65545.fb2 Геологические часы - читать онлайн бесплатно полную версию книги . Страница 8

Геологические часы - читать онлайн бесплатно полную версию книги . Страница 8

Достаточно нагреть полевой шпат до нескольких сотен градусов Цельсия, чтобы в его внутреннем строении произошли заметные перемены и аргон начал покидать кристаллическую решетку минерала. Но при той же температуре слюды стремятся сохранить свое прежнее строение и преобразуются значительно медленнее. До 1300° С необходимо нагреть светлую слюду мусковит, чтобы она утратила весь радиогенный аргон.

Казалось бесспорным, что аргон лучше всего сохраняется в слюдах. И вдруг - обратная закономерность: в некоторых образцах полевой шпат удерживает атомы радиогенного аргона лучше, чем находящаяся рядом слюда. Оказалось, снова виновата температура. На каждом тепловом рубеже любой минерал может выделить лишь некоторое количество содержащегося в нем аргона. Потом утечка газа прекращается и может возобновиться лишь при очередном нагревании. А вот скорости, с которыми аргон покидает кристаллическую решетку слюд и шпатов, не совпадают. Поэтому и получается иногда такое несоответствие.

Опасность ошибки в результате появления в породе избыточного аргона, захваченного кристаллами минералов во время их роста, значительно меньше. Это явление наблюдается нечасто и к тому же присуще лишь немногим минералам, которые редко используются для определения абсолютного возраста. Иногда ничтожные количества такого аргона обнаруживаются в эффузивных породах и туфах, но и здесь они крайне редки.

Зато в слюдах, взятых из метаморфических пород, радиолога могут ожидать подвохи. В кристаллах слюды сплошь и рядом можно обнаружить некоторое количество избыточного аргона. Его называют реликтовым или унаследованным. Присутствие такого аргона ощутимо удревняет абсолютный возраст. И что самое неприятное - полученный результат не дает возможности даже судить о том времени, когда порода подверглась изменениям.

Глубинные растворы приносят калий, высокая температура нарушает устоявшийся режим горной породы, и, повинуясь их требованиям, «бредут» атомы по своим кристаллическим «кочевьям». Проникает подобный раствор в докембрийские интрузивные образования, и в них начинают расти новые молодые минералы. Минералы такого происхождения не могут указать на истинный возраст горной породы.

Тем не менее такие новообразования представляют для радиолога определенный интерес. Хотя они и не позволяют решить основную задачу, но зато с их помощью можно достаточно точно установить время, когда горная порода подверглась преобразованию. А это очень важно для изучения геологического развития той или иной территории и воссоздания истории активности земных глубин.

А на поверхности породы, открытой действию дождя, ветра и солнца, протекают противоположные процессы - идет разрушение. Здесь кристаллическая структура минералов утрачивает калий. Даже невооруженным глазом можно заметить это необратимое изменение. Теряя калий, выветрелые полевые шпаты покрываются тонкой пленкой глинистых образований. Эта пленка постепенно утолщается, захватывает внутренние области кристаллов и в конце концов вместо прочного полевого шпата в породе остается лишь совершенно лишенная калия белая глина - каолин.

На первых порах соотношение калия и аргона в некоторых минералах сохраняется. Слюды, например, разрушаются последовательно, слой за слоем, и оба элемента покидают их кристаллическую решетку в количестве почти пропорциональном. И хотя аргон утрачивается слюдой все-таки немного быстрее, это не влияет существенно на результаты определения возраста. Но так обстоит дело только в начальной стадии выветривания. Пройдет время, и эти минералы тоже потеряют свою геохронологическую ценность.

Подземные грунтовые воды, насыщенные кальцием, высасывают калий из слюд и полевых шпатов. А еще глубже уже другие воды - выделяющиеся из магмы - вызывают замещение калия натрием.

В слюдах и полевых шпатах в резулы-ате геохимических процессов может изменяться также количество рубидия и стронция. Если рубидий займет в кристаллах слюды место калия (а это нередко происходит при стечении определенных условий), возраст породы неизбежно окажется заниженным. Стронций же при метаморфических преобразованиях, наоборот, переходит из слюды в окружающие ее минералы, в частности в полевые шпаты. Поэтому определение возраста метаморфических образований, сделанное по слюдам, «омолодит» исследуемую породу, а радиологические данные, полученные для полевых шпатов той же породы, напротив, «состарят» ее.

Правда, перемещения рубидия и стронция сравнительно невелики. Теоретически можно утверждать, что даже в небольшом куске породы, несмотря на все изменения, сохраняется первоначальное соотношение стронция-87 и рубидия-87. Казалось бы, следует анализировать не отдельные минералы, а их совокупность - валовую пробу породы.

Но выяснилось, что в валовых пробах обычно присутствует огромное количество обыкновенного - нерадиогенного - стронция, в десятки раз превышающее содержание радиогенного изотопа этого элемента. Дело сразу осложнилось. Если знать изотопный состав обычного стронция, можно было бы внести соответствующие поправки и все-таки выяснить истинный возраст породы. Но, к сожалению, радиологам изотопный состав стронция, как правило, не известен.

Свинцово-изотопный метод, по-видимому, имеет существенные преимущества перед аргоновым и стронциевым. Так, с его помощью возраст минералов может быть исчислен по четырем парам отношений:

Но тому моменту, когда образец попадает в геохронологическую лабораторию, предшествует длившаяся миллионы лет жизнь горной породы. За это время в ней происходит ряд радиоактивных превращений, что может сопровождаться миграцией как материнских и дочерних изотопов, так и любого из промежуточных радиоэлементов. Привнес или вынос хотя бы одного из них может существенно повлиять на результаты определения возраста.

Поэтому, для того чтобы быть уверенным в своих заключениях, геохронолог должен проверить совпадение результатов по всем четырем парам изотопов. Правда, такое совпадение бывает на практике нечасто. Но если одинаковые или близкие данные о возрасте получены по всем четырем изотопным отношениям, радиологическому заключению, по-видимому, можно верить.

Изотопные отношения имеют различную чувствительность к геохимическим процессам. Наиболее чутко отзывается на уменьшение количества свинца отношение его изотопов, обладающих атомной массой 206 и 207.

Свинец-206 мигрирует одновременно и в строгой пропорции со своим собратом, имеющим атомную массу 207. Поэтому для минералов, происходящих из докембрийских пород, для которых отношение этих изотопов определяется с наиболее высокой точностью, цифра, вычисленная по свинцу, является наиболее достоверным показателем возраста. Даже если минерал испытал утрату урана или тория, отношение сви-нец-207/свинец-206 сохраняет свою надежность.

Но при анализе образцов, возраст которых моложе 600 млн. лет, свинцовое отношение измеряется очень неточно, и поэтому приходится отдавать предпочтение другим изотопам. На первое место выступают пары

свинец-206/уран-238, свинец-207/уран-235, свинец-208/тории-232

Объяснить расхождение возрастной датировки бывает иногда трудно еще и потому, что изотопный состав свинца, привнесенного в породу, может оказаться различным. Что же касается потери свинца минералами, то здесь недостаточно ясны не только причины, но и сам ход химических процессов, которые могут протекать совершенно по-разному в зависимости от геологических условий и от того, насколько давно затронули породу геохимические изменения.

Пожалуй, наиболее просто установить возраст интрузив-ных пород. Они образовались в результате кристаллизации магматического расплава, и все их минералы родились, грубо говоря, одновременно. Если эти породы не претерпели за время своего существования каких-либо серьезных изменений (а выявить это, в общем, возможно), возраст их, определенный различными методами, будет приблизительно одинаков.

Но достаточно даже незначительных тепловых воздействий, проникновения магматических растворов или химического замещения в составе породы, как положение резко ухудшается. Аргон покидает кристаллическую решетку слюд и других содержащих калий минералов, меняется соотношение радиоактивных изотопов в акцессорных минералах. В результате породы целых районов оказываются значительно омоложенными по сравнению с их истинным возрастом.

Еще сложнее обстоит дело с породами, измененными нагревом и проникающими растворами. Здесь могут иметь место и привнес новых элементов, и уменьшение количества старых, и миграция составных частей породы. В подобных случаях радиологи пытаются определять возраст разных компонентов породы разными методами: акцессорных минералов - свинцово-изотопным, первичных амфиболов - аргоновым, реликтовых слюд - стронциевым. И хотя иногда результаты этих анализов расходятся, нередко все-таки удается прийти к более или менее определенному заключению.

Калий-аргоновый метод применим для датирования магматических, метаморфических, а в некоторых случаях и осадочных пород. Но поскольку этим методом возраст может определяться по результатам анализа только какого-либо одного минерала, использовать его для анализа валовых проб породы нельзя. Оценка абсолютного возраста может считаться заслуживающей доверия лишь при условии, что радиологические наблюдения по нескольким минералам совпадают. Поэтому чтобы получить надежные выводы, стараются, например, продублировать определения, сделанные по слюде, - результатами по калиевому шпату или амфиболу, а данные по амфиболу в свою очередь подтвердить анализами пироксена или плагиоклаза. Если же это невозможно (а такое случается, когда исследованию подлежат так называемые мономинеральные породы, например амфиболиты), надо проконтролировать полученные результаты другими радиологическими методами.

Но при всех условиях необходимо, чтобы анализируемая порода на протяжении своего существования не испытала ни потерь аргона или калия, ни обогащения этими элементами. Для докембрийских образований вероятность сохранения пород в первозданном состоянии ничтожно мала. Поэтому для древнейших отложений калий-аргоновый метод может применяться лишь в рекогносцировочных целях. Зато при датировании фанерозойских пород им можно пользоваться со значительной уверенностью.

Огромным преимуществом этого метода является его высокая производительность. Многие десятки тысяч анализов, характеризующих соотношение калия и аргона в горных породах, позволяют не только устанавливать возрастную принадлежность отдельных точек геологического разреза, но и создавать модели развития палеотектонических обстановок, магматизма и рудообразования.

Рубидий-стронциевый метод обычно используется для анализа валовых проб магматических и метаморфических пород. Возраст осадочных отложений этим методом не устанавливается. Как и при калий-аргоновом методе, надежность полученных результатов существенно зависит от того, в какой мере сохранила порода изначально присущее ей содержание рубидия и стронция. Но поскольку способность к миграциям у стронция значительно слабее, чем у аргона, этот метод может применяться при изучении не только фанерозойских, но и докембрийских образований.

Свинцово-изотопный метод наиболее пригоден для определения возраста пород, претерпевших длительные (и даже неоднократные) преобразования. Поэтому он особенно удобен при изучении докембрийских пород. С помощью именно этого метода был установлен архейский возраст метаморфических пород Станового хребта (более 3 млрд. лет) и Омодонского массива (3,4 млрд. лет), железистых кварцитов Чарского месторождения в регионе Байкало-Амурской магистрали (2,65 млрд. лет), гнейсов Енисейского кряжа (4,1 млрд. лет) и многих других древнейших образований.

Возможность представить надежное свидетельство достоверности определений сделала свинцово-изотопный метод одним из самых авторитетных в геохронологии. Неоднократно доводилось этому методу играть роль своеобразного арбитра при решении научных споров о возрасте древних отложений. В качестве примера можно привести известный случай, когда свинцово-изотопным методом было установлено время формирования гнейсов Камчатского массива^-1300 млн. лет назад. Возраст этих пород по определениям калий-аргоновым методом считался равным 100-150 млн. лет, а по данным рубидий-стронциевого анализа - 487 млн. лет.

Но на пути широкого применения свинцового метода стоят три препятствия: сложность, трудоемкость и, что едва ли не самое главное, длительность подготовки материала к анализу. Удастся ли найти такие способы, которые помогли бы преодолеть эти объективные трудности?

Исходным материалом для определения геологического возраста служат многие минералы и горные породы из многих регионов земного шара. Но можно ли считать равноценными все полученные результаты? Среди радиологов нет единого мнения о том, какой минерал может наилучшим образом указать возраст земных слоев, сформировавшихся в той или иной обстановке.

Каждый геохронологический метод имеет свои ограничения. Сформулированы ли они полностью? Пока нет. Несмотря на значительные успехи, абсолютная геохронология все еще находится в стадии становления.

Получить истинные значения возраста можно лишь при условии, если экспериментально установленное отношение элементов не нарушалось в течение всего существования горной породы. Так бывает очень редко. Однако путем совместного применения различных геохронологических методов удается в значительной степени приблизиться к истинной датировке древних отложений.

Даже в тех случаях, когда аналитическое исследование бессильно указать время возникновения пород, оно позволяет установить возраст преобразований, под действием которых породы обрели свой нынешний облик. Выявить общие закономерности геохимического поведения элементов, которые могут служить индикаторами возраста, и объяснить причины, вызывающие «возрастные аномалии», - важнейшая задача геохронологии. Задача эта сложная, и решена она пока далеко не в полной мере. Но уже сделаны первые шаги к ее решению.

СОВСЕМ НЕДАВНО О древнем угле и возрасте археологических находок

Взглянув на таблицу продолжительности геологических периодов фанерозоя, мы увидим, что длительность каждого из них определена с точностью, не превышающей 1 млн. лет. В среднем это, пожалуй, предел детальности, с которой действуют методы, использованные при построении геохронологической шкалы. А как быть, если необходимо выяснить возраст слоев, образовавшихся сравнительно недавно, например, на протяжении последнего миллиона лет? Оказалось, что это возможно. Надо только подобрать для эксперимента пары других исходных и конечных продуктов радиоактивного распада. После интенсивных поисков было выбрано несколько пар таких химических элементов и предложен ряд новых методов определения абсолютного возраста.

В пределах 300 тыс. лет действуют радий-урановый и радий-актиниевый методы. Они удобны для датировки геологических образований в тех случаях, когда требуемая точность не превышает 4-10 тыс. лет.

Но очень часто в геологии и археологии бывает необходимо выяснить возраст так называемых новейших событий, произошедших в последние 10-12 тыс. лет. В этом случае определить возраст можно по содержанию радиоактивного изотопа углерод-14 (14С). Этот сравнительно недолговечный изотоп (его период полураспада около 5730 лет) непрерывно образуется в высоких слоях атмосферы в результате соединения азота со свободными нейтронами, появляющимися под действием космического излучения. Окисляясь, углерод входит в состав углекислого газа; в процессе обмена веществ он усваивается живыми организмами и включается в круговорот углерода, происходящий в атмосфере, гидросфере и биосфере Земли.

Скорость, с которой идет образование нейтронов в атмосфере, известна. Известно также, что большинство из них расходуется на создание радиоактивного углерода. Значит, можно рассчитать, насколько ежегодно увеличивается количество изотопа углерод-14. Но если какой-либо органический объект (допустим, растение), в составе которого есть радиоактивный углерод, по тем или иным причинам окажется изъятым из углеродного круговорота, количество углерода-14 в его тканях перестанет возрастать. А тот радиоактивный изотоп, который успел накопиться ранее, будет продолжать распадаться.

Проведя соответствующие измерения, можно, например, убедиться, что содержание углерода-14 в обломке древесины, взятом из раскопа палеолитического могильника, будет заметно меньше, чем в стволах деревьев, растущих ныне. Если же установить отношение количества радиоактивного изотопа и содержания других форм углерода (12С и 13С), то с учетом периода полураспада изотопа углерод-14 можно вычислить время, когда было срублено дерево, наиденное в захоронении.

Открытие углеродного метода было большим подспорьем для многих областей науки, поскольку углерод содержится и в костях животных, и в мышцах, и в растительных тканях - словом, в любых органических остатках, с которыми имеют дело исследователи минувших эпох.

С помощью углеродного метода можно определить время исторических событий, возраст древних построек, манускриптов, домашней утвари. Изучив разрез почвы на местах поселений первобытного человека, можно восстановить и проследить во времени историю жизни наших предков. Остатки золы древних кострищ, кости домашних животных и примитивные производственные орудия точно указывают сроки, когда человек покидал обжитые места. Костяные инструменты, наскальные рисунки, наконечники колющего оружия рассказывают о продолжительности стоянок.

Остатки костей, найденные вместе с кремневыми орудиями, позволили установить протяженность каменного века. А обнаруженные в еще более древних слоях скелеты неандертальцев дали возможность судить о начальных этапах эволюции человечества.

Но обо всем этом можно было узнать только по тем слоям, возраст которых не превышал 100 тыс. лет. В более ранних отложениях крайне редко удавалось найти древесный уголь - наилучший материал для радиоуглеродных определений, а если уголь и обнаруживали, то содержание радиоактивного изотопа углерода было в нем настолько низким, что не поддавалось измерению.

Углеродный метод завоевал множество сторонников. Кроме обширных коллекций, составленных при археологических раскопках, изучаются также многочисленные материалы, собранные геологами. Анализируются деревья погибших лесов, образцы торфа, раковины океанических животных. Проводятся и специальные контрольные опыты: определяется возраст деревянных изделий и древнейших погребений, которые уже датированы папирусами и летописями. Все эти исследования показывают, что цифры, полученные в лаборатории, обычно соответствуют истинному времени исторических событий.

Радиоуглеродный метод прочно вошел в практику геохронологических исследований. Первоначально с его помощью удавалось более или менее достоверно датировать только те отложения, возраст которых не превышал 20 тыс. лет. Сегодня же в массовом масштабе проводятся анализы, позволяющие осуществлять датирование в пределах последних 50-60 тыс. лет. А разработанные приемы обогащения проб радиоуглеродом и использование высокоточной техники открывают перед этим методом еще более широкие перспективы и разрешают изучать события, произошедшие до 70 тыс. лет назад. Определился и верхний предел действия метода - около 1000 лет; объекты моложе этого возраста дают слишком большие погрешности.

Для анализа обычно требуется довольно много исходного материала: древесного угля - не менее 10 г, скелетного вещества животных или древесины - несколько десятков граммов, торфа и гумуса - более 100 г. Исследователи работают над тем, чтобы массу анализируемых навесок можно было уменьшить. И есть все основания полагать, что эти старания увенчаются успехом.

Поскольку при использовании радиоуглеродного метода приходится анализировать очень малые количества изотопа, предъявляются высокие требования к отбору образцов, подлежащих изучению. Во избежание загрязнения органикой образцы можно брать только пинцетом или шпателем. Запрещается прикасаться к ним руками, заворачивать в вату или бумагу, пересыпать стружкой и опилками, обрабатывать какими бы то ни было химикатами. Хранить образцы можно только в многослойных мешках или специальных капсулах из неорганических материалов.

Принцип лабораторного изучения образцов достаточно прост: нужно точно измерить бета-активность радиоуглерода. Для этих измерений пользуются счетчиками Гейгера или устройствами, фиксирующими сцинтилляцию - световые вспышки, возникающие при прохождении быстрых заряженных частиц через некоторые вещества. Радиоактивный углерод пробы можно поместить в счетчик в виде твердого, газообразного (например, в виде углекислого газа) или жидкого вещества. В последнее время обычно предпочитают третий из этих способов, используя в качестве сцинтилля-тора бензол. Для защиты счетчика от проникновения внешнего гамма-излучения устанавливают экраны из железа, ртути, свинца или парафина. Чтобы учесть влияние рассеянного космического излучения, вокруг счетчика размещают соответствующие регистрирующие приборы. Остается выделить, усилить и зарегистрировать импульсы от электронов, испускаемых при распаде радиоактивного углерода, а затем сравнить их с результатами, полученными на современном эталонном объекте.

Радиоуглеродный метод открыл широкие возможности для датирования новейших отложений. Результаты работ позволяют не только устанавливать возраст отдельных находок, но и судить о закономерностях изменения географической обстановки, оценивать скорость циркуляции морских течений, прослеживать последовательность появления различных растительных сообществ. Этим методом был определен возраст всех фаз последнего оледенения, установлено время образования речных террас и других форм современного рельефа. Стало возможно узнавать возраст органических остатков. Удалось установить, в частности, время жизни мамонта, найденного в ледниковых отложениях Таймыра; оказалось, что он жил 12 тыс. лет назад.

Рассматриваемый метод позволяет сопоставить между собой отложения, сформировавшиеся в различных климатических зонах. Впервые представилась возможность определять возраст разрозненных фрагментов, принадлежащих скелетам организмов или изделиям древнего производства. В руках исследователей появился ключ к восстановлению истории по следам жизни.