63965.fb2
На крыше мира
...Вблизи высочайших вершин Восточного Памира, в семнадцати километрах от озера Ранг-Куль, около которого расположена пещера сокровищ Мата-Таш находится большое здание Памирской станции Физического института Академии наук СССР и разбиты полевые лаборатории экспедиции физиков. Здесь не замирает научная жизнь: проводятся семинары, аккуратно идут дежурства в домиках-лабораториях.
Обслуживание разнообразных приборов требует от участников экспедиции самой широкой подготовки. Они должны быть искушены не только в науке о космических лучах, но и в оптике, радиотехнике, автоматике, фотографии. А руководитель группы широких атмосферных ливней доктор физико-математических наук Зацепин в первые годы существования Памирской базы был домашним врачом экспедиции. Он с успехом вправлял вывихи, вытаскивал из глаз соринки и даже, пользуясь справочником, лечил воспаление легких...
Сейчас на Памире имеются прекрасные помещения с водопроводом и автоматической телефонной станцией, а к услугам штатного врача – первоклассное оборудование. На территории экспедиции разбросаны десятки маленьких домиков-лабораторий.
Одни из них напоминают мастерские, где чинят радиоприемники и телевизоры. На столах, на полу громоздятся всевозможные наполовину разобранные приборы. Это обитель электронщиков.
В других в темноте колдуют фотоспециалисты, проявляя целые фильмы о космических частицах.
В третьих царствуют автоматы, по размерам не уступающие книжным шкафам. Их панели сплошь усеяны нумерованными глазками перемигивающихся красноватых лампочек. Панель с лампочками и остроумным радиотехническим устройством вместе со специальными счетчиками образует годоскоп – систему для ловли «капель», составляющих ливни космических частиц.
Вот загорелась пятая лампочка – значит частица прошла через пятый счетчик. А вот сработал десятый, третий, восьмой...
Так прослеживается путь частиц в ливнях. В некоторых советских годоскопах применяются тысячи счетчиков. За мигающими лампочками, конечно, не уследишь. Да это и не нужно. Смена годоскопических Картин фиксируется на кинопленке, которая затем тщательно, не спеша изучается дома, в московской лаборатории.
Несъедобный студень
В лабораторию Физического института имени Лебедева Академии наук СССР стекаются результаты опытов Памирской и других экспедиций физиков, завозятся стопки фотопластинок и целые бочонки со студнем фотоэмульсии, летавшие на шарах-зондах и самолетах.
Чтобы определить энергию ливня, надо подробно изучить проявленную фотоэмульсию. Справиться с тачкой задачей иногда просто не по силам ученым одной страны. И космики объединяют свои усилия. Они разрезают необычный студень на куски и рассылают в разные страны. Немало времени потратили и советские ученые, разрезая куски студня, прибывшие к ним из Англии, Венгрии, Польши и других стран, на тончайшие листики, подобные фотопластинкам, и прослеживая в них отпечатки микроскопических катастроф.
Если вы когда-нибудь попадете в Физический институт имени Лебедева, зайдите в лабораторию космических частиц, которой заведует один из многих учеников Скобельцына, профессор Николай Алексеевич Добротин. Там в комнате, похожей на медицинскую лабораторию, вы увидите ряд столов с микроскопами и коробками с образцами. Поинтересуйтесь, что так внимательно разглядывают в объектив девушки-лаборантки, что они аккуратно записывают время от времени в тетрадь?
И если вы заглянете в микроскоп, то увидите множество темных крупинок. Одни из них сливаются в сплошную линию, другие разбросаны без всякого порядка. Плавно поверните винт фокусировки микроскопа...
После первых минут неразберихи станут явственно проступать следы частиц. Если вы увидите следы, расходящиеся в разные стороны из одной точки, считайте, что вам повезло. Вам попалась «звезда» – результат прямого попадания космической частицы в ядро атома эмульсии.
Вглядитесь в «звезду» – вот короткий и толстый след, его могла оставить только тяжелая и медленная частица. Это мог быть протон. А этот длинный пунктирный принадлежит легкой и быстрой частице, наверно, электрону. Лаборант должен измерить длину следа, угол, под которым разлетелись осколки ядра и вновь рожденные частицы. А это позволит рассчитать массу, энергию, скорость частицы – виновницы ядерной «катастрофы». Сколько обнаружено взрывов, столько и расчетов. Долгий, кропотливый труд!
...К 1947 году список элементарных частиц, который в начале века состоял из электрона, протона и кванта света – фотона, заканчивался цифрой «14».
К этому времени на Земле не осталось уже ни одного физика, который сомневался бы в целесообразности нового научного направления. Так смело, так плодотворно оно заявило свое право на жизнь.
Более того, стало ясно, что это одно из важнейших направлений современной физики, что оно открывает важную дорогу в царство атомного ядра.
Так постепенно космические лучи стали важнейшим орудием глубокой разведки недр материи.
Ливень в ловушке
Космические частицы развернули перед учеными новые, трудные, увлекательные и спорные страницы жизни микромира. То, что касалось их действий в атмосфере, было уже наполовину открытой книгой. И ученые читали ее успешно. Было уже ясно, что космические частицы обладают огромной энергией: их удары по атомам воздуха по силе могут в масштабах микромира сравниться с атомной бомбардировкой. От одной космической частицы иногда возникают целые ливни частиц, которые, в свою очередь, обладают большими разрушительными свойствами.
Но о себе космические частицы рассказывали очень неохотно. Физики никак не могли получить сведения о самих первичных частицах, тех, которые вызывают цепную реакцию в ливнях.
Казалось, что может быть проще: оценив общую энергию частиц ливня – ученые уже умели это делать, – судить об энергии первичной частицы, породивший такой фейерверк. Но... тут на пути исследователей встала неожиданная трудность. Ведь на уровне моря число вторичных частиц достигает миллионов, и ловить их пришлось бы на площади в несколько километров. Ясно, что этот путь ведет в тупик. Строить счетчики такого размера технически нецелесообразно. Даже на вершинах гор, где «цепная реакция» ливня еще не развилась в полной мере, число частиц, входящих в один ливень, составляет сотни тысяч.
Как же с ними справиться? Какими приборами их уловить? Может быть, поймать самое первое столкновение?
Но для того чтобы поймать самое первое столкновение на пороге земной атмосферы, исследователи должны были бы поднять свои приборы на аэростатах или ракетах как можно выше, и при этом они столкнулись бы с новой трудностью. Оказывается, количество первичных космических частиц очень невелико. Поэтому на больших высотах, где ливень разлился еще недостаточно, поймать космическую частицу почти невозможно. Здесь, работая с установками малых размеров, пришлось бы ждать частицу... сто лет. Или нужны были бы установки размерами в километры, чтобы за короткое время уловить хотя бы одну первичную частицу.
Значит, надо было создавать более сложную аппаратуру, поднимать ее как можно выше и оставлять в воздухе как можно дольше.
Интересно, что сама мысль о том, что космические частицы надо изучать в верхних слоях атмосферы и еще выше, что частицы, падающие на Землю, лишь потомки настоящих первичных космических лучей, возникла гораздо раньше, чем ее можно было доказать. Техника воздухоплавания долго тормозила развитие физики космических лучей.
Космическая эра началась лишь в 1957 году, но физика космических лучей и раньше всеми силами набирала высоту. И в горах, и на самолетах, и на воздушных шарах шла интенсивная ловля космических частиц. Естественно, все были уверены, что чем выше забраться навстречу таинственным незнакомкам, тем ближе к истине.
Еще совсем недавно – даже в тридцатых годах – высота набиралась очень медленно. Пионер исследования космических лучей в стратосфере, бельгийский профессор Пикар поднялся всего на 16,5 километра. Советский стратостат «СССР-1» обогнал его на 2,5 километра. С трудом был поднят потолок полетов до 20 километров. Страны и ученые соревновались в преодолении высоты, в увеличении веса аппаратуры, времени пребывания на высоте.
Но преодоление высот еще не обеспечивало разрешения задач, поставленных перед собой учеными. По-прежнему состав первичного излучения оставался неизвестным. Исследования оказывались слишком кратковременными. Аппаратура была недостаточно совершенна, так как на высоту нельзя было поднять большой груз. Никому из побывавших в стратосфере не удалось «поймать» первичную космическую частицу. Не помогли и шары-зонды, поднимавшие приборы без человека. Часто аппаратура вместе с шарами-зондами пропадала бесследно, оставив в тайне результаты, зафиксированные в полете.
Новое начало в исследовании космических частиц положил советский ученый С.Н. Вернов, который разработал дистанционную связь с приборами, помещенными на шарах-зондах, и научился поднимать в стратосферу сложную аппаратуру весом до 12 килограммов. Для середины тридцатых годов это была огромная победа.
Сведения, переданные автоматами Вернова из стратосферы, содержали известие о том, что почти все первичные космические частицы – это ядро атомов водорода – протоны, и лишь немногие из них – ядра других элементов.
Но каких? Отражает ли состав космических лучей химическое строение каких-то особых небесных тел – родителей космических частиц, или содержание в них ядер различных элементов характерно для строения всей вселенной?
Еще в 1948 году, когда удалось поднять на высоту до 27, а затем и до 30...33 километров стопку фотопластинок и изучить следы частиц, проникших в эмульсию, было установлено, что в составе космических частиц, кроме протонов – ядер атомов водорода, имеются многозарядные частицы. Они фактически представляли собой не что иное, как атомные ядра различных химических элементов. Какие же это элементы и каково их соотношение в космических лучах?
Проблема химического состава космических лучей долго еще оставалась недоступной.
Сколько тебе лет, вселенная?
С 1957 года в истории космических частиц начинаются героические страницы. Искусственные спутники Земли и межпланетные ракеты позволили проводить эксперименты и на высоте в тысячу километров и на расстоянии, превышающем миллионы километров от Земли. Теперь длительность опыта могла достигать многих месяцев. Какой огромный материал можно было собрать!
В космос были посланы черенковские счетчики, которым надлежало пролить свет на химическую структуру космических лучей.
В обработке материала, который собрали приборы в космосе, участвовала одна из молодых учениц академика Скобельцына, Лидия Васильевна Курносова (на Международном конгрессе астронавтов в Барселоне она получила паспорт для участия в полете на Луну!). Она рассказывает: – Когда мы разобрались в показаниях приборов, побывавших в космосе, и сделали необходимые расчеты, мы убедились, что в составе первичных космических лучей больше всего ядер атомов водорода. Они составляют абсолютное большинство – 90 процентов. На втором месте ядра атомов гелия – их 9 процентов; оставшийся процент дополняют ядра атомов более тяжелых элементов: углерода, кислорода, азота, железа. Обнаружили мы и ничтожное количество ядер атомов легких элементов: лития, бериллия и бора. Но точно их количество еще неизвестно. Самыми тяжелыми из надежно зарегистрированных ядер являются ядра кобальта, железа, никеля. Имеются ли среди космических частиц более тяжелые ядра, тоже еще неизвестно. Решение этого вопроса – дело ближайшего будущего.
Так ученые убедились, что в составе космических лучей встречаются ядра атомов тех же элементов, которые имеются и на Земле, и на Солнце, и в звездах. Они удостоверились, что химический состав вселенной един.
Изучая космические лучи, физики не раз задавали себе такой вопрос: сколько времени прошло с тех пор, как космические частицы отправились в свое путешествие?
На первый взгляд этот вопрос кажется праздным. Посудите сами, как может ответить на него человек, оставаясь на Земле или даже побывав в ближайших окрестностях Земли? И, тем не менее, этот вопрос возникал снова и снова.
Дело в том, что ответ должен был прояснить совершенно неожиданную проблему. Он бросил бы свет на возраст вселенной! Ведь в зависимости от того, как долго космические частицы блуждают в мировом пространстве, меняется и их состав. Частицы сталкиваются между собой; более тяжелые ядра преобразуются в более легкие. А так как состав космических лучей отражает обычное соотношение различных веществ в природе, то по изменению состава космических лучей, дошедших до Земли, по обилию в них легких элементов ученые могли бы судить и о времени блуждания частиц в мировом пространстве. А следовательно могли бы попытаться ответить на древний вопрос о возрасте вселенной. Астрономические наблюдения на вопрос о возрасте звезд и галактик дают еще очень неопределенный ответ, порядка нескольких десятков миллиардов лет. Это, конечно, слишком приблизительно. Будем ждать более точного ответа.
Корона земли
Исследования, проведенные на искусственных спутниках и космических ракетах, помогли узнать и географию мира космических частиц, помогли установить, где и в каком количестве находятся эти частицы вокруг Земли.
Советские ученые С.Н. Вернов и А.Е. Чудаков и американский ученый Ван Аллен сделали открытие, которое во многом изменило прежние взгляды на закономерности изменения состава космических лучей с высотой. Прежде всего выяснилось, что магнитное поле Земли образовало вокруг нашей планеты гигантскую двухъярусную ловушку для космических частиц, которая спутала все карты исследователей. Оказалось, что большое количество электронов и протонов колеблется внутри этих ловушек вдоль силовых линий земного магнитного поля, не имея возможности ни достичь поверхности Земли, ни удалиться в межзвездное пространство.
Как же они попали в эту ловушку? Ведь в отличие от мышеловки эта ловушка не только не выпускает своих пленников, но и не дает им возможности проникнуть внутрь. Ученые дали неожиданное решение этой загадки: частицы, обнаруженные приборами, установленными на спутниках и ракетах, не могли войти внутрь нижнего пояса ловушки и не входили в нее – они родились в ее пределах! Под действием первичных космических лучей атмосфера Земли становится источником нейтронов, а им магнитное поле не помеха. Не имея электрического заряда, нейтроны свободно проникают внутрь магнитной ловушки. Часть из них распадается внутри этой ловушки, причем из нейтронов возникают протоны и электроны, которые почти не имеют шансов вырваться наружу.
Во внутреннем поясе преобладают протоны. Во внешнем поясе ловушки находятся главным образом электроны. Предполагается, что они проникают в нее во время периодов повышенной активности Солнца, когда магнитное поле Земли изменяется под влиянием потоков заряженных частиц, летящих от Солнца. При этом вход в ловушку как бы приоткрывается и частицы могут проникать сквозь ослабевший заслон магнитных сил. После уменьшения активности Солнца магнитное поле Земли возвращается к обычному состоянию и частицы, проникшие в ловушку, оказываются запертыми в ней.