64090.fb2
Тезис о естественном отборе наряду с принципами борьбы за существование, наследственности и изменчивости – основа дарвиновской теории эволюции.
Во времена Дарвина наследственность представляли как некое общее свойство организма, присущее ему как целому. В связи с этим шотландский инженер Флеминг Дженкин вошел в историю биологии, выдвинув возражения против теории Дарвина. Он считал, что новые полезные признаки некоторых особей данного вида должны быстро исчезнуть при скрещивании с другими, более многочисленными особями.
Возражения Дженкина сам Дарвин считал очень серьезным, окрестив «кошмаром Дженкина». Эти возражения были опровергнуты только когда стало ясно, что аппарат наследственности сформирован отдельными структурными и функциональными единицами – генами.
В 1865 году были опубликованы результаты работ по гибридизации сортов гороха, где были открыты важнейшие законы наследственности. Автор этих работ – чешский исследователь Грегор Мендель показал, что признаки организмов определяются дискретными наследственными факторами. Однако эти работы оставались практически неизвестными почти 35 лет – с 1865 по 1900.
В 1900 году законы Менделя были переоткрыты независимо сразу тремя учеными – Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии.
Итак, дискретные наследственные задатки были открыты в 1865 году Менделем. В 1909 датский ученый В. Иогансен назвал их генами (от греч. слова «происхождение»). К настоящему времени установлено, что ген – единица наследственного материала, ответственная за формирование какого-либо элементарного признака, т.е. единица наследственной информации – представляет собой участок молекулы ДНК (или РНК у некоторых вирусов) хромосомы.
Хромосомы – это структурные элементы ядра клетки, которые состоят из молекулы ДНК и белков, содержат набор генов с заключенной в них наследственной информацией.
Хромосомная теория наследственности, разработанная в 1910-1915 годах в трудах А. Вейсмана, Т. Моргана, А. Стертеванта, Г. Дж. Меллера и др., утверждает, что передача признаков и свойств организма от поколения к поколению (наследственность) осуществляется в основном через хромосомы, в которых расположены гены.
В 1944 году американскими биохимиками (О. Эвери и др.) было установлено, что носителем свойства наследственности является ДНК. С этого времени началось быстрое развитие науки, исследующей основные проявления жизни на молекулярном уровне. Тогда же впервые появился новый термин для обозначения этой науки – молекулярная биология.
Молекулярная биология исследует, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления обусловлены структурой и свойствами биологически важных молекул (главным образом белков и нуклеиновых кислот).
В 1953 году была расшифрована структура ДНК (Ф. Крик, Д. Уотсон). Расшифровка структуры ДНК показала, что молекула ДНК состоит из двух комплементарных полинуклеотидных цепей, каждая из которых выступает в качестве матрицы для синтеза новых аналогичных цепей. Свойство удвоения ДНК обеспечивает явление наследственности.
Расшифровка структуры ДНК была революцией в молекулярной биологии, которая открыла период важнейших открытий, общее направление которых – выработка представлений о сущности жизни, о природе наследственности, изменчивости, обмена веществ и др.
В соответствии с молекулярной биологией, белки – это очень сложные макромолекулы, структурными элементами которых являются аминокислоты. Структура белка задается последовательностью образующих его аминокислот. При этом из 100 известных в органической химии аминокислот в образовании белков всех организмов используется только двадцать. До сих пор не ясно, почему именно эти 20 аминокислот синтезируют белки органического мира. Вообще, в любом существе, живущем на Земле, присутствуют 20 аминокислот, 5 оснований, 2 углевода и 1 фосфат.
Основанием всем системы современной эволюционной биологии выступает синтетическая теория эволюции, принципиальные положения которой были заложены работами С. С. Четверикова, Р. Фишера, С. Райта, Дж. Холдейна, Н. П. Дубинина и др.
Элементарной клеточкой синтетической теории эволюции является популяция – совокупность особей одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений. Элементарной единицей наследственности выступает ген. Наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием таких эволюционных факторов, как мутационный процесс, популяционные волны, изоляция, естественный отбор.
Таким образом, в синтетической теории эволюции на первый план выступает не оногенез – совокупность преобразований, происходящих в организме от зарождения до конца жизни, т.е. индивидуальное развитие организма, а развитие популяций.
Онтогенетический уровень организации жизни на Земле связан с жизнедеятельностью отдельных биологических особей, дискретных индивидуумов, а популяционный уровень надындивидуален.
Популяция – это совокупность особей одного вида, населяющих определенную территорию, более или менее изолированную от соседних совокупностей того же вида.
Виды – это системы популяций. Популяции и виды как надындивидуальные образования способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию.
Популяции – это генетические открытые системы, т.к. особи из разных популяций иногда скрещиваются. Виды являются наименьшими генетически закрытыми системами.
Совокупность совместно обитающих популяций разных видов живых организмов называется биоценозом.
Биоценоз – совокупность растений, животных, грибов и микроорганизмов, населяющих участок среды с более или менее однородными условиями существования и характеризующихся определенными взаимосвязями между собой и приспособленностью к условиям окружающей среды (например, биоценоз озера, леса и т.д.).
Совокупность растений на участке с одинаковыми природными условиями, которые взаимодействуют друг с другом и со своим окружением, называется фитоценозом или растительным сообществом.
Растительное сообщество (фитоценоз) – совокупность видов растений на однородном участке, находящихся в сложных взаимоотношениях между собой и с условиями окружающей среды (лес, степь, луг и т.д.). Фитоценоз характеризуется определенным видовым составом, строением и сложением. Фитоценоз – это часть биоценоза.
Биоценозы входят в качестве составных частей в еще более сложные системы, представляющие собой взаимообусловленный комплекс живых и абиотических компонентов, связанных между собой обменом веществ и энергией – в биогеоценозы.
Биогеоценоз – это однородный участок земной поверхности с определенным составом живых (биоценоз) и абиотических косных (приземной слой атмосферы, солнечная энергия, почва и др.) компонентов и динамическим взаимодействием между ними (обменом веществ и энергии). Термин предложил В. М. Сукачев (1940 г.). Иногда этот термин употребляется как синоним экосистемы. Раздел биологии, изучающий экологические системы (биоценозы, биогеоценозы), называется биогеоценология.
В развитии экосистем большую роль играют организмы, способные самостоятельно синтезировать органическое вещество из неорганических соединений. Эти организмы называются автотрофами.
Автотрофы – это организмы, синтезирующие из неорганических веществ (главным образом воды, двуокиси углерода, неорганических соединений азота) все необходимые для жизни органические вещества, используя энергию фотосинтеза (все зеленые растения – фототрофы) или хемосинтеза (некоторые бактерии – хемотрофы).
Автотрофы служат первичной биотической основой для сложения биогеоценозов.
Организмы, использующие для питания органические вещества, произведенные другими организмами, называются гетеротрофами. К гетеротрофным организмам относится человек, все животные, грибы, большинство бактерий, вирусов.
Автотрофные растения и микроорганизмы представляют жизненную среду для гетеротрофов. Складывается биогеоценотический комплекс, который может существовать веками.
Пространство, включающее околоземную атмосферу и наружную оболочку Земли, освоенное живыми организмами и находящееся под влиянием их жизнедеятельности, называется биосферой.
Биосфера Земли образуется всей совокупностью биогеоценозов, связанных между собой круговоротом веществ и энергии. Она представляет собой область активной жизни, охватывающую нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему. Термин «биосфера» введен в 1875 г. Э. Зюссом. Учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов (в том числе человека) проявляется как геохимический фактор планетарного масштаба и значения, создал В. И. Вернадский (1926 г.).
В развитии учений о происхождении жизни существенное место занимает теория, утверждающая, что все живое происходит только от живого – теория биогенеза. Эту теорию в середине XIX века противопоставляли ненаучным представлениям о самозарождении организмов (червей, мух и др.). Однако как теория происхождения жизни биогенез несостоятелен, поскольку принципиально противопоставляет живое неживому, утверждает отвергнутую наукой идею вечности жизни.
Абиогенез – идея о происхождении живого из неживого – исходная гипотеза современной теории происхождения жизни.
В 1924 г. известный биохимик А. И. Опарин высказал предположение, что при мощных электрических разрядах в земной атмосфере, которая 4-4,5 млрд.лет назад состояла из аммиака, метана, углекислого газа и паров воды, могли возникнуть простейшие органические соединения, необходимые для возникновения жизни. Предсказание академика Опарина оправдалось. В 1955 г. американский исследователь С. Миллер, пропуская электрические заряды через смесь газов и паров, получил простейшие жирные кислоты, мочевину, уксусную и муравьиную кислоты и несколько аминокислот. Таким образом в середине XX века был экспериментально осуществлен абиогенный синтез белковоподобных и др. органических веществ в условиях, воспроизводящих условия первобытной Земли.
В отношении самозарождения организмов необходимо отметить, что Французская Академия наук еще в 1859 г. назначила специальную премию за попытку осветить по-новому вопрос о самопроизвольном зарождении жизни. Эту премию в 1862 г. получил знаменитый французский ученый, основоположник современной микробиологии Луи Пастер. Своими опытами он доказал невозможность самозарождения микроорганизмов.
Важно подчеркнуть, что в настоящее время жизнь на Земле не может возникнуть абиогенным путем.
Еще Дарвин в 1871 г. писал: «Но если бы сейчас … в каком-либо теплом водоеме, содержащем все необходимые соли аммония и фосфора и доступном воздействию света, тепла, электричества и т.п., химически образовался белок, способный к дальнейшим все более сложным превращениям, то это вещество немедленно было бы разрушено и поглощено, что было невозможно в период возникновения живых существ».
Жизнь возникла на Земле абиогенным путем. В настоящее время живое происходит только от живого (биогенное происхождение). Возможность повторного возникновения жизни на Земле исключена.
Наряду с теорией абиогенного происхождения жизни существуют и другие гипотезы. Так, в 1865 г. немецкий врач Г. Рихтер выдвинул гипотезу космозоев (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Сходную гипотезу в 1907 г. выдвинул известный шведский естествоиспытатель С. Аррениус, предположив, что во Вселенной вечно существуют зародыши жизни – гипотезу панспермии.
Панспермия – гипотеза о повсеместном распространении во Вселенной зародышей живых существ. Согласно панспермии, в мировом пространстве рассеяны зародыши жизни (например, споры микроорганизмов), которые движутся под давлением световых лучей, а попадая в сферу притяжения планеты, оседают на ее поверхности и закладывают на этой планете начало живого.
Гипотеза А. И. Опарина о возникновении жизни на Земле опирается на представление о постепенном усложнении химической структуры и морфологического облика предшественников жизни (пробионтов) на пути к живым организмам. На стыке моря, суши и воздуха создавались благоприятные условия для образования сложных органических соединений. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки подобно водным растворам желатина. А. И. Опарин назвал эти сгустки коацерватными каплями или коацерватами.
Коацерваты – это обособленные в растворе органические многомолекулярные структуры. Это еще не живые существа. Их возникновение рассматривают как стадию развития преджизни. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот. А белки-ферменты осуществляли процесс создания новых копий нуклеиновых кислот. Так возникло главное свойство, характерное для жизни – способность к воспроизведению подобных себе молекул.
Геологическая эра Земли от ее образования до зарождения жизни называется катархей.
Катархей (от греч. «ниже древнейшего») – эра, когда была безжизненная Земля, окутанная ядовитой для живых существ атмосферой, лишенной кислорода; гремели вулканические извержения, сверкали молнии, жесткое ультрафиолетовое излучение пронизывало атмосферу и верхние слои воды. Под влиянием этих явлений из окутавшей Землю смеси паров сероводорода, аммиака, угарного газа начинают синтезироваться первые органические соединения, возникают свойства, характерные для жизни.
Такая картина эры катархея (около 5 – 3,5 млрд. лет назад) предстает из современных исследований. Но выдвигаются и другие гипотезы. Вернадский, например, считал, что биосфера геологически вечна, т.е. что жизнь на Земле существует столько же времени, сколько и сама Земля как планета.
Архей – древнейшая геологическая эра Земли (3,5 – 2,6 млрд. лет назад).
Ко времени архея относится возникновение первых прокариот (бактерий и сине-зеленых) – организмов, которые в отличие от эукариот не обладают оформленным клеточным ядром и типичным хромосомным аппаратом (наследственная информация реализуется и передается через ДНК).