позже, чем электромагнитные. Поэтому естественно, что именно электродинамика стала первым своеобразным эталоном для построения любой другой теории.

Взаимодействие согласно квантовой электродинамике осуществляется при испускании или поглощении квантов электромагнитного поля — фотонов электронами или другими электрически заряженными частицами. Таким образом, в простейшем случае взаимодействие между двумя заряженными частицами происходит за счет обмена фотоном. В принципе возможен обмен и не одним, а двумя, тремя и большим количеством фотонов, но такие процессы будут менее вероятны. Вероятность испускания каждого фотона приближенно характеризуется безразмерной величиной, которая равна отношению квадрата элементарного электрического заряда (е) к произведению постоянной Планка (h) на скорость света (с):

a = e2/ hc ~ 1/137

Эта чрезвычайно важная физическая величина часто называется константой связи электромагнитных взаимодействий.

Тот факт, что она мала по сравнению с единицей, значительно облегчает все расчеты в квантовой электродинамике и упрощает конкретные модели тех или иных процессов. Благодаря малости константы связи теоретикам удалось построить хорошие методы расчета различных наблюдаемых характеристик электромагнитных взаимодействий, и их результаты на сегодняшний день превосходно согласуются с экспериментальными данными.

Казалось бы, если есть такое согласование, то все хорошо. Но теоретики на этом не остановились — они решили проверить, сохранится ли столь приятная картина и в дальнейшем, то есть при переходе к сколь угодно малым расстояниям, на которых происходит взаимодействие. Исследуя эту проблему, советские физики Л. Ландау, И. Померанчук и другие пришли к неутешительному выводу, что квантовая электродинамика в ее современной форме вообще неприменима к описанию процессов, происходящих с участием бесструктурных точечных электронов на очень малых расстояниях. Конкретно их результаты сводились к весьма парадоксальному положению: при попытке описать поведение зарядов и квантов электромагнитного поля в очень малых областях пространства оказывалось, что взаимодействие на больших расстояниях… исчезает!

Конечно же, этот факт противоречит известным результатам наблюдений и должен рассматриваться как своеобразный способ доказательства «от противного», доказательства того, что электродинамика не является полностью удовлетворительной теорией и должна быть существенно изменена для описания процессов при очень высоких энергиях и на очень малых расстояниях. В чем же суть полученных противоречий?

А в том, что представления электродинамики требуют рассмотрения особого типа объектов — виртуальных частиц.

Виртуальные частицы обычно имеют те же названия, что и реальные, скажем, фотоны или электроны, но обладают одним важным свойством, отличающим их от реальных частиц, — они испускаются и поглощаются непосредственно в микроскопически малой области взаимодействия и никогда не вылетают наружу и не регистрируются макроскопическими приборами. Скажем, электрон в процессе движения может как бы взаимодействовать сам с собой, испуская и тут же поглощая фотоны. В свою очередь, фотон может превратиться в пару, состоящую из электрона и позитрона, которые сразу же, вслед за образованием, снова аннигилируют, превращаясь в фотон.

Благодаря этим процессам реальный электрон должен непрерывно излучать и поглощать фотоны — он словно одевается в своеобразную «шубу» из виртуальных фотонов и электрон-позитронных пар. Чем глубже мы пытаемся проникнуть к центру электрона, тем более плотной становится его «шуба». На достаточно больших расстояниях электрон выглядит как точечный объект, несущий определенный электрический заряд. Но когда мы попытаемся узнать заряд «голого» электрона, без всякой «шубы» из виртуальных частиц, то есть настоящего точечного электрона, то окажется, что этот заряд бесконечно большой.

Такое положение крайне неудовлетворительно. Ведь физика всегда имела дело с зарядами, обладающими конечными — пусть очень большими, но конечными — значениями. А тут получается совершенно неприемлемое бесконечное значение. Можно ли избежать этой неприятности?

Оказывается, можно, но весьма дорогой ценой. Можно просто считать, что электрический заряд «голого» электрона, для которого как бы не существует взаимодействия с фотонами, имеет конечное значение. Но тогда неизбежно получается, что заряд реального электрона вообще должен быть равен нулю и тогда он не сумеет взаимодействовать с фотонами и другими зарядами. Такая картина формально допустима, но она противоречит известному факту — реальные электроны все-таки имеют заряды.

Итак, в любом случае — конечен заряд «голого» точечного электрона или бесконечен — мы приходим к неприемлемой картине.

Несмотря на довольно сложный характер теории, причина всех трудностей довольно проста и наглядна.

Обсудим следующий пример. Пусть в вещество, где существует равное количество положительных и отрицательных зарядов, вводится новый, скажем для определенности, отрицательный заряд. При этом равновесие между различными зарядами вещества, конечно, нарушится. Новый заряд начнет притягивать к себе заряды противоположного знака, то есть положительные. Постепенно вблизи него будут накапливаться положительные заряды, в конце концов, он окажется как бы заэкранированным и его действие на остальные заряды вещества практически прекратится.