65547.fb2
ФИЗИЧЕСКАЯ ГЕОМЕТРИЯ?
На заре нашего столетия А.Пуанкаре высказал мысль, которая сделалась впоследствии почти нарицательной: опыт не определяет порознь физику и геометрию. Он подтверждает суммарно физику и геометрию в их взаимосвязи. Но если наблюдения измеряют лишь сумму, то это означает, что каждое из слагаемых имеет определенный произвол.
Наиболее ревностные последователи Пуанкаре пошли еще дальше, полагая, что для описания физической реальности можно выбрать любую геометрию, а к ней уже "подогнать" соответствующую физику так, чтобы эмпирическая "сумма" геометрия+физика оставалась неизменной. Другими словами: выбор физической геометрии произволен и определяется вкусом и удобством вычислений. Абсолютная физическая геометрия отсутствует.
Правилен ли этот тезис? По нашему мнению, полный ответ имеет сложную диалектическую форму. Однако нельзя согласиться с полной релятивизацией физической геометрии. Существует, по-видимому, единственная геометрия (или, точнее, ограниченный класс геометрий), отвечающая полному набору наблюдений. Эта геометрия имеет сложный характер, и ее анализу посвящены две следующие главы книги. Здесь же следует подчеркнуть, что речь идет о полном наборе экспериментальных фактов и основополагающих физических принципах, а не о единичных опытных данных, интерпретировать которые без труда можно на основе произвольной геометрии.
Выступая против релятивизации геометрии для описания физики, автор отдает себе отчет об ответственности оппонента такому титану, как А.Пуанкаре. Но во-первых, подобная оппозиция направлена прежде всего против чересчур ревностных апологетов идеи релятивизации, а во-вторых, автор имеет мощного союзника - время. С тех пор, как Пуанкаре высказывал свои идеи, прошло около 80 лет, и физика изменила свой лик.
Прежде всего, на наш взгляд, существенно углубилось понимание основного объекта - точки, адекватного общим физическим принципам. И главное: колоссально возрос эмпирический материал, сузивший произвол в выборе геометрии. Иначе говоря, нам представляется, что существует естественный (хотя и сложный) класс геометрий, в рамках которого реализуется эмпирическая основа физики - динамики. Чтобы иллюстрировать (весьма предварительно, поскольку этому предмету посвящена вся книга) предопределенность геометрии эмпирическим наблюдениями, мы рассмотрим простейший пример.
Допустим вначале, что распространение света или радиоволн в межпланетной и межзвездной средах соответствует прямой в смысле евклидовой геометрии. Параметры межпланетной и межзвездной сред известны, и можно показать, что они практически не влияют на направление распространения света или радиоволн достаточно высокой частоты. Тогда различными методами можно весьма точно измерять расстояния до солнца, планет или многих звезд в Галактике. Определяя затем угол между направлениями от Земли до двух космических объектов (например, Солнца и одной из планет), можно вычислить сумму углов треугольника, образованного Землей и этими двумя объектами. И всегда, независимо от природы объектов, сумма углов оказывается в пределах небольших экспериментальных ошибок равной PI.` Таким образом, можно было бы сделать вывод, что по крайней мере в пределах Галактики ее геометрия - евклидова. Этот вывод правилен, но с одной оговоркой, которую может использовать верный последователь Пуанкаре. В этих рассуждениях допускалось, что направление распространения фотонов в пустоте совпадает с прямой линией. На чем основано это утверждение? Может быть, фотоны движутся по кривой, а само пространство также кривое и обе кривизны взаимно компенсируют друг друга, так что в результате получается мнимое доказательство торжества евклидовой геометрии?
-----------------------------------------------------------` Это утверждение верно с точностью до весьма малых релятивистских поправок, которые можно учесть при вычислении суммы углов. -----------------------------------------------------------
Ответ на это возражение базируется на анализе совокупности физических фактов. Так, было проделано множество опытов по определению параллаксов различных космических объектов, расположенных на различных расстояниях от Земли. Всегда сумма углов оказывалась равной PI.
Причем непосредственное изучение геометрии по свойствам космических треугольников далеко не единственный метод определения характеристик пространства.
В физике подробно изучены различные взаимодействия: электромагнитное (в макро- и микроскопических проявлениях) и микроскопические (слабое и сильное). Электромагнитное взаимодействие исследовалось в огромных интервалах расстояний: 10**-16 - 10**13 см. Самые малые расстояния изучались с привлечением весьма тонких методов физики элементарных частиц. В частности, измерялись рассеяния электронов на электронах и электронов на позитронах. Ценность этих опытов в том, что в них проявляется практически только одно взаимодействие - электромагнитное. В этих и аналогичных опытах с очень большой точностью (иногда вплоть до десятого знака) было продемонстрировано, что законы электродинамики справедливы. Электродинамика на самых больших расстояниях проверялась с меньшей точностью (радиолокация Солнца и планет, электродинамика Солнца). Разумеется, с существенно большей точностью электродинамика проверена в масштабах Земли (~10**9 см).
Законы микроскопических взаимодействий (слабого и сильного) на малых расстояниях (10**-16 - 10**-13 см) также хорошо (хотя и с меньшей точностью - до второго - пятого знака) подтверждены опытом.
Когда здесь упоминались законы взаимодействий, то они, разумеется, понимались как совокупность динамических уравнений и геометрии пространства, в котором существуют материальные точки. Во всех упомянутых опытах делалось одно априорное предположение: пространство евклидово. Вероятно, можно для интерпретации отдельных опытов придумать объяснение на основе геометрий, отличных от евклидовой, но допущение, что вся огромная совокупность экспериментов объясняется на базе неевклидовой геометрии, представляется невероятной.
В заключение отметим, что современные представления о структуре Метагалактики (Вселенной) также свидетельствуют, что в ее пределах (размер ~10**28 см) пространство евклидово или близко к нему (см. разд. 6 и 8 гл. 3).
Таким образом, весь исключительно богатый набор экспериментальных фактов согласуется с допущением: в интервале расстояний 10**-16 - 10**28 см физическая геометрия близка или тождественна евклидовой геометрии трехмерного пространства. Нам представляется этот факт доказательством единственности геометрии в этом интервале расстояний. Однако с точки зрения чистой логики нельзя отвергнуть и другой тезис: нет доказательств, что нельзя построить всю физику на основе геометрии, существенно отличной от трехмерной евклидовой. Да, действительно строгого логического доказательства такого утверждения нет. Однако пока не сделаны хотя бы попытки построить физики в существенно измененном пространстве, все утверждения о произволе геометрии имеют абстрактный, а не физический характер.
Оговоримся в заключение, что под существенным изменением геометрии мы понимаем кардинальную вариацию ее параметров, например размерности. В дальнейшем мы не раз будем останавливаться на связи геометрии (в частности, размерности) и динамики. Далее будет продемонстрировано, что один из основных параметров пространства - его размерность предопределяет в значительной степени динамику.
И еще одно замечание. Раздельный анализ геометрии и динамики возможен лишь для трех взаимодействий: электромагнитного, слабого и сильного. В рамках эйнштейновской теории гравитации динамика и геометрия сливаются в единое целое, и тогда простота сделанных выше заключений утрачивается. К этому усложненному пониманию взаимосвязи геометрии и физики мы вернемся позже.
5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
Аналитическая геометрия сводит понятие точки к набору чисел - координат. Координаты - расстояния до некоторой системы линий, называемых осями координат. Простейший способ системы координат - набор взаимно ортогональных осей - система декартовых координат (названная в честь основателя аналитической геометрии Р.Декарта). Полезно перечислить крупнейшие достижения аналитической геометрии. Существенно уточнено понятие точки (набор чисел). Появилась возможность оперировать с пространствами любой целочисленной размерности. В пространстве N измерений точку определяют N чисел. Значение этого достижения аналитической геометрии в полной мере начали осознаваться сравнительно недавно. Лишь основываясь на ее методах (или модификациях этих методов), можно анализировать многомерные пространства, которые казались математической экзотикой, а сейчас приобрели большую актуальность.
Преимущества аналитических методов при отображении многомерных пространств проявляются в отсутствии необходимости наглядно себе их представлять или моделировать реально в нашем пространстве - особенностях, обусловленных в первую очередь нашей психологической ограниченностью. Человек привычно представляет фигуры с размерностью N=<3, но не способен вообразить объект большей размерности.
Для аналитической же геометрии размерность N=3 лишь одна из бесконечного набора возможностей (1=<N=<БЕСК).
При операциях в пространстве N измерений следует определить N координатных осей.
И наконец, еще одно преимущество аналитической геометрии. Она сильно упрощает представления о геометрических образах, заменяя их (зачастую весьма простыми) уравнениями. Например, в декартовых координатах уравнение прямой: y=ax+b (a, b=const); уравнение окружности: (x-a)**2+(y-b)**2=c**2 и т.д. Нетрудно описать, реализовать евклидово пространство в рамках аналитической геометрии.
Евклидово пространство можно определить как бесконечное, изотропное и однородное пространство. Любые две его точки полностью эквивалентны. Поместим в любой точке пространства три источника световых лучей, распространяющихся во взаимно перпендикулярных направлениях. Эти лучи образуют координатные оси Ox, Oy, Oz. Перенесем источники света вдоль одной из осей, например оси z. Новые оси O'x', O'y' будут параллельны Ox и Oy. Длины осей бесконечны, поэтому перенесение источников из точки O в точку O' не изменит геометрическую ситуацию. Аналогичное рассуждение можно провести и вращая одновременно все источники в точке на один и тот же угол. Неизменность свойств пространства при перемещениях и вращении отражает основные свойства евклидова пространства - однородность и изотропию. При указанных выше операциях сохранят свою форму и основные уравнения кривых.
Какова цена, которую следует уплатить за все преимущества аналитической геометрии? Используя ее методы, мы утрачиваем наглядность, привычную нам с детства. Аналитическая геометрия невольно порождает ностальгию по безвозвратно ушедшим школьным годам.
6. ГЕОМЕТРИЯ В ЦЕЛОМ И
ГЕОМЕТРИЯ В МАЛОМ
Наши привычные представления о геометрических фигурах основаны на образе, вписанном, вложенном в евклидово пространство. Да и сама евклидова геометрия широко использует образы объемов или поверхностей, вложенных в евклидово пространство. Для общего представления о фигурах подобная картина вполне достаточна. Однако такие образные представления являются в некотором смысле атавизмом, оставшимся в наследие от убеждения в единственности евклидовой геометрии, понимаемой как ветвь математики. Как только сформировались идеи неевклидовой геометрии, возникла необходимость описания поверхностей-пространств любой размерности независимо от фона - пространства, куда вкладываются эти поверхности-пространства. Последние в такой постановке задачи выступают, как носители самостоятельной автономной геометрии, не связанные с осями координат, вписанными в глобальное евклидово пространство-фон.
Подобный подход был в прошлом столетии предложен К.Гауссом и Б.Риманом и является основой дифференциальной геометрии. Это сравнительно сложная математическая дисциплина, и мы здесь ограничимся качественными иллюстрациями основных ее идей, адресуя желающих познакомиться с ней детальнее к соответствующим учебникам и монографиям.`
-----------------------------------------------------------` См., например: Рашевский П.К. Курс дифференциальной геометрии. М.: ГИТТЛ, 1956. Кроме того, дифференциальная геометрия на разных уровнях излагается во многих книгах, посвященных теории относительности. -----------------------------------------------------------
Чтобы понять основные идеи геометрии поверхностей, обратимся вначале к привычным образам евклидовой плоскости двумерного пространства и двумерной сферы, рассматриваемой как автономное пространство. Известно, что основным свойством евклидова пространства является изотропия и однородность - полная эквивалентность его точек. Однако этого фундаментального свойства евклидова пространства недостаточно для его однозначного определения. Утверждение, что однородное и изотропное пространство есть пространство Евклида, не точно, поскольку этому свойству однородности и изотропии удовлетворяет также и сфера: все ее точки также эквивалентны относительно поворотов осей координат и их трансляции. Иначе говоря, глобальные относительно этих операций свойства обоих пространств одинаковы. Чтобы их количественно отличить, нужно ввести локальные характеристика, характеризующие различие плоского и сферического пространств. Иначе говоря, нужно определить величину, характеризующую кривизну сферической поверхности сравнительно с евклидовым пространством.
В рамках глобальной неевклидовой геометрии (как мы отмечали ранее) отличие геометрии от евклидовой характеризуется отклонением суммы углов треугольника от PI или (что то же самое) отклонением от теоремы Пифагора. Рассмотрим теперь малые участки обеих пространств. Для них квадрат интервала ds**2 между двумя достаточно близкими точками представляется выражениями:
ds**2=dx**2 + dy**2 (плоскость) (1)
ds**2=r**2 sin**2 TETA d FI + r**2 d FI**2 (сфера) (2)
r, TETA, FI - соответственно радиус, полярный и азимутальные углы. Однако в косоугольных координатах квадрат интервала и плоскости имеет вид
s**2=dx**2 + dy**2 + 2 dx dy cos ALPHA
Хотя численное значение интервала остается неизменным (квадрат длины вектора - инвариант относительно замены системы координат), тем не менее форма (3) имеет более сложный вид, чем соотношение (1). Однако выражения (1) и (3) для квадрата интервала имеют лишь разные формы. Различие форм отражает разницу в выборе системы координат. Изменяя систему отсчета, можно во всей евклидовой плоскости интервал ds**2 свести к простой форме (1).
С выражением (2) интервала на сфере дело обстоит совсем по-другому. Форму (2) никаким преобразованием координат нельзя свести к простому соотношению (1) на всей сфере одновременно. Такую процедуру можно проделать лишь локально, выбирая направление на маленьком участке сферы так, чтобы TETA=PI/2. Однако при таком выборе система координат фиксируется применительно у этому участку сферы. Поэтому глобально для всей сферы соотношения (2) и (1) различаются, что и отражает неевклидовость сферы. Локально - в малом сферу можно аппроксимировать частью плоскости; глобально - в целом - невозможно.
Представление участка сферы плоскостью довольно тривиальная процедура. Любую малую окрестность достаточно гладкой поверхности можно в первом приближении аппроксимировать плоскостью по аналогии с тем, что отрезок ds непрерывной кривой, описываемой дифференцируемой функцией f(x), представляется в окрестности точки x отрезком прямой длины
ds={[f'(x)]**2+1}**(1/2) dx. (4)
Малый участок достаточно гладкой поверхности обладает следующими свойствами:
1. В малом однозначно определяется прямая - кратчайшее расстояние между двумя точками.
2. В малом определяется однозначно вектор и скалярное произведение двух векторов.
3. Скалярное произведение двух векторов однозначно определяет свойства пространства. Инвариантность скалярного произведения относительно вращений и трансляций определяет евклидово пространство, что и отражено в аналоге равенства (3):
ds**2=dx| dx|=dx|**2 + dx|**2 + 2 dx| dx| cos ALPHA (5)
1 2 1 2 1 2
Это рассуждение - геометрический аналог аналитического соотношения (4). Выбор интервала ds**2 в виде квадратичного выражения принципиален. Квадрат - наименьшая степень, при которой интервал сохраняет свою величину (инвариантен) относительно весьма широкого класса преобразований. В принципе можно было бы опираться на выражения интервалов через многочлены более высокой четной степени, однако, как оказалось, подобная усложненная геометрия практически современной физике не нужна.
Итак, в дифференциальной геометрии фундаментальную роль играет интервал и его инвариантность относительно широкого класса преобразований. Выражение (3) записывается обычно в следующей форме:
ds**2 = g|| dx| dx| , (6)