66112.fb2
1. Энергетического - в силу действия которого осуществляется синтез системных образований путем заполнения фн. ячеек соответствующими фщ. единицами и замыкания системы для излишних фщ. единиц;
2. Энтропийного - с помощью которого происходит размыкание фн. ячеек отфунционировавших системных комплексов, в результате чего освободившиеся фщ. единицы перемещаются в фн. ячейки других системных образований;
3. Аккумулятивного - служащего для накапливания фщ. единиц, предотвращения их возможного распада с целью последующего их активного использования во вновь образующихся системных образованиях.
Поэтому в каждой адиабатической (то есть находящейся в условной изоляции) динамической системе или подсистеме заметно проявление как минимум двух активных центров. Для одного из них характерно преобладание энергетического фактора, действие которого выражается в создании фн. ячеек на разных организационных уровнях (главным образом, по условной вертикали) и заполнении их имеющимися в наличии фщ. единицами. Это приводит к снижению уровня относительного порядка подсистемы, но обеспечивает ее развитие в качестве. Для другого центра характерно преобладание энтропийного фактора, ведущего к созданию фн. ячеек на одном организационном уровне (по условной горизонтали) и соответствующего их заполнения фщ. единицами. Это приводит к более равновесному состоянию данной части системы. Местоположение обоих центров в структурах систем непостоянно и перемещается в зависимости от меняющихся внутрисистемных условий. В результате действия обоих факторов происходит увеличение числа фщ. единиц одного уровня в одном из центров и недостаток их в другом. Это является причиной перемещения фщ. единиц из донорской области, где их избыток, в акцепторную область пустующих соответствующих им фн. ячеек.
Таким образом, развитие любой динамической материальной системы может происходить только при наличии обоих центров (энергетического и энтропийного), то есть при действии фактора биполярности развивающихся систем. Его наличие можно проследить практически во всех процессах и явлениях, происходящих в природе, а также в событиях общественной жизни (начиная от химического процесса горения и кончая социальнными явлениями безработицы или нехватки рабочей силы, и т. п.).
Принцип 12 Упорядоченность движения материальных образований обеспечивается благодаря его системности, из которой вытекают определенные закономерности движения фщ. единиц в качестве-пространстве-времени. Анализ хода развития материальной субстанции по ординате качества показывает, что все материальные образования - фщ. единицы по функциональным признакам разбиваются на множество уровней системной организации, образуя строго закономерную организационную последовательность, при этом каждый новый уровень включает в качестве элементов своей структуры - фщ. единиц - системные образования нижних подуровней. Однако, в силу того, что суммарная энергия всей материальной субстанции является величиной постоянной, ее количество строго регламентируется для каждого организационного уровня, при этом синтезирование систем более высоких уровней связано с сокращением доли кинетической энергии материальных микрообразований, которая, как бы увязая в структуре макросистем нового уровня, трансформируется в ее условный энергетический потенциал.
Таким образом, каждая система более высокого порядка, заполняя структуры своих фн. ячеек фщ. единицами - материальными образованиями предыдущих уровней, как бы аккумулирует кинетическую энергию их движения, переводя ее в потенциальную энергию связи в структуре данной системы. Поэтому образование функционирующих систем каждой последующей ступени происходит одновременно с обязательным аккумулированием энергии движения в пространстве-времени единиц предыдущего уровня. И наоборот, распад системы фн. ячеек любого уровня нарушает взаимосвязь между ее фщ. единицами, переводя их на предыдущий, более низкий уровень системной организации, где они, повинуясь законам, вытекающим из формулы , увеличивают скорость своего перемещения в пространстве, трансформируя таким образом потенциальную энергию связи в структуре распавшейся системы в кинетическую энергию движения в пространстве-времени высвободившихся функционирующих единиц.
Положения и принципы общей теории материальных систем частично широко известны, частично неизвестны совсем, хотя в Жизни на практике нам приходится встречаться с ними, часто не осознавая того, почти ежедневно. Поэтому, конкретно прослеживая процессы системного образования и развития материальной субстанции по уже известным организационным уровням, можно получить дополнительные доказательства их существования и действия.
[ Оглавление ] [ Продолжение текста ]
[ Оглавление ]
Игорь Кондрашин
Диалектика Материи
III. Диалектический генезис материальных систем
"Этот мир придуман не нами,
Этот мир придуман не мной..."
слова из песни
Каскадность построения мира
Наука, будучи плодом человеческого познания, в настоящее время находится в очередной важной фазе своего развития. Логически обобщая все большую массу эмпирического материала, она выводит строго сформулированные закономерности. Получаемые теоретические обобщения становятся все более абстрактными, все более разветвленными.
И действительно, схема онтогенеза наших познаний напоминает растущее древо, при этом каждый год добавляет к нему все больше веточек и листочков, предопределяя и расчленяя фронт еще непознанного на все более узкие участки на каждом отдельном острие. Каждое новое наше знание-листочек закрывает собой очередное белое пятно нашего незнания, которое, если промедлить, в определенный момент может перерасти в невежество и за которое та или иная общность людей может заплатить своим благополучием, прогрессом и даже существованием. Человеческий Разум, как инструмент познания, служит естественным интересам Человеческого общества для предотвращения таких моментов.
Человеческая цивилизация, как макросистемное образование Материи очень высокого уровня n, находящееся в стадии своего дальнейшего развития, свои первые теоретические обобщения могла делать лишь через эмпирическое познание окружающего мира. Эти поиски шли сначала посредством случайных наблюдений, а затем и с помощью специальных поисков и исследований как в пространстве (макро- и микро-), так и во времени (главным образом в историю, то есть в -t) и даже в качестве (путем исследования функций системных образований нижних уровней Материи: n-1, n-2, n-3 и т.д.). Таким образом, человеческая цивилизация лишь через абстракцию, логическое мышление и эксперимент может проникнуть (хотя бы частично, хотя бы условно) в один из близлежащих нижних уровней системного строения Материи, спускаясь по ступенькам каскадной организации вниз, а не поднимаясь от некоего "нулевого" уровня.
Поэтому Наука до сих пор спорит о том, как был "сотворен Мир", что явилось его "началом". Ввиду того, что потребность в знании этого появилась уже сранительно давно, духовенство различных течений строит на этом незнании свои теологические версии (достаточно наивные с научной точки зрения и часто противоречащие друг другу) о божественном сотворении Мира. Недалеко от этого ушла и популярная у астрофизиков теория "первоначального взрыва".
Итак, Науке пока неизвестен абсолютный нулевой уровень качественного развития Материи, а также то, был и/или существует ли он вообще. Однако за относительно начальный уровень системного развития можно условно принять любой из ставших известными самых нижних подуровней системной организации Материи. Это необходимо сделать прежде всего для упрощения хронологического изложения и понимания хода диалектического Развития материальных систем в соответствии с движением по координатам качества-времени-пространства от простого к сложному, от раннего к позднему, от меньшего к большему и т. д.
Уровень а
Самым нижним уровнем системного строения Материи, известным современной Науке, можно считать явление нулевых колебаний вакуума. Частицы, наполняющие его, называются виртуальными. Каких-либо глубоких серьезных теорий о функциональных свойствах данной системной организации Материи пока не существует ввиду невозможности осуществлять наблюдение или поставить эксперимент в рамках этого подуровня, но при изучении микромира наличие указанного явления приходится учитывать. Существует предположение, что время функционирования виртуальных частиц весьма непродолжительно, возникают они парами "частица-античастица", тут же исчезают, чтобы появиться вновь.
С явлением нулевых колебаний вакуума перекликается гипотеза о существовании частиц-тахионов, двигающихся с постоянной сверхсветовой скоростью с очень малым периодом функционирования (существования).
Уровень А
Более фундаментальным нижним функциональным подуровнем, пронизывающим все строение Материи, являются в настоящее время системные образования, состоящие из кварков. В наши дни известно уже как минимум о шести типах кварков. Кроме них в этом подуровне существуют глюоны, связывающие функционально дифференцированные кварки в структурные образования, являющиеся фщ. единицами более высокого уровня (протоны, нейтроны и др.).
Природа и функциональные свойства кварков интенсивно изучаются, но уже их различают по таким характеристикам, как заряд, изотопический спин, странность, барионный заряд, спин и т.п.
Вполне естественно утверждать, что кварки и глюоны не являются самыми мельчайшими системными образованиями Материи, но познать структуру и состав самих кварков современная Наука пока еще не в состоянии. Известно лишь, что в свободном виде кварки практически не встречаются и поэтому для их выделения требуется расщепление частиц с приложением энергии больших величин. Это свидетельствует о том, что системная организация данного подуровня полностью стабилизировалась и Развитие происходит в более высоких организационных уровнях Материи.
Что касается сферы распространения данного уровня, то она простирается по меньшей мере в пространственном объеме всей нашей Вселенной. Во всяком случае, все видимое нами с Земли космическое пространство является областью его распространения.
Отсутствие достаточной информации о природе, времени функционирования, функциональных свойствах и структуре единиц данного подуровня не позволяет пока с полной достоверностью говорить о том, какую роль играли и играют кварки и глюоны в процессе Развития Материи, однако есть все основания полагать, что роль эта значительна. В любом случае, в философской классификации эти материальные образования по праву занимают один из базовых подуровней в каскаде системной организации материальных форм.
Уровень АА
В отдельный подуровень системного Развития Материи следует выделить следующую группу известных частиц, входящих в состав материальных образований более высоких уровней. Сюда относятся фотоны, электроны, гравитоны, нейтрино, а также подобные им частицы и соответствующие античастицы. Ввиду больших трудностей, связанных с наблюдением и изучением этих материальных образований, их функциональные свойства и характер их взаимодействий полностью далеко еще не изучены. Однако, в отличие от единиц уровня А они чаще встречаются в свободном состоянии, что говорит о фунциональных особенностях и большей пространственной метрике включающих их системных образований.
Уровень АБ
В группу единиц данного подуровня следует отнести Пи-, Мю- и К- мезоны, гипероны и им подобные частицы и античастицы. Их отличительной чертой служит то, что они являются системными образованиями единиц подуровней А и АА, недолговечными по времени своего существования, что характеризует их системную нестабильность. Как правило, они в качестве фщ. единиц занимают фн. ячейки структур более высокого порядка, но при отделении от них сразу же распадаются на свои составные части. Данные единицы не встречаются в свободном состоянии в течении относительно продолжительного времени. Их функциональные свойства в системных образованиях более высшего порядка также пока мало изучены.
Уровень Б
Следующим известным функциональным подуровнем развивающейся Материи являются стабильные системные образования так называемых "элементарных" частиц. Как известно, приоритет элементарности они носили временно в силу затруднений ранней науки расчленить их на составные части. Теперь, когда это уже сделано, их название носит чисто символический смысл и, возможно, скоро будет предано забвению.
В эту группу следует отнести протоны и нейтроны, а также другие частицы и античастицы данного уровня. Как теперь уже известно, их структурный состав представляет собой системную комбинацию единиц подуровней А, АА и АБ, однако в отличие от материальных образований уровня АБ их характеризует большая временная стабильность, то есть больший период функционирования во времени. Так, например, если время функционирования Мю- мезона составляет всего 2·10-6 сек. (две миллионные доли секунды), то время существования нейтронов и протонов намного больше.
В настоящее время известно более 200 наименований фщ. единиц, входящих в подуровни А - Б.
Уровень В
Сто с лишним атомных элементов периодической системы Менделеева представляют собой системные образования подуровня В. Функциональные свойства этих единиц изучены более глубоко, чем свойства единиц подуровней А - Б. Их внутренняя структура к настоящему времени также хорошо известна.
Структурное различие между ними сводится к числу входящих в них протонов, нейтронов, мезонов и электронов, однако каждое очередное прибавление к системе пары протон-электрон резко меняет функциональные свойства всей совокупной единицы в целом и это является наглядным подтверждением регламентированности числа фн. ячеек в каждой данной системе.
Областью пространственного распространения единиц уровня В является (как и для единиц подуровней А - Б) область обозримой нами Вселенной.
Основная масса любой единицы данного уровня - атома - более, чем на 99,9% сосредоточена в его ядре, размер которого составляет 10-13 см, то есть в 105 раз меньше размеров самого атома (10-8 см). Так, если размеры атома представить в виде футбольного поля (с диаметром 100 м), то атомное ядро будет соответствовать дробинке с диаметром лишь 1 мм. Ядра имеют сложную структуру фн. ячеек. Основными элементами, заполняющими их в качестве фщ. единиц, являются ядерные частицы подуровня Б - нуклоны: протоны и нейтроны. Их массы покоя соответственно равны 1,00812 и 1,00893 усл. единиц. Масса электронов, входящих в состав любого атома, меньше массы нуклонов почти в 2000 раз (5,5·10-6 у.е.). Частицы, промежуточные по массе между электронами и протонами и входящие в состав ядра - Мю- и Пи- мезоны - массивнее электрона в 210 и 275 раз соответственно.
Образование прочных и компактных атомных ядер из нуклонов - протонов и нейтронов - объясняется возникновением между ними ядерных сил, ядерных связей, ответственными за которые являются мезоны. Нуклоны обмениваются между собой мезонами, превращаясь поочередно то в протон, то в нейтрон, при этом протон может образовывать связи с ограниченным числом нейтронов и, наоборот, нейтрон связывается с определенным числом протонов. Поэтому устойчивость ядер зависит от числа протонов и нейтронов, заполнивших фн. ячейки структуры ядра.
Число протонов определяет величину положительного заряда ядра, что является важнейшей характеристикой атома, так как от него зависит число электронов в электронейтральном атоме и, в конечном итоге, функциональные свойства каждого атома.
Масса ядра ("массовое число атома" - A), являющаяся суммой масс всех входящих в состав ядра протонов и нейтронов, практически равна массе всего атома.
Ядра, содержащие одинаковое число протонов, могут иметь различное число нейтронов, то есть быть изотопами. Почти все химические элементы насчитывают несколько изотопов. Наиболее многочисленны изотопы (по 6-10) у элементов, имеющих заряд ядра от 40 до 56, то есть расположенных в середине периодической системы. Число устойчивых (стабильных) изотопов значительно меньше числа неустойчивых, то есть радиоактивных. Стабильность ядер зависит от числа протонов и нейтронов, входящих в их состав в качестве фщ. единиц, и от их соотношения. В структурах фн. ячеек максимально устойчивых ядер легких элементов на один протон приходится один нейтрон. По мере увеличения заряда ядра рост числа нейтронных фн. ячеек опережает рост числа протонных. В ядрах с A < 25 каждый нуклон притягивается ядерными силами ко всем остальным нуклонам, в ядрах с А = 25 - 30 ядерные силы начинают насыщаться (то есть каждый их нуклон притягивается не всеми остальными нуклонами, а лишь теми, которые его непосредственно окружают). В ядрах с А > 50 сила электрического отталкивания между протонами все заметнее противодействует силам ядерной связи. Любые два протона, находящиеся на диаметрально противоположных сторонах большого ядра, продолжают электрически взаимодейтвовать, в то время как для ядерного взаимодействия они расположены уже слишком далеко друг от друга. В самых легких ядрах, наоборот, все нуклоны находятся так близко друг от друга, что действие силы электрического отталкивания полностью нейтрализуется ядерным притяжением. Естественно, сила отталкивания в качестве функционального свойства данной структуры стремится разрушить крупные атомные ядра вопреки сдерживающему влиянию функционального свойства ядерного притяжения, и поэтому величина сил связи такого ядра будет зависеть от соотношения между этими двумя силами. У некоторых очень тяжелых ядер это равновесие весьма неустойчиво, такие ядра становятся нестабильными, стремятся к самопроизвольному распаду, то есть являются радиоактивными. Это главным образом происходит, когда в ядре образуется недостаток или избыток нейтронов. В зависимости от вида испускаемых ядром частиц различают несколько типов радиоактивного распада: протонный, позитронный, электронный и т.д.
Массивные положительно заряженные ядра атомов создают вокруг себя мощное электромагнитное поле, в котором в фн. ячейках атомных орбиталей определенным образом располагаются электроны. Число электронов в атоме (равное заряду ядра), а также их расположение в пространстве определяют все химические, а, следовательно, и функциональные свойства каждого элемента. Поэтому любое изменение фн. свойств любого вещества, а также превращение одних веществ в другие связано с изменением внутренней структуры фн. ячеек их атомов, с количеством и составом заполняющих их фщ. единиц нижних подуровней.