65545.fb2
Математические расчеты позволили дать вполне правдоподобную оценку времени, необходимого для образования современных торфяных болот, донных осадков в лагунах, ледниковых озерах и других замкнутых водоемах. С более древними отложениями дело обстоит сложнее, поскольку при затвердевании большинство осадочных пород обычно уменьшается в объеме и измеренные мощности таких слоев всегда меньше их первоначальной толщины. Кроме того, с течением времени под действием давления вышележащих пластов и температуры земных глубин многие породы продолжают уплотняться, что еще больше затрудняет установление их первоначальной мощности. Но выяснилось также, что в ряде случаев можно ввести надлежащие поправки на степень сжатия пород и с той или иной вероятностью реконструировать исходные объемы осадков.
С учетом этих данных было подсчитано время формирования осадочных толщ от кембрия до четвертичного периода включительно. Чтобы выполнить эту работу, потребовалось составить сводный разрез верхней части земной коры по результатам геологических исследований, проведенных во многих районах мира. Это был большой, очень сложный труд. И на каждом его шаге возникали неожиданные неприятности. В разрезе некоторых районов встретились мощные вулканические образования. Продолжительность их накопления необходимо было учесть. Но где найти надежные критерии, позволяющие установить длительность вулканических процессов? Наличие таких пород приходилось игнорировать.
Или другое обычное геологическое явление - перерыв в накоплении осадков. Такие перерывы могут быть вызваны действием множества причин: отступанием моря, поднятием участков суши, изменением направления течений, местными вариациями активности водотоков. Перечень подобных факторов может быть продолжен. Учесть все эти изменения, а тем более дать их количественную оценку в масштабе геологической истории планеты попросту невозможно. Скептики утверждали, что начатая работа заведомо обречена на полный провал.
Но поскольку в основе исследования лежала статистическая оценка данных, обилие материала позволило сгладить неравноценность исходных наблюдении и получить результаты, которые, как ни странно, не только оказались логически приемлемыми, но позволили даже дать сравнительную оценку протяженности геологических эр и периодов. Вычисленная по мощностям осадочных пород продолжительность палеозойской эры составила 15 млн. лет, мезозойской - 4 млн. лет, палеогенового и неогенового периодов, вместе взятых, - 1,5 млн. лет, четвертичного периода - 35-40 тыс. лет.
Несовершенство использованной методики не оспаривалось. Но это была реальная и действенная попытка количественно оценить абсолютную протяженность больших отрезков геологического времени. Подкупало и то, что полученная общая длительность фанерозоя (20 млн. лет) была соизмеримой с продолжительностью возможного существования холодной Земли, которую определил лорд Кельвин (этим титулом в 1892 г. наградила Великобритания своего талантливого физика У. Томсона).
Однако геологи вполне отдавали себе отчет в том, что полученная картина весьма далека от реальности и решение вопроса об истинном возрасте Земли еще не найдено. Слишком много ненадежных положений заключала в себе использованная методика. Явно преувеличенной казалась принятая на основании статистического материала быстрота накопления слоев отдельных пород, а возникающие вследствие этого погрешности едва ли компенсировались введением поправок на уплотнение пород. Не вполне ясно было также, в какой мере надстраивающие друг друга геологические разрезы разных районов отражают всю полноту истории Земли. Не подлежало сомнению лишь одно - поиски должны быть продолжены.
Во времена Оливера Кромвеля в Англии родился человек, которому суждено было стать великим астрономом. В одну из ночей 1682 г., сидя у телескопа, он увидел яркую комету. Проведя математические вычисления и получив консультацию у Исаака Ньютона, ученый пришел к заключению, что обнаруженная им комета движется по эллипсу, один край которого приближается к Солнцу, а другой почти достигает орбиты Нептуна. Он стал расспрашивать стариков и искать в древних рукописях все сведения о ярких кометах, которые появлялись над Англией в прежние времена. Таких известий было много, но особый след в памяти современников оставили две отличавшиеся своей яркостью небесные гостьи. Одна из них появилась в 1531 г., другая - в 1607 г., т. е. приблизительно на 152 и 76 лет раньше нынешней кометы. Обе эти кометы были достаточно хорошо изучены астрономами, и можно было без особого труда восстановить их путь на небесной сфере.
И астронома осенила догадка: не может ли быть так, что люди видели не три разные кометы, а одну и ту же, которая, совершая свой путь в просторах Вселенной, каждые 76 лет возвращается к Солнцу. Астроном не мог надеяться, что ему удастся при жизни еще раз увидеть свою комету и проверить справедливость смелого предположения. Он подробно изложил все признаки, по которым любой наблюдатель мог без затруднения узнать это замечательное небесное тело, и предсказал срок его появления.
Астроном умер через 60 лет. И спустя еще 16 лет в предсказанный им год сотни телескопов во всех уголках Европы были направлены на небо. Множество ученых с нетерпением ожидали, исполнится ли предсказание англичанина. Оно исполнилось. Все газеты мира писали о замечательной комете, и со страниц каждой из них не сходило одно и то же имя - Эдмунд Галлей.
Имя знаменитого астронома известно теперь каждому школьнику. Но значительно меньше людей знают, что этот ученый всю жизнь пытался решить вопрос: когда образовался мир? Он посвятил этой проблеме интересные исследования.
Комета Галлея: 1 - траектория кометы; 2 - один из снимков кометы, переданных со станции "Вега-1" цвета отображают различную степень яркости объекта (самая яркая область кометы - красный цвет, несколько слабее - желтый и т.д.).
Увидев, как в пустынной местности постепенно засолоняются бессточные озера и лужи, оставшиеся от продолжительных дождей, Галлей задумался: нельзя ли использовать эти наблюдения, чтобы выяснить возраст нашей планеты? Астроном предполагал, что океаны произошли от дождей, пролившихся на Землю в первые века ее существования, что дождевая вода абсолютно чистая, т. е. лишена солей. Значит, и вода первичного океана была поначалу пресной.
А между тем речные воды всегда содержат в себе то или иное количество растворенных минеральных солей. Протекая по каменному ложу, сотни тысяч рек размывают горные породы, слагающие берега, и уносят с собой частицы минеральных веществ. Поэтому какой бы пресной ни казалась речная вода на вкус, она всегда содержит соли. Каждый час, каждый месяц, из года в год несут реки свои воды в океан. Под лучами солнца поверхность океана нагревается, вода начинает испаряться. Плывут над просторами моря облака, унося сгустившийся пар. А реки продолжают поставлять в Мировой океан новые и новые порции рассола.
Если взять пробу морской воды, можно выяснить, сколько в ней содержится соли, а зная площадь океана и его глубины, можно вычислить, каково общее количество солей в его водах. С другой стороны, определив объем воды, которую поставляют в моря реки, и количество растворенных в этой воде примесей, можно судить о том, сколько соли ежегодно получает океан с суши. Зная это, мы можем вычислить, сколько времени потребовалось, чтобы реки могли принести все те соли, которые содержатся ныне в морских водах.
Казалось, вопрос решится очень просто. Галлей произвел необходимые расчеты и получил ответ: со времени образования Мирового океана прошло 10 тыс. лет.
Сегодня мы можем повторить вычисления Галлея на вполне современной основе. Объем и массу водной оболочки Земли - гидросферы - удалось подсчитать достаточно точно. Известны средняя солевая насыщенность морских вод и концентрация важнейших веществ, растворенных в водах рек. По нынешним данным в Мировом океане содержится 56 256 000 млрд. т солей. Общий годовой сток рек равен 37 тыс. км3. Если принять, что средняя соленость речной воды составляет 0,146 частей на тысячу единиц, то все реки мира должны ежегодно выносить в океан 5402 млн. т растворенных веществ. Из этого количества около 555 млн. т являются так называемыми циклическими солями, принимающими участие в постоянном кругообороте вод гидросферы и атмосферы. Эти вещества в морской воде не накапливаются, и должны быть исключены из рассмотрения. Значит, годовой привнес новых растворенных веществ в океан составляет 4847 млн. т. Остается разделить 56256*1012 на 4847*106 и получить точную цифру - 11 606 354 года!
Таким образом, возраст океанов увеличивается более чем в тысячу раз. Но можно ли верить результатам пробных определений?
Модель Галлея не учитывала сведений о газах, растворенных в морской воде. Их присутствие может существенно влиять на степень насыщенности вод солями. Совершенно не принималось во внимание количество веществ, которые приносятся в море текучими водами в виде суспензий - взвесей мельчайших частиц горных пород; эти частицы, хотя и не полностью, тоже растворяются. За пределами рассмотрения остались также большие объемы растворенных веществ, выпадающих на поверхность океана с дождевыми осадками.
Да и можно ли утверждать, что накопление солей в океане всегда происходило с такой же скоростью, как сейчас? Не исключено, что ранее оно протекало во много раз медленнее. А каким образом учесть те огромные массы соли, которые выпадают из раствора и осаждаются на дне водоемов? Можно ли сбрасывать со счетов влияние подводных вулканических извержений, распыляющих в океане многие тысячи тонн растворимых минеральных веществ?
Через некоторое время после публикации Галлея химики и геологи постарались учесть все имевшиеся океанологические и гидрохимические материалы, а также сведения о скорости накопления океанических пород и получили более значительную оценку возраста океана - 200 млн. лет. Два столетия спустя эти расчеты были выполнены на уточненной основе, и предполагаемый возраст океана увеличился еще в полтора раза: 350 млн. лет - так оценивалась продолжительность его существования.
Но можно ли утверждать, что океан - ровесник Земли? Какие доказательства можно привести в пользу этого?
Если предположить, что Земля когда-то была полностью расплавленной, то в этом случае вода вместе с другими летучими веществами должна была бы испаряться и в газообразном состоянии накапливаться в атмосфере Земли. Будь это так, то современные океаны были бы попросту остатками древней горячей атмосферы. Но гипотезы о существовании некогда раскаленной планеты геологическими данными, по-видимому, не подтверждаются. Значит, процесс формирования гидросферы более сложный, она может быть следствием дегазации пород в недрах Земли, температурных преобразований глубинных и приповерхностных отложений, а также результатом освобождения воды при выветривании пород.
Стало быть, океаны, по-видимому, моложе земной коры и во всяком случае моложе нашей планеты.
Шли десятилетия, но ответ на интересующий ученых вопрос все не приходил. Только в самом конце XIX века были получены первые обнадеживающие данные.
В один из счастливых для науки дней 1896 г. французский физик Анри Беккерель, случайно оставив в ящике стола кусочек урановой соли и фотопластинку в кассете, обнаружил, что пластинка оказалась засвеченной какими-то неизвестными лучами. Это излучение сразу обратило на себя внимание экспериментатора и вызвало небывалый интерес в научном мире.
Десятки ученых всех стран направили свои исследования на поиски причин таинственного излучения. Неутомимые исследования повлекли за собой серию чрезвычайно важных открытий, положивших начало новому направлению в физике. В результате этих открытий удалось выделить чистый радий, узнать строение атома, изучить структуру атомного ядра и вскрыть природу загадочного явления, именуемого радиоактивным распадом.
Сегодня мы знаем, что все элементы, ядра атомов которых содержат более 81 протона, радиоактивны. Эти так называемые тяжелые элементы (каждый из них имеет несколько разновидностей - изотопов) подразделяются на три класса, или семейства: ряд урана, ряд тория и ряд актиния.
Свойством радиоактивности обладают также некоторые изотопы и более легких элементов. Общее число известных ныне естественных радиоактивных изотопов достигает 60. Жизнь большинства из них весьма коротка, и наблюдать их мы можем лишь потому, что они непрерывно рождаются при ядерных реакциях или в результате разложения других радиоактивных элементов.
Все радиоактивные вещества обладают способностью распадаться, превращаясь в другие - дочерние - химические элементы. При этом скорость распада постоянна и не зависит от каких бы то ни было внешних воздействий. Атомы урана и тория, разрушаясь, превращаются в металл свинец и инертный газ гелий. Гелий может частично улетучиваться, свинец же, напротив, постепенно накапливается в минералах и горных породах. Время, за которое материнский элемент успевает наполовину превратиться в дочерний, называется периодом полураспада.
Радиоактивный распад непрерывно происходит во всей земной коре и во внутренних областях Земли. Стало быть, зная скорость распада урана и тория и количество накопившегося в минерале свинца, можно вычислить время образования этого минерала.
Изучение возраста Земли на основании выявления закономерностей радиоактивного распада началось еще в первые годы нынешнего века. Удалось установить, что гелий, впервые обнаруженный на Солнце и получивший свое название по имени древнегреческого бога этого светила Гелиоса, встречается на Земле достаточно часто, причем родителями его всегда являются радиоактивные элементы уран и торий. Первые опыты определения возраста минералов по этим элементам провел великий английский физик Эрнест Резерфорд.
Последующие работы зарубежных и советских ученых принесли много ценных сведений о законах радиоактивного распада и заложили основы приближенного исчисления геологического возраста Земли в абсолютных единицах времени.
Новые горизонты открыло перед естествоиспытателями знание процессов радиоактивности. Это позволило рассматривать кристаллы минералов в качестве природных хронометров, отсчитывающих ход геологического времени. В различных районах Земли были вновь изучены разрезы земной коры, возраст которых был установлен ранее по шкале относительной геохронологии. Полученные данные показали, что возраст горных пород, определенный «абсолютным» методом, в общих чертах совпадает с последовательностью, которую давала для этих пластов традиционная геология. Стрелка уранового хронометра достаточно определенно указывала очередность напластований: одни отложения оказались более древними, другие - более молодыми, как и предполагали раньше геологи.
Представилась возможность проверить некоторые старые предположения о происхождении и развитии нашей планеты. Процессы радиоактивного распада приводят к выделению тепловой энергии, которая постоянно поступает из недр к поверхности Земли. Этот факт заставил отвергнуть гипотезу об однонаправленном остывании земного шара. Пришлось отказаться и от космогонических моделей, подобных тем, которые были взяты в основу геохронологических определений Бюффоном и Томсоном.
Полученные физиками новые сведения сразу «удлинили» земную историю сначала до 200 млн. лет, а вскоре и до 2 млрд. лет. Учение об абсолютном возрасте Земли обретало силу.
Специалистам, занимающимся установлением возраста древних отложений, пришлось иметь дело с огромным разнообразием горных пород. Одни породы являются первичными продуктами земных недр, другие возникли в результате их разрушения и изменения.
При процессах выветривания образуются глины, пески и галечники; в водных бассейнах происходит химическое осаждение солей; в итоге жизнедеятельности организмов могут формироваться известняки, кремнистые породы и залежи каменного угля. Все эти породы называются осадочными.
Расплавленная магма, внедряясь из глубин Земли в толщу земной коры и застывая в ней, дает породы, получившие название интрузивных (граниты, сиениты, габбро и др.). Если же магме удается достигнуть земной поверхности, образуются вулканогенные породы: эффузивы (застывшие потоки лавы) и туфы (вулканический пепел и продукты его переработки). Интрузивные и эффузивные породы называют магматическими.
Под действием давления, высокой температуры и химически активных веществ магматические и осадочные образования могут совершенно изменить свой облик и перейти в перекристаллизованное состояние. Таковы, например, гнейсы, кристаллические сланцы, мраморы. Эти породы названы метаморфическими.
Каждому типу пород присущ своеобразный комплекс минералов. Различно происхождение этих минералов, различна их история. Химические компоненты, входящие в состав вещества минералов, ведут себя по-разному. Поэтому, ставя перед собой задачу определить возраст горной породы, необходимо тщательно изучить ее происхождение и выбрать из арсенала научных методов те, которые могли бы обеспечить наибольшую достоверность ожидаемых результатов.
Как известно, радиоактивность может проявляться в двух основных формах, получивших название альфа (a)- и бета (b)- распада. При альфа-распаде ядро радиоактивного элемента испускает альфа-частицу - ядро атома гелия, состоящее из двух протонов и двух нейтронов, и один квант гамма-излучения. При бета-распаде ядро излучает бета-частицу, которая представляет собой электрон, и нейтрино. Оба вида распада сопровождаются нагреванием окружающего вещества. Кроме того, ядро может иногда захватывать электрон с ближайшей электронной оболочки, излучая при этом нейтрино. На изучении этих процессов и построены главнейшие методы абсолютной геохронологии.
Одним из первых способов определения абсолютного возраста был уже упоминавшийся свинцово-изотопный метод, основанный на изучении процессов распада изотопов уран-238, уран-235 и торий-232. По соотношению этих элементов и изотопов свинца, образующихся в результате их радиоактивного распада, удается с высокой точностью установить время появления горной породы.
Однако урановые и ториевые минералы недостаточно стойкие, легко разрушаются и, кроме того, не так уж часто встречаются в природе. Это поначалу накладывало существенные ограничения на использование свинцового метода. Но поскольку содержание урана и тория в горных породах не оставалось постоянным в ходе геологической истории, изменения эти неизбежно должны были отразиться и на соотношении продуктов их распада. Следовательно, совершенно необязательно, чтобы в минералах непременно присутствовали уран и торий. Достаточно, если нам будет известен, например, изотопный состав содержащегося в минерале свинца.
Природный свинец представляет собой смесь четырех изотопов, из которых три (свинец-206, -207, -208) являются продуктами радиоактивного распада. Анализы показывают, что в образующихся ныне слоях эти изотопы содержатся в отношении
204Pb:206Pb:207Pb:208Pb = 1:19,04:15,69:39,00.
В отложениях минувших эпох это соотношение изменяется: чем древнее горная порода, тем меньше в ней радиогенных изотопов свинца.
По известной нам скорости распада материнских элементов нетрудно вычислить, какое количество каждого изотопа должно присутствовать в породах того или иного возраста. Если же установить, в каком соотношении пребывают изотопы свинца в интересующем нас минерале, можно решить и обратную задачу: по количеству изотопов установить время образования породы.
Свинец неплохо исполняет роль «метрического свидетельства» горных пород, особенно в тех случаях, когда приходится иметь дело с большими залежами, насыщенными этим элементом. Но распространен свинец в земной коре неравномерно. При сравнении результатов многочисленных анализов было замечено, что в одних местах количество свинца по отношению к урану и торию явно занижено, а в других - чрезмерно завышено.