63965.fb2 Безумные идеи - читать онлайн бесплатно полную версию книги . Страница 6

Безумные идеи - читать онлайн бесплатно полную версию книги . Страница 6

Возможно, что наряду с двумя основными постоянными – скоростью света и постоянной Планка – придется ввести третью постоянную, например элементарную длину, величину, близкую к диаметру атомного ядра.

Может быть, новая теория должна быть построена на какой-нибудь более радикальной идее, которая пока еще не родилась. Несомненно, ученым предстоит еще много раз находить и ошибаться. Развитие науки беспредельно, но легких путей в ней нет. Здесь уместно сказать словами де Бройля: каждый успех наших знаний ставит больше проблем, чем решает. И в этой области каждая новая открытая земля позволяет предполагать существование еще неизвестных нам необъятных континентов.

Итак, на рубеже нашего века, на базе классической физики родилась новая физика. Это отнюдь не значило, что все ранее сделанное учеными отвергалось и заменялось иными взглядами, иными толкованиями. Так думать было бы большой ошибкой! Действительно, классическая физика, открывшая людям глаза на многие явления природы, ответившая на массу вопросов, стала в тупик перед миром больших скоростей и миром ничтожно малых частичек материи. На этой почве и возникли теория относительности и квантовая механика.

Но это вовсе не значит, что все сделанное предшествующими учеными перечеркивалось. Почти в каждой теории есть рациональное зерно, и она решает какую-то часть проблемы. Это решение и входит в основу более совершенной теории. Да, классическая физика не могла справиться с нагретым телом. Планк, введя в классическую термодинамику понятие дискретности, построил более полную теорию излучения, и призрак ультрафиолетовой смерти рассеялся сам собой. Да, классическая физика не могла объяснить явление фотоэффекта. Эйнштейн, разгадав прерывистую сущность света, объяснил его.

Конечно, квантовая теория не всесильна. Объяснив процесс излучения нагретого тела и фотоэффект, она, тем не менее, до сих пор не может справиться со многими загадками микромира. Но Эйнштейн считал это не трагичным, а вполне естественным, отражающим двойственный характер природы материи. Вот почему волновая теория света Гюйгенса, хоть она и опиралась на ложное подобие световых волн со звуковыми, не была полностью ошибочной, 3аблуждения Гюйгенса заставили Френеля искать выход из положения, и он нашел его в эфире, поперечными колебаниями которого считал свет. А так как свет – это действительно (в одной из своих сущностей) волна, то формулы Гюйгенса и Френеля верны и сегодня.

Противоречия, которые возникали в ряде случаев из их теорий, конечно, беспокоили ученых. И настал момент, когда один из них, Максвелл, понял, что свет – это не продольные гюйгенсовские волны и не френелевские поперечные волны эфира, а существующие сами по себе электромагнитные волны – волны совершенно самостоятельного электромагнитного поля. И только благодаря тому, что традиции и научное мышление обладают большой инерционностью, ученые еще долго не могли отказаться от механистического взгляда на мир. И Лорентц поневоле сделал шаг назад, привязав абстрактные максвелловские электромагнитные волны к электронам – атомам электричества. Но это был и шаг вперед, так как впервые идея атомизма была введена в электрические явления. Это имело и другие положительные последствия. Так как электромагнитное поле – это действительно и волна и частицы, то электронная теория Лорентца, ее математический аппарат помог вычислить те величины (например, показатели преломления прозрачных тел), которые чисто волновой теории Максвелла приходилось брать из опыта. Так происходит эволюция человеческих знаний: опыт поколений плюс свежий взгляд на вещи.

Спор вокруг дерзкой идеи Максвелла, желание во что бы то ни стало сохранить вездесущий эфир подготовили почву для возникновения теории относительности. И теория поперечных колебаний эфира Френеля и теория Максвелла оставляли возможность определения скорости движения тел в эфире. Это экспериментально опроверг Майкельсон. После целой серии опытов он убедился, что это невозможно. Чтобы увязать этот факт с существующими взглядами, Фицджеральд и Лорентц придумали искусственную гипотезу. Эйнштейн же не стал топтаться на месте, а сделал решительный шаг. Он допустил кощунственную мысль о том, что скорость света в пустоте всегда постоянна.

Так, исходя из этого предположения и старой теории относительности Галилея, который утверждал, что в плавно движущихся телах невозможно измерить их абсолютную скорость, если не сравнивать ее со скоростью какого-нибудь другого тела, Эйнштейн пришел к выводу о том, что при скоростях, сравнимых со скоростью света, понятия о времени, массе и размерах становятся понятиями относительными и законы физики, действующие при малых скоростях, неприемлемы при околосветовых.

Как видите, законы классической физики не отменялись, но там, где они оказывались беспомощными, рождались новые идеи, которые составили фундамент сегодняшней физики. Наиболее обновлен фундамент физики микромира. Здесь классическая физика потерпела наибольшее количество поражений. Если с макромиром она кое-как ладит, то в делах микромира она почти что не имеет права голоса. Она совершенно не в состоянии объяснить законы существования таких микротел, как элементарные частицы. На этой почве возник целый ряд теорий и методов (часто формальных), с помощью которых ученые пытаются понять строение ядра атома и микрочастиц. Окончательной теории элементарных частиц до сих пор нет. Это та область новой физики, где работы ведутся в три смены, днем и ночью.

...Ученые продолжают непрестанный скромный и титанический труд.

А пока расскажем о некоторых «безумных» идеях, о нескольких замечательных открытиях, потрясших человечество после 1927 года. Они покоятся на трех китах – квантовой теории, теории относительности и все более точном эксперименте.

С неба на землю

Радость видеть и понимать

есть самый прекрасный дар природы.

Альберт ЭЙНШТЕЙН

Загадка небесной лазури

Почему небо голубое?...

Нет такого человека, который не задумался над этим хоть раз в жизни. Объяснить происхождение цвета неба старались уже средневековые мыслители. Некоторые из них предполагали, что синий цвет – это истинный цвет воздуха или какого-нибудь из составляющих его газов. Другие думали, что настоящий цвет неба черный – такой, каким оно выглядит ночью. Днем же черный цвет неба складывается с белым – солнечных лучей, и получается... голубой.

Сейчас, пожалуй, не встретишь человека, который, желая получить голубую краску, стал бы смешивать черную и белую. А было время, когда законы смешения цветов были еще неясны. Их установил всего триста лет назад Ньютон.

Ньютон заинтересовался и тайной небесной лазури. Он начал с того, что отверг все предшествующие теории.

Во-первых, утверждал он, смесь белого и черного никогда не образует голубого. Во-вторых, голубой цвет – это совсем не истинный цвет воздуха. Если бы это было так, то Солнце и Луна на закате казались бы не красными, как это есть в действительности, а голубыми. Такими выглядели бы и вершины отдаленных снежных гор.

Представьте, что воздух окрашен. Пусть даже очень слабо. Тогда толстый слой его действовал бы как окрашенное стекло. А если смотреть сквозь окрашенное стекло, то все предметы покажутся такого же цвета, как это стекло. Почему же отдаленные снежные вершины представляются нам розовыми, а вовсе не голубыми?

В споре с предшественниками правда была на стороне Ньютона. Он доказал, что воздух не окрашен.

Но все же загадку небесной лазури он не разрешил. Его смутила радуга, одно из самых красивых, поэтичных явлений природы. Почему она неожиданно возникает и столь же неожиданно исчезает? Ньютон не мог удовлетвориться бытовавшим суеверием: радуга – это знамение свыше, она предвещает хорошую погоду. Он стремился отыскать материальную причину каждого явления. Нашел он и причину радуги.

Радуга – это результат преломления света в дождевых каплях. Поняв это, Ньютон сумел вычислить форму радужной дуги и объяснить последовательность цветов радуги. Его теория не могла объяснить лишь возникновение двойной радуги, но это удалось сделать лишь три века спустя при помощи очень сложной теории.

Успех теории радуги загипнотизировал Ньютона. Он ошибочно решил, что голубая окраска неба и радуга вызываются одной и той же причиной. Радуга действительно вспыхивает, когда лучи Солнца, пробиваются сквозь рой дождевых капель. Но ведь голубизна неба видна не только в дождь! Напротив, именно в ясную погоду, когда нет даже намека на дождь, небо особенно сине. Как же не заметил этого великий ученый? Ньютон думал, что мельчайшие водяные пузырьки, образующие по его теории только голубую часть радуги, плавают в воздухе при любой погоде. Но это было заблуждением.

Первое решение

Прошло почти 200 лет, и этим вопросом занялся другой английский ученый – Рэлей, не убоявшийся того, что задача оказалась не по силам даже великому Ньютону.

Рэлей занимался оптикой. А люди, посвятившие свою жизнь исследованию света, много времени проводят в темноте. Посторонний свет мешает тончайшим опытам, поэтому окна оптической лаборатории почти всегда затянуты черными, непроницаемыми шторами.

Рэлей часами оставался в своей мрачной лаборатории один на один с пучками света, вырывающимися из приборов. На пути лучей кружились как живые пылинки. Они были ярко освещены и поэтому выделялись на темном фоне. Ученый, возможно, подолгу в задумчивости следил за их плавными движениями, подобно тому, как следит человек за игрой искр в камине.

Не эти ли пылинки, танцующие в лучах света, подсказали Рэлею новую мысль о происхождении цвета неба?

Еще в глубокой древности стало известно, что свет распространяется прямолинейно. Это важное открытие мог сделать уже первобытный человек, наблюдая, как, пробиваясь сквозь щели шалаша, солнечные лучи падают на стены и пол.

Но вряд ли его беспокоила мысль, почему же он видит световые лучи, глядя на них сбоку. А тут есть над чем задуматься. Ведь солнечный свет идет лучом от щели к полу. Глаз же наблюдателя расположен в стороне и, тем не менее, видит этот свет.

Мы видим и свет от прожектора, направленного в небо. Это значит, часть света каким-то образом отклоняется от прямого пути и направляется в наш глаз.

Что же заставляет его свернуть с пути? Оказывается, те самые пылинки, которыми полон воздух. В наш глаз попадают лучи, рассеиваемые пылинка ми лучи, которые, встречая препятствия, сворачивают с дороги и распространяются по прямой от рассеивающей пылинки к нашему глазу.

«Не эти ли пылинки окрашивают небо в голубой цвет?» – подумал однажды Рэлей. Он провел математический расчет, и догадка превратилась в уверенность. Он нашел объяснение синего цвета неба, красных зорь и голубой дымки! Ну конечно же, мельчайшие пылинки, размеры которых меньше длины волны света, рассеивают солнечный свет и тем сильнее, чем короче длина его волны, – объявил Рэлей в 1871 году. А так как фиолетовые и синие лучи в видимом солнечном спектре имеют самую маленькую длину волны, то они рассеиваются наиболее сильно, придавая небу голубую окраску.

Этому расчету Рэлея подчинились Солнце и снежные вершины. Они даже подтвердили теорию ученого. На восходе и закате, когда солнечный свет проходит через наибольшую толщу воздуха, фиолетовые и синие лучи, говорит теория Рэлея, рассеиваются наиболее сильно. При этом они отклоняются от прямого пути и не попадают в глаза наблюдателю. Наблюдатель видит главным образом красные лучи, которые рассеиваются гораздо слабее. Поэтому на восходе и закате солнце кажется нам красным. По той же причине кажутся розовыми и вершины отдаленных снежных гор.

Глядя же на чистое небо, мы видим сине-голубые лучи, отклоняющиеся вследствие рассеяния от прямолинейного пути и попадающие в наши глаза. Да и дымка, которую мы иногда видим у горизонта, тоже кажется нам поэтому голубой.

Досадный пустяк

Не правда ли, красивое объяснение? Им так увлекся сам Рэлей, ученые так поразились стройности теории и победе Рэлея над Ньютоном, что никто из них не заметил одной простой вещи. А этот пустяк, тем не менее, должен был совершенно изменить их оценку.

Кто же будет отрицать, что вдали от города, где в воздухе гораздо меньше пыли, голубой цвет неба особенно чист и ярок? Трудно было отрицать это и самому Рэлею. Следовательно... не пылинки рассеивают свет? Тогда что же?

Он снова пересмотрел все свои расчеты и убедился, что его уравнения верны, но это значит, что рассеивающими частицами действительно являются не пылинки. Кроме того, пылинки, которые присутствуют в воздухе, гораздо больше длины волны света, и расчеты убедили Рэлея, что большое скопление их не усиливает голубизну неба, а, наоборот, ослабляет. Рассеяние света на крупных частицах слабо зависит от длины волны и поэтому не вызывает изменения его окраски.

При рассеянии света на крупных частицах и рассеянный и прошедший свет остается белым, поэтому появление в воздухе крупных частиц сообщает небу белесый цвет, а скопление большого количества крупных капелек обусловливает белый цвет облаков и тумана. Это легко проверить на обычной папиросе. Дым, выходящий из нее со стороны мундштука, всегда кажется белесым, а дым, поднимающийся с ее горящего конца, имеет голубоватый цвет.

Мельчайшие частицы дыма, поднимающегося над горящим концом папиросы, имеют размеры меньшие, чем длина световой волны, и в соответствии с теорией Рэлея рассеивают преимущественно фиолетовый и синий цвет. Но при прохождении через узкие каналы в толще табака частицы дыма слипаются между собой (коагулируют), объединяясь в более крупные комочки. Размеры многих из них становятся больше, чем длины волн света, и они рассеивают все волны света примерно одинаково. Именно поэтому дым, идущий со стороны мундштука, кажется белесым.

Да, спорить и защищать теорию, основанную на пылинках, было бесполезно.

Итак, загадка голубого цвета неба снова возникла перед учеными. Но Рэлей не сдавался. Если голубой цвет неба тем более чист и ярок, чем чище атмосфера, рассуждал он, значит окраска неба не может быть обусловлена нечем иным, как молекулами самого воздуха. Молекулы воздуха, писал он в своих новых статьях, – вот те мельчайшие частицы, которые рассеивают свет солнца!

На этот раз Рэлей был очень осторожен. Прежде чем сообщить о своей новой идее, он решил проверить ее, каким-нибудь образом сверить теорию с опытом.

Случай представился в 1906 году. Рэлею помог американский астрофизик Аббот, изучавший голубое свечение неба в обсерватории на горе Маунт-Вильсон. Обрабатывая результаты измерения яркости свечения неба на основе теории рассеяния Рэлея, Аббот подсчитал число молекул, содержащихся в каждом кубическом сантиметре воздуха. Получилось грандиозное число! Достаточно сказать, что если раздать эти молекулы всем людям, населяющим земной шар, то каждому достанется по 10 с лишним миллиардов этих молекул. Короче говоря, Аббот обнаружил, что в каждом кубическом сантиметре воздуха при нормальной температуре и давлении атмосферы содержится 27 миллиардов раз по миллиарду молекул.

Количество молекул в кубическом сантиметре газа можно определить разными способами на основе совершенно различных и независимых между собой явлений. Все они приводят к близко совпадающим результатам и дают число, называемое числом Лошмидта.

Это число хорошо знакомо ученым, и не раз оно служило мерилом и контролем при объяснении явлений, происходящих в газах.