63965.fb2
Но и это царство простоты было недолговечным. Вначале ученых вытесняла из кристально ясного мира четырех частиц непреодолимая логика уравнений.
Первым среди новых, из уравнений Дирака, «родился» позитрон, который только на правах первородства получил собственное имя, хотя, появись он позже, его назвали бы просто «антиэлектроном». Вскоре позитрон неожиданно проявился на фотопластинке и был опознан. Затем уравнения сотворили антипротон и антинейтрон. Их после упорных поисков удалось обнаружить при помощи одного из мощных ускорителей.
Уравнение Юкавы породило пион, который затем оказался трехликим или, если угодно, тройней. Впрочем, экспериментаторы вначале ошибочно отождествили его с мюоном, который впоследствии обзавелся двойником, античастицей. Теория бета-распада Ферми создала нейтрино, а затем его близнеца – антинейтрино.
Так под давлением уравнений физики вышли на новый рубеж, под который была подведена надежная база эксперимента. Мир казался им состоящим из 12 частиц. Это были фотон, пара – нейтрино и антинейтрино, пара – электрон и позитрон, тройка пионов и две тяжелые пары – нейтрон и протон со своими античастицами. Незаконнорожденные мюоны.
не предсказанные уравнениями, казались какой-то случайностью, и никто не знал, зачем они существуют и какую роль играют. Их просто не принимали в расчет.
Подкинув экспериментаторам мюон, природа предупредила физиков, что в их теориях далеко не все в порядке. Хотя предсказания теории блестяще подтверждались открытием новых частиц и античастиц, в ней был какой-то изъян, через который и «просочилась» пара мюонов.
Вторая половина нашего века началась в физике каскадом открытий. Теперь на авансцену вышли экспериментаторы. В фотографиях ливней, возникающих при прохождении космических частиц высоких энергий через свинцовую пластину, помещенную в камере Вильсона, были обнаружены странные следы, напоминающие латинскую букву «V». Это были двухзубые вилки, начинавшиеся «из ничего».
Не желая впадать в мистику, физики должны были признать, что здесь фиксируются распады невидимых нейтральных частиц (нейтральные частицы, подходя к началу вилки, не оставляют следов). В результате незримых распадов возникают заряженные частицы, оставляющие видимые следы.
Тщательные измерения показали, что встречаются два сорта вилок. Одна образована протоном и отрицательным пионом, другая – парой из положительного и отрицательного пионов.
Пришлось предположить, что в вершине этих вилок гибнут различные частицы. Ту, которая распадалась на протон и отрицательный пион, назвали ламбда-частицей. Вторую окрестили к-частицей.
Постепенно удалось определить массы новых частиц и их основные свойства. Оказалось, что первые из них относятся к группе тяжелых частиц – барионов, а вторые, вместе с пионами, относятся к группе мезонов.
Но это было лишь началом. Усовершенствовалась техника эксперимента и обработки следов на фотографиях частиц, увеличивались мощности ускорителей. В результате за несколько лет число известных частиц более чем удвоилось. К 1957 году их было уже около тридцати, и никто не знал, сколько еще может быть открыто.
Странные частицы
Но не количество новых частиц удручало ученых. Против этого ничего нельзя было возразить. Здесь нужно было лишь радоваться. Плохо было то, что новые частицы не подчинялись существующим теориям. Особенно странной была их долговечность.
Расчеты показывали, что новые частицы должны были гибнуть почти сразу вслед за их рождением. Уравнения дозволяли им существовать лишь ничтожное время, которое даже трудно выразить словами, – это всего одна стотысячная от одной миллиардной части миллиардной доли секунды. А новые частицы жили несравненно дольше – целую миллиардную долю секунды или хотя бы десятую часть этой доли. Расхождение с теорией составляло 100 тысяч миллиардов раз, это было странно и непостижимо. За эту непредвиденную живучесть новые частицы получили наименование «странных» частиц.
Странные частицы! Что может быть более странным, чем это название? Но физики привыкли к тому, что словечки из лабораторного жаргона, удачные остроты, неожиданные сравнения надолго удерживались в лексиконе науки, а иногда и входили в него навсегда. В этом проявляется неполнота наших знаний о мире микрочастиц, быстрый темп развития этой области, не оставляющий времени для строгого выбора и шлифовки терминов и определений.
Почему странные частицы вопреки воле формул и уравнений жили дольше, чем следовало? Почему нарушали предсказания ученых?
И физики вновь и вновь перебирали в памяти уже известные факты, сопоставляли и сравнивали все, что знали о взаимодействиях частиц. Вот самые сильные взаимодействия. Они возникают между ядерными частицами – нуклонами. Они действуют на ничтожных расстояниях, удерживая протоны и нейтроны внутри ядра. Для краткости физики называют их просто сильными взаимодействиями. Характеристикой взаимодействий служит время, в течение которого они проявятся. Взаимодействия между нуклонами, описываемые уравнением Юкавы, осуществляются за ничтожное время. Именно это время теория и отводила для жизни странных частиц. Но странные частицы жили гораздо дольше, значит не эти силы распоряжаются их жизнью. Но какие же? Какие силы еще известны физикам?
Следующими по силе являются электромагнитные взаимодействия, описываемые уравнением Дирака, те, в которых участвуют электрические заряды частиц. Они ровно в 137 раз слабее сильных, и поэтому для их проявления требуется в 137 раз больше времени.
Несравненно более слабыми являются взаимодействия, приводящие к самопроизвольному распаду частиц, например к бета-распаду. Эти взаимодействия так и окрестили слабыми. Они в 100 тысяч миллиардов раз слабее сильных и длятся соответственно дольше.
Самыми слабыми из известных сейчас сил являются гравитационные силы. Они так слабы, что для сравнения с ними ядерные силы нужно четыре раза подряд уменьшить в миллиард раз и результат уменьшить еще в тысячу раз. При этом получается потрясающе малое число, в котором перед единицей стоит 39 нулей. Не удивительно, что в микромире эти силы совсем не играют роли. Они проявляются лишь в астрономических масштабах, где во взаимодействиях одновременно участвуют несметные скопища частиц.
Поэтому, размышляя о поведении странных частиц, ученые обратили особое внимание не на самые сильные и не на самые слабые силы, а на просто слабые, на те, которые в 100 тысяч миллиардов раз слабее сильных. И у них возникло предчувствие: не свидетельствует ли долгая жизнь странных частиц о том, что они гибнут (распадаются) не под влиянием ядерных сил, а в результате слабых взаимодействий?
Такая догадка могла показаться на первый взгляд просто проявлением невежества. Она заставляла отказаться от очевидных вещей, от привычной и установившейся точки зрения на взаимодействия частиц, А привычная точка зрения заключалась в том, что рождение и гибель каждой частицы связаны с процессами и силами родственного типа. А тут: рождаются при сильных взаимодействиях, а умирают при слабых? В это верилось с трудом. Но ведь речь шла о странных частицах... И никто толком не знал, что можно было от них ждать.
Так, еще ничего не зная о природе процессов распада странных частиц, зная лишь время их жизни, ученые наметили возможную причину их гибели – слабые взаимодействия.
Новые законы
Итак, в результате измерения времени жизни странных частиц удалось немного приоткрыть тайну их поведения. Рождаясь в результате сильных взаимодействий – при соударении протона, разогнанного в ускорителе или образовавшегося в ливне космических частиц, с частицами, образующими ядра свинца или другие ядра мишени, они самопроизвольно распадаются в результате слабых взаимодействий.
Почему же странные частицы не могут распасться тем же путем и так же быстро, как они рождаются? Экспериментаторы не могли ответить на этот вопрос, так как они наблюдали лишь конечные результаты и не могли проследить деталей процесса.
Теоретики размышляли над этим около двух лет; они передумали и перепробовали десятки схем и моделей и в результате вынуждены были прийти к удивительному предположению о том, что процессы с сильными взаимодействиями возможны лишь при участии не менее двух странных частиц. Как ни странно, в случае со странными частицами природа оказывалась столь щедра, что рождала их сразу кучей. И у нее уже не хватало «сил», чтобы «возиться» с ними дальше, не хватало энергии на обратный процесс, на их моментальное уничтожение. Родив двойню, тройню, она как бы бросала их на произвол судьбы, и те умирали сами по себе. «Фокус состоит в том, – констатирует физик, – что процесс с сильным взаимодействием такого рода не будет обратимым ввиду недостатка энергии».
Так возникло объяснение долговечности странных частиц (они живут до тех пор, пока не погибнут из-за слабых взаимодействий) и неожиданное предсказание: странные частицы не могут рождаться в одиночку. Они рождаются только группами.
Это предсказание вскоре блестяще подтвердилось. Мощные ускорители начали массовое производство странных частиц, и они всегда рождались не менее чем в парах.
Итак, природа запрещает странным частицам рождаться в одиночку. Но если природа что-нибудь запрещает, то запрет чаще всего формулируется в виде закона сохранения. Например, вечный двигатель невозможно создать в силу закона сохранения энергии или нельзя вытащить себя за волосы из болота в силу закона сохранения положения центра масс, который, в свою очередь, есть следствие закона сохранения импульса (подчиняясь этому закону, действуют и ракетные двигатели).
Может быть, за фактом совместного рождения странных частиц тоже стоит неизвестный еще закон сохранения? И он поможет предсказать свойства неизвестных еще частиц!
Вспомните, как было предсказано нейтрино. Только уверенность в том, что закон сохранения энергии незыблем, помог Паули угадать, что в бетараспаде должна, обязана участвовать еще одна неизвестная частица (нейтрино), которая и уносит с собой недостающую часть энергии.
Вот почему ученые стремятся твердо знать, что же, какая величина (кроме энергии) сохраняется при ядерных взаимодействиях. Тогда нехватка какой-то ее части в результате взаимодействия частиц подскажет им, какая частица похитила эту часть. И если эта частица неизвестна, ее будут искать, твердо зная, что она есть, существует и ее можно опознать по «украденной» величине.
Так, может быть, для странных частиц, помимо известных, действует еще какой-нибудь закон сохранения, который может стать путеводной нитью в определении их свойств?
Это безумное предположение подтвердилось. Введением новой величины, подчиняющейся закону сохранения, удалось не только объяснить поведение известных странных частиц, но и предсказать свойства неизвестных в то время частиц, которые вскоре одна за другой были обнаружены. Эта величина (ученые говорят – квантовое число) была названа «странностью», а закон ее сохранения – законом «сохранения странности».
Введение понятия «странность» и закона «сохранения странности» было несомненным триумфом науки, позволившим предсказать явления, неизвестные ранее. Но это было и новым шагом к абстракции, потому что физический смысл странности оставался неясным. Формально странность выражалась небольшими целыми числами, однако невозможно было сказать, с каким свойством частиц, кроме странности, связано это новое квантовое число. Но это не было простой игрой в слова. Закон сохранения странности объяснял необходимость рождения странных частиц группами, во всяком случае, не меньше чем парами. Он объяснял и их живучесть: летя в одиночестве, странная частица не могла быстро (то есть за время, свойственное сильным взаимодействиям), распасться, ибо это привело бы к нарушению закона сохранения странности.
Введение закона странности было важной вехой на тропах науки и еще по одной причине. Появился новый закон сохранения, который – не в пример старым – не имеет универсальной силы. Он действует только при сильных (ядерных) и электромагнитных взаимодействяих и не действует ни при каких других взаимодействиях.
Старые классические законы сохранения действовали всегда, недаром они считаются основными законами природы – это закон сохранения энергии и закон сохранения вещества, объединенные теорией относительности в единый закон сохранения. Это закон сохранения электрического заряда, закон сохранения движения (импульса), закон сохранения вращейия (момента).
Вскоре оказалось, что для сильных ядерных взаимодействий, помимо известных ранее, существуют и другие законы сохранения, которые не имеют силы по отношению к остальным процессам. Для описания этих законов пришлось ввести новые специфические понятия, новые квантовые числа. Некоторые из них еще не имеют даже общепринятого наименования, для других выбрана буква, но далеко не ясно, что за ней скрывается.
За последнее время для сильных взаимодействий стало известно семь законов сохранения – семь сохраняющихся величин (помимо закона сохранения энергии, законов сохранения импульса и вращательного момента). Эти законы позволили разобраться во взаимоотношениях между известными барионами (тяжелыми частицами) и мезонами, участвующими в сильных взаимодействиях, и предсказать существование многих новых частиц, открытых за минувшие годы.
Кванты и Будда
Здесь не хватит места для того, чтобы рассказать об увлекательных подробностях предсказания, поисков и открытий всех новых частиц, количество которых уже перевалило за 80.
Но нельзя не рассказать о замечательном открытии омеги-минус, сообщение о котором появилось в начале 1964 года. Омега-минус была открыта тогда, когда ученые убедились, что и семи законов сохранения им недостаточно для того, чтобы успешно двигаться дальше по дорогам микромира. Они пустились на поиски следующих.
В 1961 году два физика, американец Гелл-Манн и полковник израильской армии Нейман, работая независимо, создали удивительную теорию, которую даже не сразу решились публиковать.
Для того чтобы обсуждать новую теорию, ее нужно было как-то назвать. В этой теории впервые одновременно участвовало восемь квантовых чисел. Число «восемь» и вошло в название теории, хотя само название возникло случайно.
Кому-то из ученых пришел на память афоризм, приписываемый Будде. Он гласит:
«Вот, о монахи, благородная истина, которая ведет к прекращению боли: это благородный восьмиступенный путь, а именно путь через честные намерения, верные цели, правдивые речи, справедливые действия, праведную жизнь, правильные усилия, истинную заботливость, полную сосредоточенность».
Восемь ступеней, восемь заповедей Будды, должны были вести монахов к блаженству. Восемь законов сохранения, восемь квантовых чисел вели ученых к истине. Новая теория получила наименование «восьмиступенный путь».