66056.fb2
В своем самом убедительном опыте Гальвани полностью исключил все внешние проводники и с большим изяществом разместил лягушку так, что ее седалищный нерв напрямую касался мышцы, приводившей в движение лапку лягушки. Лапка тут же дернулась. Откуда в этом случае могло взяться электричество, если не из самого животного?
Уверенный в своей правоте, Гальвани высмеял Вольту с помощью его же собственных слов: «Но если дело обстоит именно так, если электричество находится в самом животном, а не является общим свойством вешней среды, то что тогда остается от теорий синьора Вольты?»
Пришлось Вольте изменить свои теории. К этому времени он уже начинал подумывать о том, что, возможно, мышца, нерв, руки экспериментатора и даже сама лягушка являются слабыми проводниками второго рода. Подносился ли нерв к мышце, серебру или латуни, эффект был один и тот же: несхожие проводники производят то, что он назвал контактным электричеством.
В более ранних опытах Гальвани проводники первого рода — металлические скальпели, латунные крючки, серебряные шкатулки, крышки — были отделены влажными проводниками второго рода, т. е. лягушкой. С таким же успехом он мог использовать мокрый картон или, как продемонстрировал Вольта, человеческий язык. Положите серебряную монету сверху и медную снизу и, лизнув, вы можете ощутить привкус электричества. Эксперименты с одинаковым металлом тоже нашли свое объяснение. Один проводник первого рода образовывал дугу между двумя проводниками второго рода — нервом и мышцей. В конце концов, можно создать дугу из двух аморфных проводников второго рода — рукой и лягушкой. Не важно, какими будут проводники — естественными или искусственными, — главное, чтобы они были несхожими.
Сегодня мы знаем, что правы были оба ученых и каждому удалось доказать свою правоту с помощью элегантных опытов.
Начнем с Вольты. Взяв несколько десятков дисков — часть из них из меди, а другие — из цинка, — он, чередуя металлы, сложил все диски столбиком, разделяя их картонными шайбами, смоченными в соленой воде. При достаточной высоте столбика он при прикосновении получал легкий электрический удар. Можно было использовать серебро и олово или заменять картон маленькими чашечками с соленой водой, соединенными между собой биметаллическими электродами.
Так он изобрел электрическую батарею. В названии статьи, опубликованной в 1800 году, уже была сформулирована суть его открытия: «Об электричестве, возбуждаемом простым контактом проводящих веществ различного рода». Лягушка Гальвани оказывалась просто влажным разделителем в «электрической батарейке».
Но не тут-то было. Завершающий опыт Гальвани был не менее элегантным. Он препарировал очередную свою лягушку «обычным способом» — так, что у нее был выделен каждый основной нерв лапки. В предыдущих своих экспериментах он прикасался нервом непосредственно к мышце. На этот раз, используя небольшую стеклянную палочку, он соединил один нерв с другим, т. е. образовались два одинаковых проводника, но результат был тот же: мышца сократилась, чего не могло произойти, если бы второй нерв просто раздражался кусочком стекла.
«Какую теперь нужно призвать неодинаковость, чтобы объяснить мышечные сокращения, — вопрошал он, — ибо контакт создается только между нервами?» Он настаивал на том, что эффект возникает только потому, что «в самом животном имеется электрическая цепь».
И ни одному из этих двоих ученых не приходила в голову мысль, что их опыты просто дополняли друг друга и ходили они кругами вокруг одной и той же истины. Природное, искусственное, животное электричество является прежде всего электричеством. Вольта не мог понять, что наблюдаемое им «контактное» электричество было лишь химической реакцией (ему самому казалось, что его батарея была источником вечного движения), тогда как Гальвани настаивал на том, что его биологическое электричество является чем-то совершенно иным.
Пройдут годы, прежде чем физиологи детально разберутся в том, что удалось наблюдать разозлившемуся на Вольту Гальвани в опытах с лягушками: почему в организме каждая микроскопическая клетка действует как крохотная электрическая батарейка, ее мембраны функционально напоминают картонные прокладки, а заряженные ионы выполняют роль цинковых и медных монет. В результате возникло понимание положительного и отрицательного, а также электродвижущей силы под названием напряжение. Когда мышца приходит в движение или палец чувствует поверхность камня, по нервной системе протекает электрический ток. Эфемерная «жизненная сила» отсутствует. Жизнь — это всего лишь электрохимия.
Всякий раз, наблюдая вспышки молний и слыша раскаты грома, я вспоминала, как любил он грозу. Никогда не забуду, как часами стоял он у окна, любуясь яркими всполохами. И мы могли лишь предполагать, какими благородными мыслями полнилась тогда его голова — иногда это были размышления о Боге, а иногда о тех законах, которые Он создал, дабы управлять миром.
Искра — это ослепительная звезда, возникающая при разряде батареи Вольты, известная всем как самый прекрасный свет, который только может создать человек.
Все знали, что Ада Лавлейс — далеко не подарок. Дочь поэта Байрона родилась весьма неуравновешенной, и ее мать, стараясь исправить характер ребенка, упорно прививала ей любовь к математике. Однако нельзя сказать, что лечение удалось — однажды Ада попыталась бежать из дома с одним из своих учителей. Ее поймали, укротили и выдали замуж за богатого аристократа, которому она предпочла компанию ученых. Среди ее почитателей был и изобретатель Чарльз Бэббидж. Он называл ее «волшебницей чисел», но она хотела, чтобы ее называли «суженой науки». Ее восхищали все новые научные идеи: френология, месмеризм, «исчисление нервной системы». В 1844 году, когда ей было двадцать восемь, она вступила в весьма фривольную переписку с величайшим английским экспериментатором Майклом Фарадеем, стремясь стать его музой и «феей».
Я буду прекрасным привидением, красочным и красноречивым, — по первому твоему желанию. Но сейчас я хочу быть тихой серенькой птичкой рядом с тобой, которую ты незаметно учишь тому, как познать тебя и помочь тебе. Я с удовольствием передам в твои руки свою волшебную палочку, и можешь совершать с ней все, что пожелаешь.
По осторожным ответам Фарадея трудно сказать, как он относился к ее изобилующим подчеркиваниями излияниям. Ему было пятьдесят три, он был женатым, добропорядочным христианином, только приходящим в себя от болезни, которую сегодня назвали бы нервным срывом. Он уже успел совершить главные из своих опытов, связав электричество и магнетизм. Может быть, именно лесть Ады заставила его сделать еще один шаг вперед и элегантно продемонстрировать, что электромагнетизм самым тесным образом связан со светом.
Они происходили из абсолютно разных миров. Он — сын кузнеца и ученик переплетчика, убедивший великого английского ученого Гемфри Дэви сделать его своим секретарем и ассистентом. Поначалу Фарадей просто был слугой Дэви, путешествовал с ним по Европе и, кстати, встречался с такими людьми, как Вольта и Андре Мари Ампер. Позже, поступив на службу в лондонский Королевский институт, он не гнушался никакой черновой работы, если только она была связана с наукой: занимался анализом глин для Веджвудского фарфорового завода, исследованием пороха для Вест-Индской компании и изучением промышленных процессов на литейных заводах Уэльса. Когда ему было столько же, сколько исполнилось его юной корреспондентке, страховая компания попросила его составить отчет о горючести китового жира, а Британское Адмиралтейство справлялось у него о лучших способах вяления мяса. Примерно в то же время, т. е. в конце 20-х годов XIX века, Дэви рассказал ему о потрясающих экспериментах датского ученого Ханса Кристиана Эрстеда.
Эрстед изготовил электрическую батарею, наполнив двадцать сосудов разведенной кислотой и соединив их последовательно кусочками меди и цинка. Затем он соединил один полюс установки с длинной проволокой, которую установил над компасом параллельно компасной стрелке. В тот момент, когда он подсоединял второй конец к батарее, стрелка компаса поворачивалась на запад. Когда проволока помещалась под компасом, стрелка начинала показывать на восток.
Дэви и Фарадей, не очень-то доверяя датчанину, поспешили повторить его опыты. Примерно в то же время работавший в Париже Ампер показал, что два параллельных провода, по которым течет ток в одном направлении, притягиваются друг к другу, как магниты. При противоположных направлениях тока проволочки отталкиваются друг от друга.
Такая очевидная связь между электричеством и магнетизмом была довольно неожиданной. Удивляло то, что сила могла действовать по окружности, а не по прямой линии. (Один ученый назвал это «вращающимся электричеством».) В ньютоновской механике ничего не предвещало подобного. Фарадею удалось показать, что, используя несложную установку, состоящую из ртути и пробки, можно заставить наэлектризованную проволоку вращаться вокруг магнита или магнит — вокруг наэлектризованной проволоки. Он изобрел электрический мотор. Если из проволоки сделать рамку и присоединить ее к батарее, то она становится слабым магнитом. Если изогнуть проволоку в форме спирали, магнитная сила увеличивается, концентрируясь в центре обмотки.
Несколько элегантных экспериментов выдвинули Фарадея в лидеры европейской науки. И тут, к сожалению, ему пришлось на время прекратить свои исследования — он вынужден был заниматься тем, что от него потребовала промышленная революция, и на десять лет погрузился в производство стали, меди и стекла. В письме Амперу он жаловался, что «много времени уходит, к сожалению, на повседневные дела», а не на эксперименты, которые он так любил. Но он все равно находил время на необычные исследования — изучал волнистый рисунок, или, как он его назвал, «мурашки», возникающие, когда тонкий слой порошка или песка распределяется по поверхности металлической пластины, которая вибрирует от прикасающегося к ней скрипичного смычка. Размещенная рядом с ней вторая такая пластина с порошком будет вибрировать аналогичным образом. Он также экспериментировал с жидкостями. «Когда ртуть на оловянной пластинке вибрирует в солнечном свете, отраженный свет очень красив, — сообщал он в своем отчете, чем-то напоминая Ньютона. — Чернила и вода, вибрирующие в солнечном свете, тоже выглядят необычайно красиво». Но только в 1831 году ему удалось вновь вернуться к своим экспериментам с обмотками и батареями.
К тому времени английский естествоиспытатель Уильям Стерджен уже наматывал неизолированную проволоку на покрытый лаком железный сердечник, создавая таким образом электромагнит, достаточно мощный для того, чтобы удерживать груз весом больше его собственного. Используя проволоку с изоляцией, американец Джозеф Генри создал электромагнит, удерживавший груз весом более тонны. Однажды летом Фарадей решил проверить, что произойдет, если рядом поместить две рамки. Он попросил мастерскую при Королевском институте изготовить кольцевую железную рамку толщиной 2 сантиметра и радиусом 15 сантиметров. С одной стороны он намотал 22 метра медной проволоки, изолированной бечевой и ситцем. Это он назвал обмоткой А. С другой стороны кольца он намотал примерно 18 метров проволоки и назвал это обмоткой В.
Обмотки эти не имели контактов, однако, когда он прикасался проводами первой обмотки к полюсам батареи, гальванометр, подсоединенный ко второй обмотке, начинал дергаться, колебаться и только через какое-то время успокаивался в первоначальном положении. Думая, вероятно, о возникновении волн в его акустических экспериментах, он поначалу представлял все так, что «волна электричества», возникшая в первой обмотке, пройдя по кольцу, могла породить ток во второй обмотке. В результате он обнаружил электромагнитную индукцию и распахнул окно в совершенно иной мир.
Перемещение бруска магнита вперед и назад внутри полой рамки тоже приводило к образованию электрического тока в проволоке. Эрстед преобразовывал электричество в магнетизм, а теперь Фарадей преобразовал магнетизм в электричество, создав некое подобие динамо-машины, т. е. механическую противоположность мотора, который он изобрел за десять лет до этого. «Выходит, за всем тем, что существует в мире, непременно скрывается нечто глубинное, потаенное», — как впоследствии выразится Эйнштейн. И задача ученого — извлечь это на поверхность.
Чем больше Фарадей размышлял, тем больше ему открывалось. Он заметил, что со временем медные электроды в его электрических батареях постепенно покрываются окисью цинка, а цинковые электроды — медью. Перетекание электричества между двумя полюсами батареи, вероятно, сопровождалось движением атомов. Это делало возможным не только новый многообещающий промышленный процесс — покрытие металлов медью или серебром, но и другие, гораздо более сложные технологии. Батарея оказывалась тем тиглем, в котором одна энергия, химическая, превращалась в другую, электрическую. Этот процесс действовал и в обратном направлении. Когда две положительно и отрицательно заряженные проволочки погружались в подсоленный раствор, то на одной из них накапливался водород, а на другой — кислород. Электричество порождало химические реакции, а химические реакции порождали электричество.
По всей Европе ученые сталкивались с этими загадками. Может быть, вода состоит из водорода и кислорода? Или, как предполагал один немецкий ученый, вода является первоосновой, и кислород возникает при взаимодействии с положительным электричеством, а водород — с отрицательным? Этот ученый даже пытался возродить теорию флогистона. Но именно Фарадею удалось покончить с сим заблуждением. В 30-е годы XIX столетия он раз за разом опытным путем показывал взаимосвязь между электричеством, магнетизмом и химией. И вдруг за несколько лет до того, как в его жизнь настойчиво постучалась Ада Лавлейс, он охладел к своим занятиям.
Фардей долгое время жаловался на проблемы с памятью, а потом погрузился в мрачную депрессию, не мог концентрировать свое внимание, жаловался на частое головокружение. Не исключено, что причина была в его умственном переутомлении или медленном отравлении всеми химикатами, которые периодически попадали на его кожу. По совету врача он стал отказываться от выступлений и научных исследований. Почти все время он писал или проводил в размышлениях. Еще более он удалился от людей после разрыва с Церковью — вероятно, из-за каких-то споров сектантского характера. Именно в этот момент в его жизни появилась изысканная лесть из уст Ады Лавлейс, которая подействовала на него столь сильно, что он понял: для него есть только один выход — оборвать все отношения с ней. «Не повергайте меня в отчаяние своими приглашениями, — умолял он ее. — Я не смею и не могу явиться и, в то же время, у меня нет сил отказать вам».
Может, будет слишком большой натяжкой утверждать, что общение с «суженой науки» стало поворотной точкой в его судьбе, но тем не менее именно в это время к Фарадею вновь возвращаются силы. Он приходит в лабораторию, чтобы найти ответ на вопрос, который мучил его многие годы. Уже было совершенно ясно, что магнетизм и электричество тесно взаимосвязаны. Но нет ли такой же связи между электричеством и светом?
Будучи научным консультантом «Тринити-хаус», организации, учрежденной в 1514 году указом Генриха VIII, «дабы упорядочить проводку судов по водным потокам королевства», Фарадей был занят усовершенствованием масляной лампы Арганда, которая использовалась на маяках по всему побережью Англии и Уэльса. В конце августа 1845 года он зажег один из маяков в своей лаборатории и приготовился к эксперименту, ставшему самым красивым в его научной карьере.
Свет, распространяясь, колеблется в двух перпендикулярных направлениях под прямыми углами к вектору движения. Но, отразившись от плоской поверхности или пройдя через обладающий определенными свойствами кристалл, например турмалин, свет становится поляризованным, то есть все его колебания происходят в одном направлении.
Если посмотреть на такой луч через второй поляризующий кристалл, вращая его вокруг оси на 360°, то изображение луча будет периодически темнеть и светлеть в зависимости от того, как синхронизируются фильтры.
Вопрос, на который теперь хотел найти ответ Фарадей, сводился к тому, может ли электрический ток повернуть световой пучок, заставив вращаться его плоскость колебаний. Заполнив длинную ванну слабопроводящим раствором, он поместил платиновые электроды в противоположных концах емкости и подсоединил их к электрической батарее, состоящей из пяти гальванических элементов. Установка была схожа с той, в которой воду разлагают на составляющие ее газы или покрывают медью ложку. Затем он включил лампу Арганда и поставил на пути светового пучка плоскую стеклянную поверхность, чтобы получить отраженный поляризованный пучок. После этого он пропустил его через раствор в ванне, а затем проверил поляризацию, пользуясь приспособлением, известным как призма Николя.
Однако ничего не произошло. Направление колебаний не изменилось. Фарадей стал повторять эксперимент при постоянных токах, при перемежающихся токах, при токах, проходящих через различные растворы, но сколь-нибудь заметного эффекта отмечено не было. Он стал направлять световой поток не перпендикулярно, а параллельно электрическому току, однако смещения поляризации не происходило и в этом случае. Подумав, что его батареи недостаточно мощные, Фарадей продолжил эксперименты с генератором статического электричества, заряжая стеклянную пластину и пропуская пучок света сквозь нее в разных направлениях. Но и это ни к чему не привело.
И только тогда он решил обратиться к магнетизму. Найдя у себя в лаборатории тяжелый кусок оптического стекла площадью примерно двенадцать квадратных сантиметров и толщиной чуть более сантиметра, он поместил его рядом с полюсами мощного электромагнита. Лампу и поляризующую поверхность он расположил так, что горизонтальные световые волны проходили вдоль стекла. Глядя через призму Николя, он вращал ее до тех пор, пока луч не исчезал. Затем он включал ток. Изображение пламени неожиданно появлялось вновь. Он выключал магнит, и пламя снова исчезало. Магнитное поле заставляло пучок света повернуться!
Вся предыдущая работа Фарадея по исследованию электричества и магнетизма приближалась к кульминации. Радость от полученных результатов заставила его продолжить эксперименты с удвоенной силой. «Сейчас у меня нет и минуты ни на что иное, кроме работы, — писал он одному из коллег. — Мне удалось обнаружить прямую связь между магнетизмом и светом, а значит, между электричеством и светом, и это открывает столь широкое и многообещающее поле деятельности, что мне хочется первому на него взглянуть…. У меня действительно нет времени об этом рассказывать, я ни с кем не встречаюсь и всецело занят только работой».
Как удалось понять Фарадею, направление магнитного поля имеет огромное значение. Когда он помещал северный полюс магнита с одной стороны стекла, а южный — с другого, ничего не происходило. Ничего не происходило и в том случае, когда одинаковые полюса оказывались с обеих сторон стекла или когда одинаковые полюса оказывались с одной стороны от стекла. «Но. — записал он в своем дневнике (как Ада Лавлейс, он от возбуждения подчеркнул это слово три раза), — когда противоположные полюса магнита оказываются с одной стороны, они воздействуют на поляризованный луч, и, таким образом, доказано, что магнитная сила и свет взаимосвязаны».
Он подтвердил, что мощный постоянный магнит также способен вращать луч, а вместо стекла можно использовать и иные прозрачные материалы. Одни ведут себя лучше, чем другие, но в любом случае степень вращения зависела от величины магнитного поля. При изменении полярности поля на противоположную луч тоже меняет направление поворота. Итак, были поставлены все точки над «i»: электричество связано с магнетизмом, а магнетизм со светом.
Джеймсу Максвеллу осталось только через двадцать лет показать в своих знаменитых уравнениях, что свет имеет электромагнитную природу. Не останавливаясь на достигнутом, Фарадей пошел дальше и принялся за создание единой теории, объединяющей и гравитацию с магнетизмом, — стремление, которое с тех пор не оставляло ни его, ни Эйнштейна, ни многих других ученых. «ВСЁ ЭТО — МОЯ МЕЧТА, — записал он в своем дневнике. — Нет таких чудес, которые не смогут стать истиной, если только они не противоречат законам природы, а лучшим доказательством непротиворечия является эксперимент».
Все это время Ада не выходила у него из головы. «Видишь, что ты со мной творишь, — писал ей Фарадей в 1951 году, т. е. через шесть лет после того, как умолял ее забыть о нем. — Ты говоришь — пиши, и я пишу, и как жаль, что у меня нет ни сил, ни возможности отдохнуть, чтобы позволить себе и многое другое». В следующем году Ада умерла от рака шейки матки. Было ей тогда всего тридцать шесть. Фарадей пережил ее на пятнадцать лет.
Вы немало удивитесь, узнав, что до недавнего времени бытовало мнение, будто жизненную силу можно разрушить целиком и навсегда. Так, например, считалось, что если груз падает на землю, то его жизненная сила полностью исчезает, а труд, потраченный на поднятие груза на высоту, с которой он упал, оказывается абсолютно бесполезным.
Мы не знаем, о чем думалось Уильяму Томсону в тот облачный августовский день 1847 года, когда он пешком отправился из Шамуа в Сен-Жерве, но не исключено, что его мысли были заняты физикой. Томсон был вундеркиндом и первую свою научную работу опубликовал, когда ему было всего шестнадцать. Сразу после окончания Кембриджа в возрасте двадцати двух лет он получил должность профессора естественной философии в университете Глазго, и теперь, по истечении года, путешествовал по Французским Альпам в надежде покорить Монблан. Томсон начинал верить, что все силы природы должны быть взаимосвязаны (он был «оплодотворен огнем Фарадея»), и вполне мог обдумывать эту идею, преодолевая перевал Коль-дю-Боном, где среди восходителей и увидел знакомое лицо Джеймса Джоуля.
Джоуль отмечал медовый месяц (его жена, несколько поотстав, совершала восхождение на телеге). Как потом вспоминал Томсон, у Джоуля был огромный термометр, которым он измерял температуру воды водопадов. Если Джоуль был прав, то вода внизу водопада должна быть чуть теплее, чем вверху, и это означало, что доминирующая в физическом сообществе того времени теория теплоты, которую Томсон считал наиболее загадочной из всех сил природы, была неверной. Он договорился встретиться с Джоулем через несколько дней у Кас-кад-де-Саланш (вероятно, их интересовал водопад Арпеназ высотой 370 метров), у которого разница в температуре воды вверху и внизу должна была составлять, как полагал Джоуль, полтора градуса по Фаренгейту. Однако провести точные измерения, вспоминал Томсон, помешали обильные брызги. Не получив никаких данных, мужчины пошли каждый своей дорогой.
Может быть, эта история и кажется слишком надуманной, но факт остается фактом — Джоуль и Томсон, будущий лорд Кельвин, действительно встречались в горах. В письме к отцу, написанном через несколько дней в приюте Гран-Сен-Бернар, Томсон подробно рассказал об этом событии, не упомянув лишь о наличии термометра. Но память — вещь ненадежная, поэтому Томсон, к тому времени ставший одним из выдающихся ученых Европы, мог немного напутать и поведать о том, что происходило ранее.
Их пути впервые пересеклись на научной конференции в Оксфорде, за два месяца до знаменитой встречи в горах. Привыкший к тому, что от его идей постоянно отмахиваются, Джоуль, талантливый самоучка из промышленного города Манчестера, обрадовался, когда молодой человек по имени Томсон встал и сделал несколько замечаний по существу его доклада. Робкий и стеснительный, Джоуль был далеко не самым лучшим лектором, поэтому, когда он понял, что его хоть кто-то слушал, радости его не было предела. Б своих воспоминаниях Томсон настаивал на том, что во время заседания он с места не вставал, а все вопросы задал уже после. Возможно, на этот раз память подвела Джоуля, но следует заметить, что эксперимент, о котором он рассказывал, просто не мог не произвести впечатления на внимательных слушателей.
Лавуазье удалось ослабить хватку мифического флогистона, но незадолго до своей смерти он успел ввести новое понятие: теплород. Так он назвал невидимую субстанцию, своего рода «неуловимый флюид», который, по его мнению, был носителем тепла. Все горячее считалось наполненным теплородом, и поскольку теплород имел тенденцию к расширению, то он совершенно естественным образом перемещался туда, где его не было. Вставьте кочергу в огонь, и теплород будет медленно подниматься по ручке кочерги, и в какой-то момент вы почувствуете, как она нагревается. Тела расширяются при нагревании, поскольку их начинает заполнять теплород. Тела нагреваются при сжатии, потому что теплород, находящийся внутри их, концентрируется, а при разрежении тела остывают, потому что теплород из них выходит.
В паровой машине теплород можно заставить работать, как воду — в водяной мельнице. Высвобождаясь из кусков горящего угля, теплород перетекает в котел, нагревает воду и выходит вместе с паром, приводящим в движение поршень. При завершении цикла именно это количество теплорода выбрасывается в воздух вместе с отходящими газами. Как вещество, теплород нельзя ни создать, ни разрушить. Количество теплорода во Вселенной конечно, и он постоянно перемещается из одного места в другое.
Вот поэтому Томсон так заинтересовался докладом Джоуля — ведь тот брался доказать, что тепло можно создавать совершенно произвольно! На приеме в тот же день в библиотеке Радклиффа — элегантной куполообразной пристройке к оксфордской Бодлейской библиотеке — они обсудили значение сделанного сообщения. «Я уверен, что Джоуль во многом не прав, — несколько дней спустя писал Томсон своему отцу, — но, кажется, ему удалось обнаружить некоторые факты чрезвычайной важности». А чуть позже в письме к своему новообретенному другу Джоуль утверждал: с помощью каната, ведра и хорошего термометра можно доказать, что нагрев осуществляет даже падающая вода.
Джоуль был далеко не первым ученым, готовым оспорить утверждение, будто тепло — это невидимый флюид, и тут в нашем повествовании должно появиться имя Лавуазье, или, если быть очень точным, его вдовы Марии-Анны. Она какое-то время отсидела в тюрьме, но после падения Робеспьера ей удалось не только получить свободу, но и вернуть себе имение мужа, в котором тут же возник великосветский салон, где бывали лучшие умы Европы. Среди ее гостей оказался и Бенджамин Томсон, приехавший из Америки, — ему пришлось после поражения революции бежать в Лондон, оставив на родине жену и дочь. Со временем он поселился в Баварии, где заполучил титул графа Румфорда, а после того как в 1801 году встретился с Марией-Анной, захотел заполучить и ее. Она была мила, добра и умна, и, как он писал, не только сама являлась «большим плюсом» (что, вероятно, означало пышность ее форм), но «и имела немаленькое приданое».
Сам-то граф, надменный и своенравный господин, был далеко не подарок (кстати, заметим, что и первая его жена была богатой вдовушкой), однако достаточно умен, чтобы понять — путь к сердцу Марии-Анны лежит только через ее разум. Он развлекал ее рассказами о своих научных достижениях, в основном связанных с изучением теплоты. Среди его изобретений были печь Румфорда, теплое нижнее белье, кофеварка, но, что более важно, именно он первым поставил эксперимент, подвергший сомнению теорию теплорода.