66056.fb2 Десять самых красивых экспериментов в истории науки - читать онлайн бесплатно полную версию книги . Страница 7

Десять самых красивых экспериментов в истории науки - читать онлайн бесплатно полную версию книги . Страница 7

В 1880 году, после прекрасного эксперимента в Аннаполисе, Майкельсон получил годичный отпуск на флоте для учебы в Европе. Отправившись с семьей в Париж, где Маргарет когда-то окончила школу, он поделился с французскими учеными своими планами по измерению скорости движения Земли относительно эфира. Если он прав, говорил Майкельсон, то луч света, посланный в направлении движения Земли вокруг Солнца, будет замедляться эфирным ветром. Доказав это, легко измерить скорость света, движущегося параллельно с направлением движения Земли и противоположного ему, а потом сравнить результаты. Но тут возникала проблема. Чтобы зафиксировать отклонение света, каждый пучок должен был отражаться зеркалом, как в эксперименте, проведенном в Аннаполисе. Любая разница в скорости движения пучка в одну сторону будет компенсироваться при движении пучка в обратную сторону после отражения. (На плавание по течению реки, а затем против течения уйдет столько же времени, сколько и на плавание против течения реки, а потом по течению.)

Но что, если два источника света поставить под прямым углом друг к другу — один в направлении орбиты Земли, а второй — строго перпендикулярно? Теперь, как выразился Майкельсон, «один пловец будет преодолевать реку вверх и вниз по течению, а другой проплывет то же расстояние сначала к противоположному берегу, а потом назад». Второй пловец будет всегда показывать лучшее время, «если только в реке есть течение», а в случае со светом — если существует эфирный ветер.

Переехав в том же году в Берлин, Майкельсон приступил к сборке своей установки. Сделанная вручную оптика была дорогой, но с помощью коллег на родине ему удалось получить грант от Александера Белла.

В его эксперименте свет от фонаря должен был направляться на частично покрытое амальгамой зеркало, которое расщепит пучок на два «карандаша» света, направленных под прямым углом друг к другу. Пройдя через тщательно обработанные латунные кронштейны длиной один метр каждый, они отразятся от зеркал и вместе вернуться назад. Если скорость пучков будет отличаться, то они разойдутся по фазе и максимумы их волн не совпадут.

В результате получится эффект интерференции наподобие того, который был описан Томасом Юнгом: череда темных и светлых полос. Если повернуть установку на девяносто градусов по отношению к «эфирной реке», то полосы подвинутся. Учитывая скорость движения Земли по отношению к эфиру, а также длину волны, Майкельсон предсказывал, что смещение будет равно одной десятой ширины интерференционной полосы, причем он был уверен, что это расстояние сможет измерить без труда.

При таком тонком эксперименте любая вибрация могла сместить луч и исказить результаты.

(«Прибор был таким точным, — писал он позднее, — что если шагать по тротуару на расстоянии 100 метров от обсерватории, то интерференционная картинка совершенно исчезнет!») Чтобы интерферометр не испытывал колебаний, Майкельсон закрепил его на каменном причале, а чтобы латунные кронштейны не расширялись и не сокращались от разницы температур, он защитил их бумажными коробами и даже хотел всю установку засыпать тающим льдом. Однако и эти предосторожности не помогли. Доносившийся шум Берлина не давал проводить измерения до полуночи.

В поисках более спокойного места он переместился в Потсдам и установил свое оборудование в подвале Астрофизической обсерватории. Поначалу ему казалось, что, переориентируя прибор, он получает существенный сдвиг в интерференционной картинке, но потом он обнаружил, что виной всему — нечаянный изгиб латунных кронштейнов. Он переделал поворотный механизм, обеспечивающий большую легкость движения, и повторил эксперимент.

Первый интерферометр Майкельсона — вид сверху и сбоку

День за днем он повторял измерения, по-разному разворачивая интерферометр, пока не убедился, что смещение интерференционных линий не превышает одной сотой их ширины, которое он из-за малой его величины отнес к экспериментальной ошибке. Было уже начало апреля, когда направление движения Земли и всей Солнечной системы совпадало, поэтому скорость Земли по отношению к эфиру должна быть максимальной, однако сколько-нибудь заметного эффекта не наблюдалось. В 1881 году в письме своему спонсору Беллу он сообщал о получении отрицательного результата. Майкельсон пояснял, что это можно рассматривать как подтверждение отсутствия эфира. Однако эфир должен был быть! Некоторые ученые полагали, что просто сам эксперимент неудачно поставлен. Может быть эфир, двигаясь вокруг Солнца, замедлял свое движение вблизи Земли. В самом центре урагана никогда не бывает ветра. Но что бы там ни говорилось, а Майкельсон не сомневался в своих выводах. Позднее Белл напишет: «Я был очень высокого мнения о его способностях, но, думаю, что и он о своих — тоже».

У Майкельсона оставалась надежда, что замедление эфира будет неполным и по «звездному занавесу» можно будет судить о движении Земли. Такая вероятность уже высказывалась в начале XIX века французским ученым Франсуа Араго, который пытался измерить скорость звездного света, достигающего Земли. Араго предположил — и весьма оправданно, — что скорость будет меняться в зависимости от того, приближается к нам или удаляется от нас источник света. На конце телескопа он установил призму, полагая, что лучи с большей скоростью будут отклоняться на меньший угол, чем лучи с меньшей скоростью. Он был очень удивлен — в любое время года угол отклонения оказывался одним и тем же.

Араго заключил, что наши глаза замечают изменения только в очень узком диапазоне скоростей и что лучи вне этого диапазона остаются невидимыми. Однако его коллега Огюстен Жан Френель выдвинул другое объяснение: поскольку эфир беспрепятственно проходит через молекулярные трещины материи, небольшое его количество прилипло к призме Араго. Это и сводит на нет тот эффект, который пытался обнаружить Араго. Когда Земля движется по направлению к звезде, ее свет действительно будет достигать призмы с большей скоростью, но затем он будет замедляться на аналогичную величину эфиром, находящимся внутри стекла. Сей результат справедлив, по утверждению Френеля, для любой прозрачной среды и зависит от коэффициента преломления, с помощью которого определяется, насколько замедляется и искривляется луч. Поэтому эфирное замедление будет более заметно в воде и совершенно несущественно в воздухе.

В 1882 году, после творческого отпуска, проведенного в Европе, Майкельсон совсем ушел с флотской службы и стал преподавателем Кейсовской школы прикладных наук в Кливленде, которая в тот момент только открылась. В первый год своего пребывания там ему удалось измерить скорость света в вакууме (которая оказалась равной почти 299 852 км/с). Затем с человеком, с которым он познакомился в поезде на пути в Монреаль, он стал заново обдумывать эксперимент с эфиром.

Эдвард Морли, химик из близлежащего Западного резервного университета, был в науке таким же щепетильным, как и Майкельсон. Оба сразу договорились, что бессмысленно повторять попытку с определением абсолютного движения Земли, не проверив предварительно гипотезу Френеля о том, что звездный фон в пространстве фиксирован, и замедляются только небольшие количества эфира, попадающие в прозрачные тела, причем эффект этот настолько слабо выражен, что им можно пренебречь. Усовершенствовав эксперимент, проведенный Физо, они приступили к прокачиванию воды по кольцевой трубе и, разделив один и тот же луч, направили одну его половину по течению воды, а другую — против течения. В результате им удалось обнаружить, что вода действительно незначительно ускоряет или замедляет распространение света. (Необходимо отметить, что то, что они посчитали подтверждением гипотезы об эфирном замедлении, теперь объясняется с помощью специальной теории относительности.)

Случилось так, что как раз посреди этого эксперимента Майкельсон затеял развод. Причины неясны, но этот брак никогда не был крепким. Ученый считал, что жена слишком много говорила и старалась всеми силами привлечь к себе внимание любой компании. Ей было скучно в Кливленде, она устала оттого, что муж постоянно приходил домой поздно, пропадая все время в лаборатории или еще где. Она жаловалась, что ему ничего не стоит истратить хозяйственные деньги на научную аппаратуру. И когда Майкельсон отправился в Нью-Йорк полечиться (разводиться), Морли был уверен, что он уже никогда не вернется к научной работе.

Эксперимент Майкельсона-Морли. На нижней схеме показано, как проходили два световых пучка, путь которых был увеличен отражением от шестнадцати зеркал

Однако Морли, похоже, выдавал желаемое за действительное (Майкельсон больше, чем кто-либо, держал его в черном теле). Не прошло и двух месяцев, как Майкельсон снова был в лаборатории, готовый возобновить эксперименты. Но тут его постигла очередная неудача. В 1886 году пожар разрушил Кейсовскую школу, и Майкельсону пришлось все, что пощадил огонь, перевезти в Западный университет. Но пришел день, когда эти двое решили, что они готовы, как выразился Морли, «уже наконец выяснить, распространяется ли свет во все стороны с одинаковой скоростью». Как и Майкельсон, он был уверен — ответ будет отрицательным.

В этом эксперименте они предприняли дополнительные меры, чтобы полностью демпфировать все колебания интерферометра. Установка была смонтирована на глыбе песчаника со стороной порядка полутора метров и толщиной 35 сантиметров. Это сооружение плавало на деревянной конструкции в форме бублика в поддоне, залитом ртутью. По углам установили четыре металлических зеркала, которые должны были многократно отражать свет, идущий от лампы Аргана. В результате получалось, что свет, шедший по направлению движения Земли и перпендикулярно ему, преодолевал расстояние в 10,9 метра. От воздействия воздуха оптические детали были защищены деревянным коробом. Тщательно измерив и установив необходимое расстояние между зеркалами — калибровка выполнялась столь точно, что потребовалась резьба в 100 оборотов на один дюйм, — они приступили к эксперименту.

От усилия руки интерферометр начал медленно вращаться, совершая шесть оборотов в минуту. Вокруг него ходил Майкельсон. Стараясь не касаться установки, он периодически смотрел в окуляр на кольца интерференции, сообщая Морли, когда прибор проходил 1/16 круга, размеченного как картушка. Они проводили измерения между 8 и 12 июля в полдень и вечером и не обнаружили никакой разницы. Получалось, что оба пловца возвращались в одно и то же время.

Тогда они задумали проводить измерения в разное время года, чтобы понять, влияет ли на измерения орбитальное движение Земли, но им уже казалось, что в этом нет особого смысла. Вероятно, Френель ошибся: планета захватывала с собой столько эфира, что ни о каком эффекте и речи не могло быть. Для измерения абсолютного движения Земли потребовалось бы проведение измерений высоко над Землей, возможно, даже в околоземном пространстве.

Морли и другой его коллега, Дейтон Кларенс Миллер, продолжали искать эфир, используя интерферометры с большими путями светового пучка. Миллер даже утверждал, что при проведении эксперимента на горе Вильсон ему удалось обнаружить некое легкое вещество, но, скорее всего, его обманули температурные колебания. В 1936 году Майкельсон своими экспериментами в горах лишь подтвердил полученные ранее результаты.

Конечно, Майкельсону хотелось иного. Но тут он повторно женился, завел вторую семью и стал нобелевским лауреатом. Несмотря ни на что, он не отказывался от своей идеи: эфир, утверждал он, — «одно из величайших обобщений современной науки, про которое мы можем сказать все, что угодно, но только не то, что оно ложно, даже если это и так».

Он умер в 1931 году, всего через несколько месяцев после того, как встретился с Эйнштейном, специальная теория относительности которого объясняла истинное величие прекрасного эксперимента, поставленного Майкельсоном и Морли; вопреки своим ожиданиям они доказали, что ни в пространстве, ни во времени нет никакой фиксированной реперной точки, по отношению к которой можно проводить измерение истинного движения. При движении во Вселенной наши мерные палочки будут то удлиняться, то укорачиваться, а наши часы будут то ускорять, то замедлять свой ход, чтобы существующий эталон оставался неизменным. И этот эталон — не эфир, а скорость света.

Глава 9ИВАН ПАВЛОВКак измерить неизмеримое

Приходится с болью признать, что лучшее домашнее животное человека — собака — как раз благодаря своему высокому умственному развитию чаще всего становится жертвой физиологического эксперимента.

Иван Павлов. Вивисекция

Если послушать Ивана Петровича Павлова, то может показаться, что все эти животные — добровольцы, принесшие себя в жертву науке, которая сделала Павлова знаменитым. Лада, Лушка, Жучка — вот обычные собачьи клички. Но у него были Пестрый, Ласка, Сокол, Цыган, Рыжая, Пудель и Ворон. Были еще Арлекин, Красавец, Леди, Пострел, Злодей, Байкал и Чингисхан. Была поначалу еще одна собака, которую Павлов любил больше всего, — помесь сеттера и колли, ее звали Дружок.

Жилось им лучше, чем животным, умиравшим под скальпелем любопытных исследователей в других лабораториях. Для Павлова методы его коллег были подобны удару кувалдой по часам для изучения их механизма. Великий русский физиолог начал с не проводившихся до него никогда и никем исследований пищеварительной системы млекопитающих, и эти исследования до сих составляют основу гастроэнтерологии. Павлов предпочитал «хронический» эксперимент: пока собака находилась под наркозом, ее желудок, пищевод или слюнные железы модифицировались (с помощью фистул) таким образом, чтобы все их секреции впоследствии можно было бы собирать и анализировать. Павлов был известен как один из лучших хирургов Европы, он проводил операции в антисептических условиях лучше, чем это делали во многих госпиталях. Только после того, как животное полностью выздоравливало, начинались наблюдения, которые могли продолжаться месяцы и даже годы.

В начале XX века, когда он заинтересовался работой центральной нервной системы, между ним и его собаками уже установились тесные отношения. Он предоставлял им кров и еду, а они за это становились подопытными животными, не переставая быть его талисманами. В свободное от экспериментов время собаки гуляли по территории института. Иногда, чтобы окончательно прояснить для себя некоторые вопросы физиологии, Павлов решался на эксперименты со смертельным для животного исходом, но потом всегда жалел об этом: «Когда я рассекаю и убиваю живое существо, что-то внутри меня непременно порицает за то, что моя грубая, неумелая рука уничтожает несравненный художественный механизм. Но я иду на это во имя истины и ради человечества». Павлов считал, что в мире, где на животных ведется охота ради развлечения, где их убивают, чтобы получить мясо и шкуру, гибель еще нескольких животных в научных экспериментах вполне можно оправдать стремлением человека к знанию.

Это часть обычного ответа защитникам животных, которых всегда было много в России и которых сегодня немало и в других странах. С их точки зрения, павловские эксперименты далеки от изящества. Даже владелец собаки, никак не возмущающийся наличием фуа-гра в ресторанном меню и не причитающий по поводу судьбы лабораторной мыши, способен вздрогнуть только от описания хирургических подробностей павловских экспериментов. Конечно, получаемые знания могут служить утешением. Безукоризненная логика и элегантность экспериментов, поставленных Павловым над его собаками, открыли дверь в мир, который всегда казался таким же далеким, как самая далекая из звезд, и этот мир — наш мозг.

Поначалу Павлов хотел стать священником, как его отец. Но в это же самое время он открыл для себя Дарвина. Завершались 60-е годы XIX века. Иван вместе с братом Дмитрием учились в семинарии, находившейся в Рязани, — там в то время жило семейство Павловых. Говорят, что по утрам Иван отправлялся в местную библиотеку почитать последний перевод книги Дарвина ‘‘Происхождение видов», а также книгу Джорджа Генри Льюиса «Физиология обыденной жизни» со схематическими рисунками внутренних органов или труд Ивана Сеченова «Рефлексы головного мозга», радикальное проявление материализма, доказывающее, что мозг — это просто исключительно сложная машина.

Сеченов предложил рассматривать любое проявление человеческого поведения от чихания до желания прочесть книгу как состоящее из рефлексов — мускульных движений, инициированных сигналами органов чувств. «Абсолютно все свойства внешних проявлений деятельности головного мозга, таких как возбуждение, страсть, насмешка, печаль, радость и т. п., — это результат большего или меньшего сокращения определенных групп мышц, — писал он, — что, как каждому известно, является чисто механическим действием». И даже когда в голове появляется случайная мысль, она является результатом действия определенного рефлекса или пробуждения памяти под воздействием внешнего сигнала. Сеченов мечтал о том, что наступит время, когда человек сможет анализировать внешние проявления работы головного мозга так же легко, как физик анализирует колебания музыкальной струны или свободное падение тел.

Эти идеи не могли не восхитить сына священника. В царствование Александра II в русскую глубинку стал проникать свет знаний. Книги и журналы, которые бы наверняка были запрещены при Николае I, теперь поступали в библиотеки, на пороге которых толпились люди, жаждавшие припасть к книжным сокровищам. Павлову иногда приходилось проникать в библиотеку через окно, предусмотрительно оставленное библиотекарем открытым.

Покоренный идеей о том, что живой организм подвластен научному познанию, он в 1870 году оставил семинарию и отправился учиться в Санкт-Петербург. К нему вскоре присоединился и брат Дмитрий. Они вместе изучали химию у Менделеева, создателя периодической таблицы элементов. Однако Иван больше увлекался физиологией и вскоре защитил докторскую диссертацию по медицине — темой диссертации стало регулирование кровяного давления и сердечной деятельности центральной нервной системой. В 1890 году он возглавил отдел физиологии Института экспериментальной медицины. Тут он, используя свои хирургические навыки, изучал «сложную химическую фабрику», в которой происходит переработка и усвоение пищи организмом.

Ученый заметил, что слюноотделение у собаки начинается до того, как кусочек еды окажется на ее языке: вода смешивается с муцином (гликопротеином, входящим в состав секретов всех слизистых желез), чтобы смазать пищу, поступающую в желудок, где уже приготовлена порция «аппетитного сока». Там, а затем в двенадцатиперстной кишке особые нервные рецепторы анализируют пищу, сигнализируя организму, какая смесь желудочного сока необходима для усвоения хлеба, молока, мяса и всего остального, что получила собака во время кормления.

Оказалось, что слюноотделение выполняет и другую функцию. Если собаке дать попробовать что-нибудь несъедобное — горчицу, слабую кислоту или соль, то слюна все равно будет выделяться, но на этот раз она будет состоять в основном из воды, чтобы защитить язык и смыть несъедобное вещество. В этом случае желудочные железы ничего не выделяют. Организм каким-то образом «узнает», что такие секреции не нужны.

Для измерения количества и состава слюны Павлов подвергал собак небольшой операции. Пока животное оставалось под наркозом, на его щеку или подбородок делался вывод (фистула), идущий от слюнных желез и фиксированный несколькими хирургическими стежками. После того как шов от хирургического вмешательства заживал, выделенная жидкость собиралась и анализировалась. Ученый обнаружил, что кусочки кварца практически не вызывали появления жидкости, тогда как при наличии песка выделялась вода, помогавшая собаке вымыть его из пасти. Следуя такой же физиологике, собака выделяла больше жидкости при наличии корочки хлеба, чем при появлении сочного куска мяса. Эволюция идеально настроила каждый рефлекс, приспосабливая животное к внешним воздействиям.

«Каждая материальная система может существовать как единое целое лишь до тех пор, пока его внутренние силы — влечение, когезия (сцепление) и т. п. — уравновешивают действующие на нее внешние силы, — писал он позднее. — Это в равной мере справедливо и по отношению к обычному камню, и по отношению к самым сложным химическим веществам, и эта истинность должна признаваться и в отношении живого организма… Рефлексы — это элементарные единицы в механизме постоянного уравновешивания».

В 1904 году Павлову была присуждена Нобелевская премия за труды по физиологии пищеварения. Поразительный человек, он был готов отказаться от этой награды, поскольку соперничавшая с ним лаборатория обнаружила, что он пропустил очень важный компонент системы — гормоны. «Совершенно очевидно, что у нас нет исключительного патента на открытие истины», — не без чувства горечи признавал он. Примерно в это же время он решил оставить исследования пищеварения и заняться тем, что он называл высшей нервной деятельностью.

В одном из своих опытов Павлов заметил, что для того, чтобы началось слюноотделение, наличие пищи в пасти животного совсем не обязательно. Запах, вид миски, даже скрип двери, когда наступает время кормления, иногда достаточен, чтобы запустить реакцию. Он называл это «психической секрецией».

В отличие от врожденных рефлексов, т. е. инстинктов, рефлексы приобретенные, или «условные*', можно изменять. Покажите собаке кусок мяса, а потом уберите его. Сделайте это несколько раз, и с каждым разом слюноотделение у собаки будет уменьшаться. Происходит «блокирование» рефлекса. Но вкус мяса, хлеба и даже — что парадоксально — неприятной кислоты восстановит («разблокирует») реакцию. Так же, как эволюция за долгие века «настраивала» каждый вид на внешнюю среду, прижизненный опыт животного «настраивает» конкретный организм на условия его существования. У него развивается способность к обучению.

Несколько ранее Павлов пытался объяснить это явление с точки зрения психологии, предполагая, что мысли собаки отражаются на ее «внутреннем экране». Животное перестает обильно выделять слюну после неоднократной демонстрации мяса потому, что устает и решает, что ее «усилия бесполезны». Но почему тогда попадание незначительного количества отвратительной кислоты вновь возвращает слюноотделение? Что при этом думает собака?

Павлов пришел к выводу, что так ставить вопрос нельзя. Позднее он заявил, что у нас нет способов проникнуть во внутренний мир собаки, поскольку нет фактов, позволяющих рассуждать о том, что и как она чувствует. Ученому пришлось признать, что по отношению к человеку такой вывод тоже оказывается справедливым, ибо извечная печаль жизни состоит в том, что люди не способны понимать друг друга и проникать во внутреннее состояние ближнего.

Водораздел между умственным и физическим начинал постепенно исчезать. Павлов отметил, что, когда ученый приступает к изучению того, как повышается и понижается давление или что выделяет поджелудочная железа, он рассуждает исключительно материалистически. Но когда физиолог озадачивается деятельностью высшей нервной системы, то существо его исследований резко меняется. Он начинает делать предположения относительно внутренних состояний животного, основываясь на своих собственных субъективных ощущениях. До этого момента он пользовался общенаучными концепциями. Теперь перед ним новый фронт работ, и ему приходится осваивать новые понятия, которые целиком принадлежат психологии. Другими словами, он осуществляет переход из мира измеряемого в мир неизмеримый.

Итак, пришла пора сконцентрировать свои усилия на важнейшей научной проблеме. Независимо от того, включались ли слюнные железы рецепторами на языке или в глазу, носу, ухе, результат был одинаков: сигналы из внешней среды вызывали физиологическую реакцию.

Идея, согласно которой организм, включая мозг, является биологической машиной, была высказана Декартом еще в XVII веке, однако он допускал и то, что человеку могут быть присущи некоторые особенности: хотя наши тела являются механическими и должны подчиняться законам физики, мозг представляет собой обиталище более высокой субстанции под названием «разум». Ко времени Павлова ученые уже знали о теориях Дарвина, которые весьма затрудняли существование такого дуализма. Считалось, что мозг развивался так же, как и остальное тело, но, как могли материальные факторы естественного отбора воздействовать на призрачный разум, оставалось загадкой. Уильям Джеймс описал эту проблему в 1890 году в своем труде «Принципы психологии»: «Те же самые атомы, которые, хаотически двигаясь, создают туманности, образуют и наш мозг, сгущаясь и на время оказываясь в определенных положениях; вот почему «эволюция» мозга, если она когда-нибудь будет понята, сведется к пониманию того, как и почему атомы мозга оказались схвачены и сжаты именно таким образом».

Некоторые философы пошли дальше и предположили, что каждый атом материи повторяется атомом сознания — «первичной разумной пылью», которая распространялась одновременно с развертыванием космоса и возникновением видов. Джеймс так объяснял такие высказывания: «Так же как атомы материи образуют тела и мозг путем устремления друг к другу, так и ментальные атомы начинают агрегироваться аналогичным образом, образуя более масштабные сознания».

Формирование рефлекса избегания пламени у ребенка

Схема из труда Уильяма Джеймса «Принципы философии». 1890 год

Считалось, что наряду с химическими процессами в мозгу происходят процессы ментальные, при этом ни один из них не может контролировать другой. Томас Генри Гекели выразил эту мысль следующим образом: «Душа относится к телу так же, как колокол курантов к часовому механизму, а сознание отвечает на звук, который издает колокол». Когда мы хотим пошевелить пальцем, то это является указанием на событие, а не его побудительной причиной. «Чувство, которое мы называем волевым актом, — предлагал Гекели, — не добровольное действие, а символ состояния мозга, являющегося непосредственной причиной такого акта». (Век спустя американский физиолог Бенджамин Либет будет утверждать, что ему удалось это доказать экспериментально.)

Другими словами, мы являемся умными автоматами. Джеймс с осуждением писал, к чему может привести такая теория:

Если бы мы хорошо знали центральную нервную систему Шекспира и так же хорошо — окружавшую его действительность, то смогли бы показать, почему в определенное время своей жизни его рука оставляла следы на некоторых листах бумаги, — эти маленькие черные закорючки мы для краткости называем рукописью «Гамлета». Для этого мы должны понимать смысл каждого зачеркнутого и исправленного слова, причем без какой-либо отсылки к мыслям, которые возникали в сознании Шекспира. Слова и предложения в таком случае должны восприниматься не как знаки чего-то, а как некоторые внешние факты, ясные и простые. Аналогичным образом мы можем написать исчерпывающую биографию теплого белкового тела под названием Мартин Лютер, не обращая никакого внимания на то, что это тело могло ощущать.

Павлов недолго задерживался на таких метафизических вещах. Что бы там ни происходило в мозгу собаки, объективное суждение об этом можно сделать только по внешним проявлениям. По его мнению, натуралиста должна занимать лишь одна проблема: как соотносятся та или иная внешняя реакция животного и явления внешней среды.

Он быстро понял, что между обозначающим и обозначаемым нет внутренней связи. Совершенно очевидно, что пасть собаки смачивается при запахе мяса, хотя даже такая реакция может являться результатом научения. (Щенок, еще сосущий мать, порой отворачивает нос от гамбургера.) Однако, предъявляя мясо одновременно с другими стимулами, экспериментатор может обучить животного выделять слюну при вспышке света, вращении предмета, прикосновении холодного или горячего зонда к коже, тиканье метронома, звуке звонка, свистка, камертона или рога. (Павлов почти никогда не использовал колокольчик.) Нет никаких оснований полагать, что эволюция предусмотрела такие случайные связи, но при определенных обстоятельствах они становятся важными для выживания собаки.

Собака выделяет слюну, чувствуя уколы двух механических стимуляторов

Рисунок из труда И. Павлова *Условные рефлексы». 1916 год

То же справедливо и в отношении защитного слюноотделения. После того как собака попробовала разведенную кислоту, окрашенную тушью, у нее началось слюноотделение при виде любой жидкости черного цвета. Однако, если она пробовала несколько раз безобидный раствор, такая реакция пропадала и появлялась вновь только после того, как собака снова глотнула кислоты.

Нервные соединения оказались столь пластичны, что их можно было коммутировать, как линии связи на АТС. При достаточном обучении положительный стимул, например кусок мяса, можно связать с отрицательным стимулом. Так, собака при ударе током не отскочит, а начнет выделять слюну.