63965.fb2 Безумные идеи - читать онлайн бесплатно полную версию книги . Страница 13

Безумные идеи - читать онлайн бесплатно полную версию книги . Страница 13

Началось систематическое изучение космических частиц. Наблюдая в камере Вильсона сотни, тысячи быстрых космических частиц, изучая форму их следов, определяя их массу, энергию, заряд и другие данные, ученые узнали, что большинство космических частиц – это ядра водорода, протоны. Меньшинство – ядра других элементов. Ученые убедились, что космические частицы не такая уж редкость. Но прежде чем они достигнут поверхности Земли, в атмосфере происходят миллиарды столкновений между ними и атомами воздуха. При этом завязываются и разрываются невидимые связи между космическими частицами и электромагнитными полями атомов.

Ведь только нам, жителям большого мира, кажется, что воздух прозрачен и бесплотен. Для космических частиц, обитательниц микромира, воздух густ, как самый дремучий лес, полон препятствий, насыщен силами притяжения и отталкивания.

Космическая частица, попав в земную атмосферу, испытывает каскад удивительных превращений. Например, столкнувшись с ядром атома азота или кислорода воздуха, она может разбить его и породить новые частицы, передав им свою энергию. Те, в свою очередь, тоже могут разбить ряд ядер. Так по мере приближения к поверхности Земли постепенно увеличится число частиц. Лавина растет, охваченная порывом этой своеобразной цепной реакции.

Наиболее прозорливые ученые поняли, что в разгадке свойств космических частиц содержится ответ не только на космические проблемы, но и на чисто земные вопросы. И в частности, в них таится возможность подхода к тайнам строения атомного ядра. Эти ученые решили использовать космические частицы как орудие для разрушения атомных ядер.

Очень хорошо, рассуждали они, что космос позаботился доставить нам частицы колоссальных энергий. Ведь мы еще не умеем у себя на Земле фабриковать такие снаряды. Используем же их в качестве своеобразного молотка, разбивающего атомы, или в качестве микроскопической бомбы, взрывающей ядра материи, – и посмотрим, что у них внутри!

Ведь при попадании первичной космической частицы' в атмосферу рождаются массы разнообразных частиц, и среди них могут быть еще неизвестные! Кроме того, космические частицы обладают такой колоссальной энергией, что, влетев в земную атмосферу, не только «сдирают» электроны с попавшихся по пути атомов, но и вдребезги разбивают ядра некоторых из них. И если суметь проанализировать процессы ядерных и электромагнитных взаимодействий при таких высоких энергиях, можно, наконец, пролить свет на структуру материи, ее элементарных частиц!

Но чтобы «взвесить» все эти вновь рожденные частицы, определить их массу, энергию, скорость, ученым приходилось быть не менее изобретательными, чем их коллеги, которые решали задачу о взвешивании Земли и других планет.

Однако техника эксперимента совершенствовалась. В помощь камере Вильсона появились и другие приборы: автоматические установки с ионизационными камерами, в которых космические частицы вызывали электрический разряд разной величины; фотоэмульсии, в которых благодаря почернению зерен серебра можно было выследить почти всех участников микроскопической катастрофы; счетчики Черенкова и различные комбинации этих приборов с радиотехническими схемами.

Постепенно ученым удалось не только «увидеть» самое космическую частицу, не только измерить ее массу, скорость и энергию.

Настал день, когда ученые увидели, как, разбив встречный атом, космическая частица родила позитрон – еще никем не виденную частицу.

Непокорный джинн

Это не было очередным открытием. Или очень интересным открытием. Или даже чрезвычайно важным открытием. Это был смерч в без того бурном океане науки. С крошечным позитроном в мир привычных образов ворвался мир античастиц. Загадочный антимир.

Молодой английский физик Поль Дирак, к имени которого теперь недаром прибавляют «гениальный», весьма интересовался электроном. Он не рассматривал его в камере Вильсона, не пытался подстеречь его встречу с квантами гамма-лучей. И не потому, что камеры Вильсона тогда не было. И не потому, что он не был знаком с работами Скобельцына. Нет, они жили и работали в одно время. Просто Дирак был «чистым» теоретиком. И все опыты с электроном он проводил в уме или на бумаге.

В то время ученые очень мало знали об отношениях электрона и электромагнитного поля и совсем ничего не знали о его внутреннем строении. Они не могли и до сих пор не могут точно сказать, что он собою представляет. То ли это точечная частица, то ли более сложный объект, обладающий определенными размерами. Имеет ли он массу или, как считал видный английский ученый Дж.Дж. Томсон, электрон представляет собою просто сгусток электрического поля. Об электроне ученые говорили только вопросами. Например, почему он не разрывается из-за отталкивания отдельных частей его заряда? Ведь одноименно заряженные тела должны отталкиваться – этот закон классической физики еще не терпел поражения. Какие же неведомые силы не дают электрону распасться?

Непонятны физикам оставались законы движения электрона как в атоме вещества, так и в свободном пространстве.

Еще в течение второго десятилетия нашего века все казалось ясным. Строение атома легко воспринималось как подобие солнечной системы – вокруг центрального ядра, как планеты вокруг Солнца, по эллиптическим орбитам движутся электроны. Но не успела начаться вторая четверть века, как от этой ясности не осталось и следа. Орбиты, придуманные Бором, оказались фикциями, и, хотя эти слова еще применялись, физики знали, что это только жаргон, условное наименование, означающее часть окрестности ядра, в которой находится электрон. Можно представить себе, что мы фотографируем быстро движущийся электрон. Даже самый быстрый затвор не даст моментальной фотографии. Если такой опыт можно было бы выполнить, на пластинке оказалось бы туманное облако, окружающее ядро. Электрон побывал в каждой точке этого облака, но в какой момент и как долго он был в данной точке, определить нельзя. Электрон ускользал из самых хитроумных математических построений, и невозможно было определить, где и с какой скоростью он движется в данный момент.

Это была какая-то чертовщина. Если бы речь шла о движении обычного камня, можно было написать целую поэму в формулах. А электрон не уживался ни в одном уравнении. Он все время вступал в противоречие с окружающей средой.

Дирак упорно пытался найти истинный закон поведения электрона, написать хотя бы уравнение его движения в свободном пространстве.

И такое уравнение он, наконец, написал. Это было в 1928 году. Но, как ни странно, на первых порах ни он сам, ни другие ученые не обрадовались этой находке. Вопрос не стал от нее яснее. Напротив...

Отрицательные рыбы

Уравнение Дирака повело себя как непокорный джинн, неосторожно выпущенный из бутылки. То, что прочли ученые в этом уравнении, показалось им, мягко выражаясь, недоразумением. Более крепким словом они не хотели обидеть автора. Наравне с реально существующим отрицательно заряженным электроном в нем занял равноправное место положительный электрон! «Не парадокс ли это?» – думал невольный виновник этого странного открытия. Дирак вовсе не искал эту частицу. Он даже не подозревал о ее существовании.

Таких частиц в природе вообще никто не встречал. Если обычный электрон отталкивается от отрицательно заряженного тела, новый, дираковский электрон должен им притягиваться. Если в магнитном поле «старый» электрон побежал бы в одну сторону, «новый» свернул бы в другую. Из уравнения смотрел невиданный, удивительный, положительный электрон.

Когда ученый создавал формулу еще не познанного явления, у него в мыслях даже намека не было на столь странную частицу. Не удивительно, что прошло несколько лет, а ученый все еще ничего не мог объяснить коллегам. Как сказал один физик: «В течение нескольких лет существовал заговор молчания относительно этих неприятных решений релятивистского уравнения Дирака».

Но вскоре сомнения разрешил сам Дирак. Он вдруг вспомнил задачку, которую решал в дни студенчества.

То ли это просто легенда, то ли так было в действительности, но физики любят рассказывать, как Дирак удивил всех на рождественском конкурсе, ежегодно организуемом Кембриджским студенческим математическим обществом. Участникам конкурса была предложена, казалось, простенькая задачка. Ее, возможно, давно забыли бы и участники конкурса и сам Дирак, если бы она не послужила косвенной причиной открытия антимира. Вот эта задача. Трое рыбаков рыбачили в темную ненастную ночь.

Вместе с уловом они остались на необитаемом острове, чтобы дождаться утра. В середине ночи буря утихла, и один из рыбаков решил покинуть остров, захватив с собой свою треть улова. Ему не хотелось будить остальных. Он разделил добычу на три равные части, но при этом одна рыба осталась лишней. Выбросив ее в море и забрав свою треть, он покинул спящих. Вскоре после этого проснулся второй рыбак, который совсем не подозревал, что один из его товарищей уже ушел, и снова начал делить улов. Как и первый рыбак, он разделил всю рыбу на три равные части, и у него тоже одна рыба оказалась лишней. Выбросив эту лишнюю рыбу в море, он забрал свою часть улова и уплыл. То же сделал и третий рыбак, проснувшись несколько часов спустя: он снова поделил оставшуюся рыбу на три равные части, и опять у него оказалась одна лишняя.

От участников конкурса требовалось найти число рыб, которое удовлетворяло бы условиям этой задачи.

Каково же было изумление жюри, когда оно прочло ответ студента Дирака. По его решению, рыбаки выловили минус две рыбы! Но этот несуразный ответ удовлетворял всем условиям задачи!

Возможно, этих-то отрицательных рыб Дирак и вспомнил, когда неумолимые законы природы подсунули ему невиданную частицу. Тогда-то Дирак и представил научному миру свою странную находку и уверенно заявил, что электроны с отрицательной энергией столь же реальны, как электроны с энергией положительной. Но это не обычные электроны, а позитроны – частицы, во всех отношениях подобные электронам, но несущие положительный заряд.

Более того, ученый огорошил своих коллег предположением, что все частицы в природе существуют парами, что каждой заряженной частице соответствует своя античастица с такой же массой, но с зарядом противоположного знака. Дирак справедливо решил, что если существует пара для электрона – позитрон (так назвали антиэлектрон), то должна существовать и пара для протона. Если существуют атомы водорода, должны существовать и атомы антиводорода. То есть в природе наравне с веществом должно равноправно существовать и антивещество.

Итак, как сказал знаменитый швейцарский физик Паули, «тонкое природное чутье физика помогло Дираку начать свои рассуждения, не зная, что они приведут к теории, которая обладает точной симметрией по отношению к знаку заряда, в которой энергия всегда положительна и в которой предсказывается рождение и аннигиляция пар».

Уравнение Дирака толкало ученых на путь удивительных открытий.

Каскад сенсаций

И действительно, еще свежо было впечатление от феноменального открытия Дирака, еще памятны были годы молчания, которым деликатно обходили физики дираковское уравнение, когда американский ученый Андерсон впервые увидел след положительно заряженного электрона, рожденного в камере Вильсона при прохождении через нее космической частицы. Его путь искривлялся магнитным полем в направлении, противоположном пути обычного электрона. Все остальные признаки совпадали. Несомненно, это был тот самый позитрон, существование которого гениально предсказал Дирак.

Это было в 1932 году. Появление позитрона стало мировой сенсацией, гвоздем четвертого десятилетия нашего века. Двери в антимир были открыты. Физики ринулись открывать новые «земли». Они с упоением отдались поискам других частиц и античастиц.

Камера Вильсона решила, видно, сыграть роль рога изобилия. И вслед за первой сенсацией породила вторую, потом третью, четвертую... целый каскад новых элементарных частиц и античастиц.

Охотники за космическими частицами еще ниже склонились над своими установками. Они стали еще пристальнее рассматривать фотографии, испещренные толстыми и тонкими, еле видными и отчетливыми линиями – следами промелькнувших космических частиц и осколков разбитых атомов. Физики проявляли чудеса наблюдательности, копаясь в путанице ничего и никому, кроме них, неговорящих следов. И наконец – это было в 1936 году – Андерсон и Неддермайер разглядели еще одну, никем из людей не виденную частицу. Она двигалась проворнее протона, но солиднее электрона. Она была легче первого, но тяжелее второго. Так ее и назвали – «мезон», что значит по-гречески «промежуточный».

Судьба этой частицы очень напоминает судьбу дираковского позитрона. Мезон тоже был введен в науку пером физика-теоретика. Японский ученый Юкава в 1935 году при разработке теории ядра был вынужден ввести особое поле ядерных сил, квантами которых, по его расчету, должны являться особые частицы масса которых составляет около 200 масс электрона, то есть была примерно в 10 раз меньше массы протона.

Давно уже не было секретом, что делим не только сам атом, но и его ядро, что, когда космическая частица прямым ударом разбивала ядро, оно разлеталось на осколки – ядра более легких атомов и одиночные протоны и нейтроны. Протоны ни в ком особого интереса не вызывали. Это были давно известные ядра атомов водорода, из которых природа лепит ядра более тяжелых элементов. Нейтроны, эти нейтральные, незаряженные частицы, тоже уже были знакомы ученым. Но что являлось действительно тайной за семью печатями, так это вопрос о том, как протонам и нейтронам удается сплестись в столь прочный клубок, как атомное ядро. Ведь это не дом, где кирпичи связаны известью; не дерево, пронизанное волокнами; не живой организм из клеток. Что же это такое – атомное ядро? Что связывает его в единое целое? Короче, какова природа ядерных сил, преодолевающих электрические силы отталкивания положительно заряженных протонов?

И Юкава ответил на этот вопрос просто и гениально. Он сказал... Впрочем, представьте себе такую картину. Вдоль дороги идут двое. Не останавливаясь, они все время перебрасывают друг другу мяч. Из-за этого они не могут отойти друг от друга дальше некоторого определенного расстояния. Если издали смотреть на этих людей, то мяча не видно и можно подумать, что эти двое просто дружески беседуют, по-приятельски идут рядом и что их удерживают друг около друга некие силы притяжения.

– Подобные силы притяжения и испытывают протоны и нейтроны в атомном ядре, – сказал Юкава. – Они могут без отдыха биллионы веков «играть в мяч», перебрасываясь мезонами, пока какой-нибудь снаряд, вроде космической частицы, не нарушит это приятное занятие. Тогда, выронив «мяч», протоны и нейтроны брызнут из ядра, и оно погибнет. При этом можно обнаружить и мезоны.

Эту драматическую ситуацию ученым и удалось подстроить и подстеречь в своих приборах. Они стали свидетелями представления, разыгравшегося за кулисами микромира, и смогли увидеть ее актеров без масок. Так они познакомились с мезоном.

Один в трех лицах

Однако вскоре выяснилось, что мезоны Андерсона и Неддермайера, масса которых равна 207 электронным массам, – это не мезоны Юкавы. Это другие частицы. Было установлено, что они не участвуют в образовании ядра и по поведению скорее напоминают электроны. Но в отличие от электронов эти мезоны (теперь их называют мю-мезонами) неустойчивы. Через миллионную долю секунды после своего рождения они распадаются на электрон и два нейтрино, уносящие с собой энергию, соответствующую примерно 200 массам электрона.

А что же мезон Юкавы? Ошибка, заблуждение ученого? Или, как позитрон Дирака, он явился слишком рано, опередив возможности эксперимента? Да, мезон, найденный Юкавой на бумаге, был открыт в действительности лишь через 10 лет английским ученым Поуэлом, который применил новую экспериментальную методику.

Новым окном в природу была толстая фотографическая эмульсия, внутри которой после проявления возникали следы самих космических частиц и тех частиц, которые они выбивали из ядер атомов, входящих в фотоэмульсию.

Частицы, открытые таким образом в 1947 году, имели массу, близкую к вычисленной Юкавой.

Оказалось, что этот мезон, его назвали пи-мезоном, существует в трех разновидностях – два из них, заряженные (положительный и отрицательный), в 273 раза тяжелее электрона, и третий – нейтральный, масса его составляет 264 электронные массы. Они действительно участвуют в образовании связей между ядерными частицами – протонами и нейтронами.

Эти частицы еще неустойчивее, чем мю-мезоны. Заряженные пи-мезоны живут лишь одну стомиллионную долю секунды, распадаясь на мю-мезон и нейтрино. Нейтральный пи-мезон живет еще в 100 миллионов раз меньше. Именно поэтому пи-мезон – ядерный мезон Юкавы – был открыт позже мю-мезона, на некоторое время сбившего ученых на ошибочный путь.

Но, как говорят, лиха беда – начало. За первым мезоном, действительно как из рога изобилия, посыпались другие элементарные частицы. Стала популярной шутка академика Вавилова: «Каждый сезон приносит новый мезон». И это верно отражало положение дел.