64167.fb2 Боги и человек (статьи) - читать онлайн бесплатно полную версию книги . Страница 27

Боги и человек (статьи) - читать онлайн бесплатно полную версию книги . Страница 27

Много позднее, в 1973 году я поступил в заочную аспирантуру. Руководителем у меня был бывший начальник блока №4 Яновского гидрорудника еврей Маркус. Гидрорудник к этому времени перестроили на обычную «сухую», как тогда мы говорили, технологию, а начальник гидроблока работал уже в головном институте, Институте горного дела им. Скочинского, занимая должность старшего научного сотрудника лаборатории гидравлического разрушения угля и горных пород. В Донбассе так хорошо помнили историю с внезапной остановкой гидрорудника, когда так не хватало стране угля, что больше никогда не строили гидрошахты. А институт УкрНИИгидроуголь и по сей день, поди, существует, если Кучма его не разогнал за ненадобностью. Коммунисты же никогда не исправляют своих ошибок, очень гордые и самолюбивые. Поэтому с 1963 года гидрошахт в Донбассе нет, а институт, «развивающий эту технологию» есть. Гидрошахту перепроектируют на «сухую» технологию, а в это время в головном горном институте учреждают лабораторию гидравлического разрушения угля и горных пород. Безработицы тогда не было.

Бывший начальник всего Яновского гидрорудника, включая обогатительную фабрику, еврей Экбер, «окопался» в Минуглепроме СССР заведующим отделом гидродобычи угля и мы с ним еще встретимся неоднократно. Тоже любопытно. В 1986 году министр угольной промышленности Щадов, ярый противник гидродобычи, практически разогнал рассадник ее – производственное объединение по гидродобыче угля Гидроуголь в Кузбассе с входящим в него нашим старым знакомым – институтом ВНИИгидроуголь, но ни институт, ни свой отдел в министерстве не упразднил, пусть играют.

Вернусь к своей аспирантуре. Я по образованию был гидродобытчик и поэтому обязан был любить свою специальность. В общем, так оно и было, но мне не мешало это видеть ее недостатки и стараться их нейтрализовать или уменьшить их влияние. Поэтому я выбрал темой своей диссертации технологию гидротранспорта: исследование и совершенствование его технологических схем. Самым главным для меня было примирить противоречия между размерами шахтного поля и возможностью применения безнапорного (самотечного) гидротранспорта угля в открытом водо–угольном потоке по стальным желобам. Мне нужно было честное экономическое решение, без примеси пустой идеологии.

Несравненное преимущество технологии гидродобычи – это применение самотечного гидротранспорта, когда отбитый водой же уголь, смешиваясь с ней, самотеком поступал куда надо. Этим ликвидировалась очень трудоемкая ручная операция погрузки (навалки) угля на конвейер, а сам конвейер с его приводом, электромотором, пусковой электроаппаратурой, сопоставимыми по весу с его линейной частью, заменялся металлическими листами, согнутыми в форме корыта. Это было несомненным достижением, если принять во внимание, что конвейер был не один, а целая их система, надежность которой была очень низка по сравнению с самотечным гидротранспортом. Отступать от этой системы я не собирался.

В то же время сотни научных трудов многих поколений ученых–горняков установили твердые параметры размеров шахтного поля в зависимости от горно–геологических условий, капитальных вложений на строительство шахты и эксплуатационных затрат на добычу угля или иного полезного ископаемого. Эти научно–экономические труды я не мог подвергнуть сомнению, а тем более, игнорированию на основе «идеологии», выросшей на совершенно пустом месте, без всяких экономических соображений и расчетов. Просто «основатель» сказал, что его технология малооперационна, а, значит, выгодна, никак не доказывая этого. Это было не честно. Я вывел несколько формул, которые помогали на начальном этапе проектирования сравнить возможные размеры шахтного поля при гидродобыче с полным самотечным гидротранспортом до главного ствола и размеры шахты с традиционной технологией добычи. Выведенные формулы позволили установить для десятков всевозможных условий, что самотечный гидротранспорт по всему шахтному полю в принципе невозможен. Он приводит к перечеркиванию всей горной науки, многочисленным совершенно неоправданным затратам средств, ухудшению условий труда и прочим совершенно неприемлемым последствиям. Только одно из них: комфортность шахтной атмосферы для рабочих.

КПД насосов, подающих в шахту технологическую воду под давлением 100–140 атмосфер для гидроотбойки угля, не превышает 70–75 процентов. Мощность синхронного электродвигателя насоса для трех гидромониторов равна 3500 киловатт, около тысячи из которых превращаются в тепло и передаются воде, поступающей в забой. В забое стоит пар и жара как в бане. Но это надо как–то пережить, потому, что лежит в самой основе технологии. Если в забой поступает свежий холодный воздух, негативное влияние указанного фактора резко снижается, практически компенсируется полностью, ибо «баня» непрерывно и интенсивно проветривается в самые жаркие летние дни воздухом с температурой не выше температуры глубокого погреба. Но весь воздух, поступающий в забои, проходит навстречу потоку пульпы в желобах, движущихся навстречу друг к другу, нигде не минуя друг друга. Теплоемкость пульпы в сотни раз выше теплоемкости воздуха, а турбулентность ее потока настолько велика, что воздух быстро воспринимает тепло пульпы и горячим, а самое главное сверхвлажным, поступает в забой. Относительная влажность воздуха, таким образом, всегда максимальна, т.е. 100 процентов. Поэтому влажность воздуха в гидрошахтах санитарная служба вынуждена измерять не относительную, а абсолютную, в граммах на кубометр воздуха. При нескольких граммах на кубометр относительная влажность уже составляет 100 процентов, но она может и дальше расти по содержанию паров воды до тех пор, пока воздух и вода настолько перемешаются, что уровень воды исчезает и все превращается в сплошное облако, жить в котором просто невозможно. Ученые медики доказали, что высокая влажность это главная вредная для организма составляющая, а вовсе не жара. Сухую жару в сауне любители переносят даже с удовольствием. Только это одно, не говоря уже о других отрицательных последствиях самотечного гидротранспорта в пределах всего шахтного поля, должна была хотя бы насторожить «основателя», но он и это «не заметил» в угоду своей идее «малооперационности».

Но мне–то было плевать на эту идею. Я хотел сделать технологию приемлемой для человека и экономики. Согласно моим расчетам оптимальности, самотечный гидротранспорт мог быть применен, грубо говоря, только в пределах выемочного участка шахты. На остальном, подавляющем протяжении основных горных выработок должен был быть осуществлен напорный гидротранспорт по трубопроводам. Противоречия примирены, рекомендации к оптимальному проектированию разработаны и, довольный собой, я направился с первой главой своей диссертации к своему научному руководителю. Такого «разноса» я не претерпевал даже при невыполнении «плана добычи угля», что иногда случалось в моей практике. Руководитель–еврей Маркус распалился настолько, что «тыкал» мне в стенах академического института как при базарной склоке, говорил, что я, такой–сякой, нарушаю «принцип учителя», чуть не назвал врагом народа, хотя и намекнул на этот счет. Такие как я недостойны, называться представителями нового направления, которое перевернет в скором времени все представления о подземной добыче угля. Главу велел порвать, никому не показывая. Из этого я сделал свой первый вывод, что попал по больному месту в технологии и что для «них» лучше замалчивать, чем решать возникающие проблемы. Я работал в это время заместителем главного инженера шахты, и спорить с «большими учеными» еще не научился. Вторым моим выводом было то, что, замалчивая, но, не решая проблемы, технологию не сделаешь действительным достоянием человечества. Третий вывод я сделал намного позже, что евреям и не надо было делать ее «достоянием человечества». Им ее надо было сделать только «своим достоянием», на период своей конкретной жизни, а дальше, как говорится, хоть трава не расти.

Проблемы гидроотбойки угля

Кроме «однооперационности», трансформировавшейся под давлением неопровержимых фактов в «малооперационность», «основоположник» выдвинул аксиому «универсальности» своей технологии, т.е. простыми словами – она применима везде и всегда, в любых горно–геологических условиях, при любом развитии инфраструктуры угленосного района, умолчав, однако, что для каждой гидрошахты нужна специальная электростанция, говоря гиперболически. Дело в том, что струя гидромонитора действует на угольный забой как кувалда мощностью от 800 до 1700 киловатт, добывая за час от 30 до 100 тонн угля. Горный комбайн при механическом разрушении мощностью 135 киловатт добывает за час от 120 до 360 тонн. Это пример из 80–х годов, годов «зрелости» гидродобычи. Посчитаем. Минимальная энергоемкость гидроотбойки 800 : 100 = 8 кВт–ч/т, максимальная 1700 : 30 = 57 кВт–ч/т, средняя 32.5 кВт–ч/т. Минимальная энергоемкость механической отбойки 135 : 360 = 0.4 кВт–ч/т, максимальная – 135 : 120 = 1.1 кВт–ч/т, средняя 0.75 кВт–ч/т. Впечатляет? Энергоемкость гидроотбойки даже в среднем выше энергоемкости механической отбойки в 43 раза, а по максимальным показателям – в 51 раз! Что только тут не делали два специализированных института и лаборатория головного института горного дела – все тщетно. Да оно в принципе должно быть тщетным. Разве можно равнять по эффективности разрушение кувалдой и разрушение острым кайлом. Ведь не даром наши предки изобрели главный инструмент горняка – кайло, а заостренные скрещенные молоточки в петлицах горняков всех стран – это же обушки–кайла.

Революцию в принципе механического разрушения горных пород и угля произвел в первые послевоенные годы горный слесарь с кузбасской шахты, самоучка без высшего образования, Яков Яковлевич Гуменник, который критически рассмотрел существовавший в то время при конструировании горных комбайнов принцип сверления горных пород и пришел к выводу, что он бесперспективен. До него никто не мог додуматься до этого, и делали очень большое в диаметре сверло, пытаясь сверлить горные выработки диаметром в несколько метров. Впервые сделал это конструктор Могилевский, создав «шнекобуровую машину Могилевского», сокращенно ШБМ. Машина должна была бурить выработку диаметром три метра и весила тонн тридцать. Чтобы усилить давление на забой при бурении, своего веса машины было мало, и конструктор предусмотрел гидравлические домкраты, распиравшие машину в борта проводимой ею выработки. Но как только сверло его машины вгрызалось в породу, сверло намертво сцеплялось с забоем, а вся тридцати тонная громадина, несмотря на распиравшие ее домкраты, начинала вращаться вокруг своей оси, приводя в изумление окружающих ее шахтеров, которые в ужасе отскакивали от нее и бежали, выключать электроэнергию. Только так ее можно было остановить. Опытный образец этого комбайна в 1951 году стоял в бурьяне около Прокопьевского горного техникума, где я учился, и показывал нам тщетность идеи Могилевского.

Слесарь Гуменник рассудил, что разрушение породы должно вестись как кайлом, но не одним кайлом, а одновременно несколькими десятками кайл. При этом каждое кайло соприкасаются с забоем доли секунды, во время удара, а остальное время находятся «на отдыхе», проходя свою траекторию вне соприкосновения с забоем, в воздухе и остывая от теплоты удара. Совершенно точно как это происходит с кайлом в руках забойщика: замах, удар, снова замах и опять удар. Если энергию человека заменить энергией машины, то получится то, что надо. Когда Гуменник пытался рассказать свою идею ученым, они смотрели на него, как на изобретателя вечного двигателя и ухмылялись. Не добившись помощи, он решил построить свой комбайн собственными силами. Он уговорил своего директора шахты (к сожалению, забыл его фамилию), тот дал ему в помощь двух мужиков. Три умельца, без литейного цеха, имея на вооружении только сельский кузнечный горн, небольшой токарный станок и сварочный аппарат, создали первый в мире горнопроходческий комбайн, какой по плечу был разве что заводу Уралмаш, выпускающему лучшие в мире танки времен Великой отечественной войны Т–34. Этот комбайн перекрыл все мировые достижения и стал прототипом по принципу разрушения забоя для всех горных комбайнов мира.

Слесари–энтузиасты, не умея производить инженерные расчеты на прочность валов, подшипников, редукторов и прочих конструкторских деталей машин, воспользовались готовыми конструкциями. В качестве главного редуктора привода рабочего органа они использовали редуктор со списанной врубовой машины, вспомогательные редуктора боковых фрез соорудили из редукторов скребковых шахтных конвейеров. Ходовые редукторы гусеничного хода своей машины изготовили из каких–то редукторов автомобиля УралЗИС и т.д. и т.п. Рабочий орган полностью изготовили сами, проявив чудеса изобретательности, так как надо было найти в скрапе (металлоломе) Кузнецкого металлургического комбината подходящие детали, которые у них «сидели» в голове, а, отнюдь, не были изображены на ватмане или кальке.

Рабочий орган состоял из двух «лучей», вращающихся вокруг своей оси в разные стороны, чтобы компенсировать те реактивные силы, которые так эффективно опрокидывали комбайн Могилевского. Лучи сходились в одной точке, где и получали вращение от подобранного в металлоломе редуктора. На лучи через определенные расстояния были насажаны жестко диски, вращающиеся вместе с валами–лучами. По ободу дисков, с наклоном под 45 градусов в сторону вращения, были закреплены зубки от врубовой машины, служившие каждый одним из нескольких десятков кайл. Собственно, каждый из дисков представлял собой подобие фрезы. Когда один из зубков ударял по забою, остальные зубки вращающейся фрезы «отдыхали». Вот и весь принцип. Комбайн не имел никаких домкратов для распора в бока выработки для создания давления на забой, он двигался просто на гусеницах навстречу забою и этого давления вполне хватало для отбойки угля, так как фрезерное «сверло» сверлило не от напора его на забой, а от многочисленных ударов зубков–кайл. При этом общий вес комбайна составлял всего 5 тонн вместо 30 у его неудачного прототипа.

За отдельные сутки комбайн Гуменника проходил до 200 метров выработки подковообразного поперечного сечения, что в 10–15 раз превышало темпы проходки обычным, ручным, с применением взрывчатых веществ, способом. Началась эра эффективного механического разрушения угля и горных пород. В дальнейшем этот принцип только совершенствовался: придумали более эффективные зубки, улучшили кинематику их движения, применили более износостойкие материалы. Но ученый горный мир Гуменника не принял, он только воспользовался его идеей, сам он не был принят с распростертыми объятиями, ученый мир был очень обижен. Какой–то неуч утер им нос. Министерство обороны создало лабораторию для Гуменника при Институте горного дела им. Скочинского для решений своих военных задач по скрытому «подкопу» под противника. Он что–то для них делал, изобретал. Создавая эту лабораторию в рамках Института горного дела, военные надеялись, что возникнет альянс горняков и гениального самоучки, но надежды их не оправдались. «Ученые» настолько обиделись, что не замечали гения и десятилетия спустя, и он «варился в собственном соку», что не принесло пользы стране, породившей гения разрушения горных пород.

Разрушение угля и горных пород гидравлическим способом при таком положении вещей требовало кардинальнейшего преобразования, но гения гидравлического разрушения не появилось. Физика процесса истечения струи из насадка (сопла) имеет свои законы, преодолеть действие которых не удалось. В начале заманивания в свою технологию членов Политбюро, Мучник говорил, что давление воды перед насадком гидромонитора должно быть 30 атмосфер. После серии экспериментов он сам признал, что надо 60 атмосфер, потом эта цифра увеличилась до 100 атмосфер, но и этого оказалось мало. Начали разрабатывать оборудование для 160 атмосфер, но тут от технологии окончательно отказались, слишком уж она становилась назойливой и все менее эффективной по сравнению с традиционной. Шел 1987 год.

Я уже говорил, что идея гидродобычи угля Мучником была позаимствована из открытых горных работ, точнее из технологии размыва и намыва земляных сооружений из, так называемых несвязных, грунтов, попросту говоря, из земли, глины, песка и гравия с примесью гальки. Там используются струи низкого и среднего давления, до 15–30 атмосфер. Эти струи имеют гладкую поверхность, которая сохраняется на достаточно длинном участке, а потом струя «рассыпается» на отдельные капли воды. Наличие гладкой поверхности обусловливается действием поверхностного натяжения. Жидкость несжимаема, поэтому целая и гладкая струя действует как металлический клин на преграду. «Капельная» струя действует как дождь, орошая, но, не разбивая преграду. Но низконапорная струя даже на своем эффективном участке, целая, разбивает только слабые грунты. Для того чтобы разбить уголь в массиве надо сообщить ей несколько большую энергию, т.е. давление воды перед насадкой гидромонитора. Но в этом–то и заключается главная беда. При возрастании давления воды «портится» струя, она быстрее распыляется до капельного состояния. Прежде чем браться за повышение давления для гидроотбойки более связных грунтов, каким является уголь, надо было исследовать физическую сущность процесса. Этого молодым ученым Мучником сделано не было. Он просто подумал, что раз струя пожарного брандспойта разрушает слежавшийся песок, то, увеличив давление, он будет разрушать все, что потребуется. Дело за давлением воды – очень простое, детское решение. Это детское решение положили в основу, не проверив, а, построив гидрошахты, начали исследования.

Исследования показали, что не все так просто. Оказывается, на поверхности сплошного потока струи образуются, так называемые, волны Релея. Струя становится на небольшом расстоянии от насадки похожей на гирлянду сосисок, диаметр ее периодически меняется. Когда скорость ее становится близкой к скорости звука, верхушки волн Релея заворачиваются как волны на море в «барашки», возникают зоны вакуума, струя аэрируется, расширяется наподобие метлы и распадается на бесполезные для дела отдельные капли. Зачатки волн Релея происходят еще в насадке, так как на внутренней поверхности насадки скорость воды равна нулю, а в центре потока она очень высока. Поэтому при выходе из насадки струя имеет диаметр даже меньше выходного диаметра насадки, так называемое «сжатие струи». Самой идеальной формой насадки является коноидальная, когда насадке придают профиль, соответствующий естественному образованию профиля ее при истечении из отверстия в тонкой стенке. Сделали коноидальную насадку, но это мало помогло. Отполировали насадку до зеркального блеска, чтобы уменьшить толщину пограничного слоя воды и металла, чтобы повысить скольжение, а не завихрение воды на границе «вода–насадка». Помогло, но мало. Больше в этой области делать было нечего.

Чем больше повышали давление воды, тем все короче становился «хрустальный» участок струи, собственно, и представлявший «долото», и все большую часть длины струи представляла «метла» – капельная часть струи. При этом ухудшение струи происходило не линейно увеличению давления воды, а квадратично. Увеличил давление в два раза, струя распадалась в четыре раза раньше.

Задача стояла так: струя должна была хорошо разрушать уголь хотя бы на расстоянии 6–8 метров, если меньше, то вообще разговоры о гидродобыче надо было прекратить. Но тогда выработки, в которых стоял гидромонитор, должны были проходиться на расстоянии 5–6 метров друг от друга, а это очень много проходческих дорогих и трудоемких работ на 1000 тонн добычи. Для сравнения на 1000 тонн добычи при обычной традиционной технологии лавами надо было пройти, например, при мощности пласта в 1 метр, 15 метров штреков. При гидротехнологии при этих же условиях надо было пройти не менее 120 метров выработок, т.е. в 8–10 раз больше, правда, несколько меньшей площади поперечного сечения. Больший объем выработок при гидродобыче компенсировался отсутствием затрат на очистную выемку, так как струя не требовала присутствия людей в забое, действовала дистанционно. В результате экономических расчетов выходило, что эффективная длина струи не может быть меньше 6–8 метров, а достижение 12–15 метров – это голубая мечта, так и неосуществленная.

В угоду «универсальности» технологии для очень крепких углей, когда все усовершенствования струе формирующих устройств были исчерпаны, пошли совершенно идиотским методом, увеличением диаметра насадки с 18–20 мм до 28–32 мм. Этим увеличивался «эффективный» участок длины струи на 30 процентов, а затраты энергии в два раза, мощность на формирование струи составила 1750 кВт. Разве не идиотство, если мощность механического разрушения при этих условиях требовалась в 60–80 раз меньшая?

Сподвижники «основателя» выдвинули в эти дни, начале 70–х, новую пропагандистскую «штучку». Она была «тонкой» и в «струе времени». Они заменили слово энергоемкость «энерговооруженностью». Это совсем другое дело. Человечество все время энерговооруженность, от лошадиной силы до атомной бомбы. Но понятие энерговооруженность совсем не отражает эффективность, оно игнорирует понятие коэффициент полезного действия. Энерговооруженность показывает, что человек очень сильный, он обладает силой в миллионы тонн тринитротолуола. Ну и что из этого? Способен ли он этой силой вспахать всю землю за день. Да, способен «вспахать», но только на этой земле никогда ничего не вырастет. Энерговооруженность в таком понимании даже опасна. Понятие энерговооруженность употребляют обычные люди очень редко, когда хотят сказать: ух, какой бугай. Или когда, например, сравнивают земледельца, вооруженного мотыгой в одну человеческую силу, с земледельцем, вооруженным сохой в одну лошадиную силу, а затем с земледельцем, вооруженным трактором К–700. Энергоемкость – это понятие и техническое, и экономическое. Полезная энергоемкость – это то, что надо, но такого понятия никто не вводил, а надо бы ввести. На то, чтобы отбить от забоя тонну угля обычный комбайн тратит 0.375 киловатт–часа электроэнергии, хотя для этого хватит 0.225 киловатт–часа. КПД комбайна будет: 0225 : 0.375 = 0.6 = 60 процентов. Для того чтобы отбить от забоя тонну угля гидромонитор тратит 14.5 киловатт–часа, КПД гидромонитора будет: 0.225 : 14.5 = 0.0155 = 1.55 процента, в три раза меньше, чем у паровоза, хрестоматийного «эталона» низкой эффективности. А нам поют песню об энерговооруженности технологии гидродобычи, вместо того чтобы опубликовать ее КПД.

Практикующие инженеры гидрошахт сделали для развития технологии гидродобычи едва ли не более чем три института, два из которых ничем больше как гидродобычей не занимались. Яркий пример – замена гидроотбойки везде, где только возможно по горно–геологическим условиям, механической отбойкой угля комбайнами. Пионером была первая гидрошахта Кузбасса «Полысаевская–Северная», позднее переименованная в «Заречную», вернее сказать ее инженеры–практики. Гидрошахта была спроектирована институтом ВНИИгидроуголь на давление технологической воды для гидроотбойки угля гидромониторами в 60 атмосфер. Первые же опыты показали, что этого давления не хватает, струя забой «лижет», но уголь не отбивает. Увеличить давление было невозможно из–за предела мощности электроподстанции и толщины стенки проложенных трубопроводов высокого давления. Главный инженер шахты Степанов снял с обычного комбайна для «сухой» проходки штреков типа К–56 погрузчик и ленточный перегружатель, которые требовались для погрузки угля на конвейер, расположенный сзади комбайна. Вместо них на стреловидный рабочий орган комбайна он прикрепил кусок трубы диаметром 100 мм, а к трубе буровой шланг с внутренним диаметром 76 мм и длиной 18 метров. Второй конец шланга он прикрепил к высоконапорному водоводу. Одновременно он снял половину рабочих колес с высоконапорных насосов, стоящих на поверхности шахты, чем снизил напор воды, развиваемый ими с 60 до 30 атмосфер.

Технология получилась такая: комбайн рубит уголь, на забой льется вода, 150 кубометров в час, уголь смывается, угольная пыль подавляется, а так как штрек наклонный (3.5 градуса), то пульпа течет по металлическим желобам. Все как в гидрошахте, только давление низкое и вместо гидромонитора – комбайн. Эффект был потрясающий. Комбайн был автономен на длине 18–метрового шланга. Поэтому ехал и рубил уголь 18 метров непрерывно, не останавливаясь для того, чтобы нарастить длину конвейера. Затем наращивался высоконапорный трубопровод–водовод минут за двадцать–тридцать и комбайн снова ехал 18 метров. Крепление возводилось позади комбайна и только это ограничивало движение, но крепильщиков можно было увеличить, чтобы остановки комбайна были как можно короче. Очень сильно мешавшие маневренности комбайна грузчик и перегружатель, а также конвейер ограниченной производительности и очень низкой надежности, были удалены и комбайн смог достичь своей теоретической производительности – 135 тонн в час. Раньше, при «сухой» технологии у него не получалось больше 20 тонн за час работы, ограничивал транспорт. Воодушевленные инженеры быстро нашли способ использовать этот комбайн не только для проходки выработок, но и для очистной выемки столбов, ранее вынимавшихся гидромонитором.

О гидрошахте «Полысаевская–Северная» узнал весь мир, приехали японцы, немцы, поляки, китайцы, венгры, хотя гидрошахтой в понимании профессора Мучника она не была. Фактически был применен только самотечный гидротранспорт и напорный гидроподъем. Ученые позировали фоторепортерам, принимая поздравления, хотя заслуга была не их, а главного инженера шахты Степанова. Не прими он тогда кардинального, действительно инженерного, решения в борьбе за «план добычи угля», за который как главный инженер он отвечал, не построили бы больше ни одной гидрошахты, ни мы, ни японцы, ни китайцы, ни поляки, ни немцы, а гидротехнология бы мирно и тихо загнулась в замшелых институтах.

«Ученые» быстренько сориентировались и придумали официальное лукавое название изобретению Степанова: «механогидравлическая выемка угля, хотя, повторяю, выемка угля была чисто механическая, тем самым, «примазав» ее к «своему детищу», довольно неудачному. Однако, продолжали на «всех перекрестках» восхвалять собственно гидроотбойку монитором и в проекты новых гидрошахт вводить преимущественно ее, хотя новые эти проекты стали возможными только благодаря решению проблемы Степановым, отказу именно от гидроотбойки. ВНИИгидроуголь зациклился на высоконапорных гидромониторах и лет двадцать пять топтался на месте, пока главный их исследователь и конструктор, уже доктор технических наук Николай Федорович Цяпко не уволился из института на пенсию и поехал доживать свой век на Украину, откуда и был родом, упрямый хохол.

Между тем, УкрНИИгидроуголь, потеряв надежду на стационарные струи гидромониторов, занялся импульсными струями, это когда часть воды передает энергию другой части воды, а сама сливается из системы, часть воды, которой передала энергию сброшенная часть, выстреливает на забой как пулемет, очередями. Ничего путного из этого тоже не получилось, хотя денег, бумаги и железа извели много за 20 лет научно–исследовательских и опытно–конструкторских работ и экспериментов. Лаборатория гидравлического разрушения угля и горных пород Института горного дела им. Скочинского все свои силы направила на исследования, так называемых, тонких струй диаметром в один миллиметр, которые от забоя должны были быть не далее сантиметра–двух. Исследования и разработки их закончились тем, что они придумали разрушать уголь перед каждым зубком обычного механического комбайна, с чем зубок и без струи отлично справлялся, зато пылеобразование снизилось радикально, столь вредное для машиниста. Но это имело отношение уже не к разрушению угля и горных пород, а к санитарным правилам, что тоже важно, но к гидродобыче никакого отношения не имеет.

Заканчивая этот раздел, хочу сказать несколько фраз об упертости «ученых». Мне понятны их мотивы, защитить свое детище, будь оно уродом, но оно их детище. Но как можно человеку неглупому по определению говорить, писать, отстаивать перед всем честным народом заведомые глупости? Я не могу поверить, что интеллектуальный человек не понимает, что он отстаивает заведомо плохую идею, если не сказать подлую идею? Он это прекрасно понимает, я уверен. Но он делает только удобство себе, пренебрегая удобством тысяч людей. В конечном счете, это прямая подлость. Недаром ВНИИгидроуголь называли институтом евреев, недаром я заостряю внимание именно на этом. Мне кажется, что именно в этом заключается эта тупая настойчивость, по поговорке: «Ему ссы в глаза, а он – «божья роса»».

Износостойкость и ремонтопригодность оборудования гидродобычи

Первые гидромониторные насадки для формирования струи воды давлением в 100 атмосфер из инструментальной стали работали всего несколько часов. Потом в гладко отполированной внутренней полости их возникали каверны, ранее гладкая поверхность становилась похожей на сплошные горные цепи. Струя из такой насадки вылетала форменной метлой и ничего не отбивала, шум стоял как от реактивного двигателя, вся тысячекиловаттная энергия превращалась в звук. Это результат эрозионного износа. На чистой воде износ был низкий, но чистую воду получить не удавалось в замкнутом цикле водоснабжения. Обогатительная или обезвоживающая (на энергетическом угле) фабрики не справлялись с осветлением оборотной воды, так как были именно, так и спроектированы ВНИИгидроуглем, чтобы не справлялись. Причины этого будут рассмотрены в соответствующем разделе. Здесь просто констатируем факт.

Износ насадок, это, наверное, всего одна проблема, которую ВНИИгидроуголь решил кардинально. Первоначально внутреннюю часть насадки стали армировать порошковым вольфрамокобальтовым сплавом ВК, но это оказалось слишком дорого, так как много порошка уходило в утиль при замене насадки на новую. Остатки сплава невозможно было извлечь. Потом попробовали силумин, но он очень хрупок, так как, собственно, является стеклом и погибает от кавитации в насадке. Остановились на армировании металлокерамикой. Она выдерживает кавитацию и изнашивается равномерно, не горными цепями. Срок службы насадки достиг 20 дней почти непрерывной работы. Этого вполне достаточно.

Второй проблемой был износ задвижек, их зеркала и корпуса в момент закрывания – начала открывания, когда они работают в режиме насадки. Эту проблему можно было решить применением прочных дорогих сталей, например, броневой стали танков с содержанием никеля до 20 процентов. Но такие стали правительство Страны Советов разрешало использовать только для выпуска танков. Как и оловянную бронзу, впрочем, которая была очень хороша для вкладышей подшипников катков гусениц горных комбайнов, работавших в жидкой грязи. Здесь, конечно, не вина ВНИИгидроугля, но сообразительности у ученых все–таки не хватило, как выйти из этой ситуации. Часто открываемая задвижка в забое работала всего несколько дней, переставала держать напор воды, не закрывала поток воды полностью, что совершенно недопустимо при напоре в 100 атмосфер.

Проблему решил главный механик шахты «Байдаевская–Северная» Борис Геннадьевич Гонилов довольно остроумно. Он начал изготавливать задвижки из высоконапорной трубы так, что все ее износившиеся внутренности можно было заменять по мере износа, а корпус не составляло труда сварить из подходящих по диаметру отрезков высоконапорной трубы. Как известно, корпуса всех задвижек в мире льются из жидкого металла, что и дорого, и очень специфично, в мехмастерских шахты такую технологию не освоишь. Задвижки –самоделки Гонилова служили столько же мало, зато сделать новую задвижку не составляло большого труда и материальных затрат. ВНИИгидроуголь тут же слямзил идею, нарисовал конструкторскую документацию и запатентовал ее на свое имя. Вот уже дважды русские решают неразрешимую для ВНИИгидроугля проблему, а евреи ее оформляют и присваивают. Так что, евреи хитры, но не изобретательны.

Об износе насосов и углесосов я уже говорил выше, осталось осветить износ трубопроводов, по которым перекачивается уголь с водой, т.е. пульпа на обогатительную фабрику на несколько, до 10–15, километров по поверхности. Обычно прокладывается несколько трубопроводов рядом, каждый пропускает до миллиона тонн угля в год. Нужны резервные трубопроводы и находящиеся в ремонте. Так что сооружение это довольно непростое. Каждое колено увеличивает довольно значительно потери напора на движение турбулентного потока, а гидротранспорт крупнокускового (до 100 мм) угля возможен только в высоко турбулентном потоке, поэтому тепловые компенсаторы, как это делается на теплотрассах в виде ворот, невозможны. Будут очень большими гидравлические потери напора и неравномерным износ труб на поворотах. Поэтому применяются сальниковые компенсаторы, которые дорогостоящи, сложны в изготовлении и требуют постоянного наблюдения и ремонта. По сравнению с железнодорожным такой транспорт очень дорог, раз в пять–десять дороже. Но полностью отвечает требованию «однооперационности» технологии, так полюбившейся «основателю». Я бы никогда не осмелился хоть слово написать против такого вида транспорта, будь это где–нибудь в горах или другом недоступном для строительства железной дороги месте. Но такой транспорт в горах и неприменим, так как наклон трубы к горизонту более 10–15 градусов приводит к скольжению больших частиц, опережая воду, и к закупорке трубы в месте перегиба от движения вниз к движению вверх. Ликвидация закупорок трубы – это такая неблагодарная работа, о которой мне просто не хочется вспоминать. При всем при этом «основоположники» запроектировали трубопровод рядом с проходящей железнодорожной веткой, параллельно ей, что было по моему разумению хотя и в струе, так сказать, «однооперационности и непрерывности технологического процесса», но выглядело достаточно глупо, если не сказать заведомо расточительно, не говоря преступно.

Итак, шахта глубиной в 200 метров. Диаметр трубы 350 мм, толщина стенки трубы 17 мм, хотя по давлению подошла бы и стенка в 5 мм. Скорость течения около трех метров в секунду, иначе крупные куски угля и породы станут оседать на дно и закупорят трубопровод. В шахте стоит углесос, качающий пульпу в трубу. Но так как углесосу для повышения напора «основатели» назначили сверхкритическую скорость вращения ротора, 1500 вместо 750 оборотов в минуту, высота всасывания у него понизилась с 5–6 метров до чуть больше 2 метров при глубине зумпфа 6 метров. Зумпф должен быть почти всегда полон пульпой, чтобы углесос мог бесперебойно всасывать ее. Но это чревато тем, что при экстренном увеличении притока пульпы из забоев в зумпф, последний не имеет никакого резерва, чтобы принять ее и углесос начинает затоплять. Но углесос железка, которому не страшны никакие затопления. Он и полностью затопленный будет качать. Страшно то, что углесос приводится во вращение высоковольтным асинхронным электродвигателем под напряжением 6000 вольт и мощностью 1600 киловатт, отнюдь не герметичным и стоит этот электродвигатель на одном фундаменте с углесосом. Кто–то, может быть, и не представляет себе, что будет, если в статор такой работающей махины залить хоть стакан воды, но главный механик шахты, уже упомянутый мной в связи с задвижками, Гонилов прекрасно представлял, что будет очень большой и страшный взрыв. «Основоположники» же нимало не были озабочены этим, ибо нарисовали в проекте шахты именно такую ситуацию. Ни одного рисовальщика проектов не посадили еще за аварию в шахте по его прямой вине, а вот главные механики и главные инженеры сидели, и не однажды на моем шахтерском веку.

Над зумпфом должен сидеть машинист и не на секунду не выпускать из виду уровень пульпы в зумпфе. Как только уровень станет критически высоким, опасным затоплением электродвигателя, он должен немедленно отключить электродвигатель от сети, а выключается он не бытовым выключателем, а высоковольтной масляной ячейкой, весом в полторы тонны, а рукоятка у него напоминает большой лом, крутить которую не каждому под силу. И в мире нет человека, который бы не задремал ночью под равномерный шум агрегата, хотя бы на минуту. Выключив электродвигатель, машинист сразу должен был подумать о своем спасении, чтобы не утонуть в прибывающей пульпе, которая прибывает со скоростью по четверти кубометра, по 25 ведер, в секунду.

Но и это еще не все. Если уровень в зумпфе станет уменьшаться (где–то произошла ее остановка в пути из–за забучивания желобов), это тоже очень плохо при применении «гордости науки» очень высоконапорного углесоса, сделанного вопреки здравому смыслу и физической природе процесса. Как только уровень в зумпфе стал меньше высоты всасывания, т.е. 2 метров от оси углесоса, происходит, так называемый, срыв вакуума, разрыв потока, многотонный углесос начинает трясти от кавитации, происходит гидравлический удар, лопатки ломаются, в результате опять затопление и опасность короткого замыкания мощности в 1600 киловатт.

Вот какая плата за «техническое решение» повышения напора углесоса против природы его работы. «Конструкторы» не остановились ни перед чем, даже перед опасностью для жизни рабочих и страшнейшей аварии. Что, они не соображали, что творят? Очень сомневаюсь. Как сказал еще один еврей, заместитель директора ВНИИгидроугля, теперь уже покойный Эрих Борисович Голланд: «Нам надо натолкать побольше гидрошахт в стране, чтобы поставить всех перед фактом их существования, а потом займемся их доработкой». Несколько цинично, но откровенно. Если признать возможным, например, создание хорошего углесоса на неверно выбранном физическом принципе его работы. Физика не идеология, не меняется.

Механик Гонилов выбросил один из трех установленных по проекту ВНИИгидроугля углесосов (рабочий, резервный и «в ремонте»), оставив два: рабочий и резервный, чем ухудшил себе жизнь, так как ремонты пришлось производить сверх скоро. А на оставшемся свободным фундаменте установил бустерный землесос ЗГМ–3м с числом оборотов 750 в минуту и высотой всасывания из–за этого 6 метров. Бустер подавал пульпу в оставшиеся два углесоса попеременно, чем тоже не улучшил ремонт, а себе жизнь, т.к. землесос вообще был без резерва. Но этим действием он ликвидировал во многом большую опасность, а своим возросшим рабочим временем он не особенно был угнетен.

Как водится, «ученые» быстренько присвоили себе и это техническое решение Гонилова и в следующих своих проектах беззастенчиво стали его применять. В душе они, конечно, чувствовали свою ущербность и неумение найти приемлемый технический выход, но и опасались последствий уж слишком явного своего просчета, впрочем, вполне бессовестно и опасно пущенного в жизнь ради своего шкурного, в общем–то, интереса.

Стандартная ситуация по гидротранспорту может быть рассмотрена на примере шахт «Байдаевская_Северная» №1 и «Байдаевская–Северная №2, позднее объединенных в одну шахту «Юбилейная». Гидротранспорт по трубопроводам осуществляется из зумпфа на «дне» шахты по стволу, затем по поверхности на 10–11 километров до Центральной обогатительной фабрики «Кузнецкая», откуда уже обогащенный, обезвоженный и высушенный уголь поступает по ленточному конвейеру на коксохимпроизводство, на Западно–Сибирский металлургический комбинат. Со «дна» шахты его выкачивают одноступенчатый землесос и двухступенчатый (два последовательно соединенных патрубком рабочих колеса ) углесос, труба от которого на поверхности заведена в другой двухступенчатый углесос, который и доставляет пульпу до фабрики. Непрерывное гидравлическое соединение трех машин позволяет не потерять излишний напор при переходе от одной машины к другой, что произошло бы, если их соединить через какую–либо емкость. Но прямое соединение трех машин делает менее надежной их систему. Если надежность каждой машины равна 0.8, то надежность всей системы из трех машин составит 0.8 х 0.8 х 0.8 = 0.5, т.е. очень низкая: половину времени система должна быть «в отказе». Поэтому имеется 100–процентный резерв у углесосов, землесос, как надежная машина работает без резерва. Таким образом, надежность системы достигает ориентировочно 100 процентов. Но надежностью должен обладать и сам трубопровод, изнашивающийся и отказывающий, как и все остальное. К нему мы и приступим.

Как выше было сказано, толщина стенки трубопровода составляла 17 мм при необходимой по давлению в трубопроводе 5 мм. Это не просто лишний расход металла, а строгая необходимость – трубы изнашиваются на глазах. Каждые 80–100 тысяч тонн пропущенного по трубе угля «съедают» 1 мм диаметра трубы в нижней ее части. Каждая труба в год пропускает около миллиона тонн угля, значит, толщина ее стенки уменьшается на 11 мм из 17 мм. Другими словами, срок службы трубы составляет год, а горячекатаные высоконапорные трубы такого диаметра очень дороги. Износ трубы происходит узкой полосой, по ее нижней части, и этот факт помог решить вопрос до некоторой степени. После года работы сваренный трубопровод резали на отрезки по 40–50 метров и поворачивали на 120 градусов, а потом опять сваривали, заменяя при этом все колена на поворотах, не подлежащие развороту. Через год операция повторялась, через три года вся труба заменялась на новую, опять на три года. Если бы, например, железнодорожные рельсы и шпалы менялись на новые с такой же периодичностью, то, наверное, Стефенсон не был бы известен истории. Эта постоянная тягомотина очень дестабилизировала работу гидрошахт и являлась причиной многочисленных аварий, происходивших от разрыва труб и забучивания их углем после места утечки воды. Теоретически стенка в 5 мм должна была держать напор, но трубы попадались с браком, износ в каком–то специфическом месте оказывался больше расчетного, поэтому трубы разрывались непредсказуемо, а пульпа попадала в ручьи, а затем в реки, загрязняя их. Тем боле, что на обогатительной фабрике в качестве флотореагента при обогащении флотацией применялся керосин с химическими добавками и при оборотном технологическом водоснабжении попадал снова в пульпу.

Причиной колоссального износа труб, задвижек и углесосов являлась все та же «малооперационность и непрерывность» технологии, в которую требовалось верить, а не обсуждать. Ведь гидротранспортировался практически рядовой уголь, ограниченный верхним размером зерна 100 мм, чтобы кусок проходил в колесо углесоса. Первые же опыты показали, что надо бы уменьшить предельный размер зерен пульпы, скажем, до трех миллиметров и тогда бы куча неразрешимых и, в конечном счете, приведших к краху технологии, проблем были бы автоматически разрешены. Но ученые «идеологи» смертно стояли на малооперационности технологического процесса. Можно было бы поставить простой грохот перед зумпфом, куда поступала пульпа самотеком, и надрешетный продукт отправить из шахты традиционным способом в скипах, а затем в железнодорожных вагонах. Тогда не пришлось бы выдумывать идиотские высоконапорные углесосы, трубы бы служили практически вечно. Можно было бы вместо углесосов применить те же самые многоступенчатые центробежные насосы, которые подавали высоконапорную воду в шахту. Но тогда бы гидравлическая технология была бы простой добавкой к уже давно существующей «сухой» технологии, чего «основоположники» никак допустить не могли. По их мнению, весь мир должен был от многовековой традиции отказаться и единодушно перейти к «их» технологии. Воистину человек не знает, что творит.

Гидротранспорт угля с диаметром частиц менее трех миллиметров в трубах в гидравлическом смысле мало бы отличался от перекачки чистой воды. Кусочки такие бы не тащились по дну трубы, как крупные частицы, изнашивая его, а «сальтировали» под действием турбулентности потока. То есть, частицы, ударившись о дно, подпрыгивали бы и большую часть пути пролетали бы во взвешенном состоянии, затем на долю секунды, снова ударившись о дно, опять взвешивались в потоке. Для того чтобы тащить по дну крупные частицы угля надо иметь довольно высокую скорость потока воды. Но ведь вся пустая порода, без попутной (по необходимости) выемки которой не обходится ни одна шахта в мире, все по той же пресловутой «однооперационности–малооперационности» также выдавалась совместно с углем, а не отдельно как на обычных шахтах. Тем самым создавалась «экономия» на горных работах по сравнению с традиционными шахтами, но эта псевдоэкономия потом сказывалась дополнительными затратами при обогащении угля, так как приходилось извлекать из угля намного (процентов на 10–15) большее количество породы и куда–то ее девать. Переложив на себестоимость обогащения свою «экономию», «основоположники» делали вид, что этот детский фокус никто не разгадает.

Но не в этом сейчас дело. Дело в том, что для протаскивания по дну гидроуглепровода большого куска породы требовалось в два с половиной раза большее усилие, чем для протаскивания угля. Значит, скорость воды должна быть соответственно большая, а потери напора на гидротранспортирование уже в квадрате зависят от скорости воды, а значит и расход электроэнергии, и износ самого трубопровода. В общем, дурь сплошная в угоду отвлеченной от жизни идее, чисто пропагандистской, рассчитанной на прямых дураков. Весь персонал института ВНИИгидроуголь был вымуштрован основоположником на «заповедях» типа «однооперационности» и многих других, таких как «малооперационность», «непрерывность», «универсальность» и на табу, неисполнение которых каралось или не продвижением по службе, или непредставлением возможности заниматься диссертацией, или открытым пренебрежением и насмешками «основателя», а заканчивалось неотвратимым увольнением. Ставший «стабильным», коллектив был вымуштрован и послушен, назубок знал как «заповеди», так и «табу» и только «славил» своего «учителя». В конечном счете, все это закончилось плачевно. Самого «основоположника» вышестоящие начальники, которым он надоел своей «манией величия», выгнали из института, а технология «приказала долго жить», а вместе с ней и все разумное, что в ней имелось. Жалко конечно. Я, наверное, не доживу до того, когда Березовского постигнет та же участь, но вряд ли от него останется что–нибудь разумное, кроме, разумеется, денег. Но это я так сказать, отвлекся.

Проблемы обогащения–обезвоживания угля после его гидродобычи

Тащить по дну крупный кусок угля, как сказано выше, приводит к повышенным затратам энергии, но энергия не исчезает, она превращается в работу, работу по истиранию угля в тонкий порошок. Уголь хрупок, но разрушается на очень острогранные куски, такова его природа. После трубопровода эти куски становятся кругленькими как речная или морская галька. Все лишнее превратилось в тонкую пыль. Крупные куски становятся более округлыми, так как волочатся по дну. Мелкие куски менее подвержены окатыванию, так как большую часть пути они находились во взвешенном состоянии. То же самое наблюдается и при самотечном гидротранспорте, в открытом потоке в желобах.

Проследим путь угля при гидротранспорте с точки зрения его измельчаемости. Как я уже отметил, уголь хрупок, а куски его, отбитые от забоя, острогранны. При самотечном гидротранспорте острые грани и углы истираются в тонкую пыль и кусочки приходят к камере гидроподъема окатанные как гальки. Перед зумпфом стоит молотковая дробилка с классификационной решеткой 100 х100 мм. Дробление происходит ударом молотков, при этом под удары попадают практически все кусочки угля, и мелкие, и крупные, так как обороты дробилки высоки, 1000 оборотов в минуту. При скорости пульпы 4 метра в секунду она находится в дробилке диаметром 0.8 метра 0.2 секунды. За 0.2 секунды ротор дробилки сделает более 3 оборотов. На роторе насажано 4 ряда молотков. Таким образом, по каждому кусочку угля, прежде чем он выскочит сквозь решетку, теоретически придется 12 ударов молотком дробилки, причем по всем кусочкам, и требующим дробления, и не требующим.

Чтобы не переизмельчать уголь, ученые пытались применить более «щадящие» дробилки, например конусные, но прока не вышло. Дело в том, что с пульпой попадает много металла, от лопаты до кувалды, так как уроненное что–то в пульпу, уносится ею мгновенно, не догонишь. А лопата или кувалда, попавшая в конусную дробилку, мгновенно выводит ее из строя. Попытались ловить металл в потоке магнитами, но и из этого ничего не вышло. Молотковая дробилка ничего не боится. Попавшую туда металлическую лопату за считанные секунды дробилка превращает в аккуратненький металлический шар. Кувалда может там греметь внутри хоть полсмены, не причиняя особого вреда ей, так что остановились на молотковой дробилке. Так что окатавшиеся при самотечном гидротранспорте кусочки угля и ставшие более–менее стабильными, вновь раскалываются и вновь получают острогранные формы и тещины в дробилке и снова готовы к интенсивному измельчению.

А, между прочим, насос или углесос – это, в общем, тоже дробилка, только не молотковая, а так называемая, роторная. В ней разрушение производят не молотки, а плиты, о которые ударяется уголь, а плиты – это лопасти углесоса, скорость у которых в полтора раза выше, чем в молотковой дробилке. Уголь последовательно проходит три рабочих колеса: землесоса и двухступенчатого углесоса и снова начинает окатываться в трубе до поверхности. Окатавшись, кусок снова проходит двухступенчатый углесос, раскалываясь и вновь приобретая острые грани и углы, которые в течение 10–километрового гидротранспорта опять срезаются окатыванием.

На обогатительную фабрику попадает уголь крупностью 0–3 мм в диаметре с абсолютно незначительным содержанием более крупных классов, хотя из зумпфа отправился крупностью 0–100 мм. «Основоположник» не захотел, другого слова не найти, отгрохотить уголь на два класса перед зумпфом (0–3 и более 3 мм). Затем первый класс отправить гидротранспортом, а второй – обычным транспортом, но получил за свое «малооперационное» упрямство весь уголь класса 0–3 мм, очень дорого обогащаемый, практически не поддающийся обезвоживанию и опасный по взрыву при термической сушке. Для этого он применил совершенно неэффективные, попросту идиотские машины (углесосы), подверг сумасшедшему износу всю свою «однооперационную» технологическую цепочку и затратил кучу электроэнергии для создания высокотурбулентного вместо низкотурбулентного, чуть ли не ламинарного, потока в трубе.