66226.fb2 Доказательство Бога - читать онлайн бесплатно полную версию книги . Страница 6

Доказательство Бога - читать онлайн бесплатно полную версию книги . Страница 6

Имеющиеся на настоящий момент данные позволяют предположить, что жизнь сначала существовала только в воде, а суша оставалась безжизненной, пока около 400 млн лет назад на ней не появились первые растения, произошедшие от водных форм жизни. Прошло еще каких-то 30 млн лет, и на сушу вышли животные. Одно время на этом шаге также присутствовал пробел — слишком мало было известно переходных форм между морскими существами и сухопутными четвероногими. Но недавние открытия дали убедительные примеры именно такого перехода. Около 230 млн лет назад началась эпоха динозавров. Сейчас общепризнано, что она закончилась внезапно и катастрофически приблизительно 65 млн лет назад; Земля тогда столкнулась с гигантским астероидом, который упал в окрестностях нынешнего полуострова Юкатан. Следы пепла, поднявшегося в воздух в результате этой чудовищной катастрофы, обнаруживаются по всему земному шару; по-видимому, преобладающие виды динозавров не выдержали климатических изменений, вызванных огромным количеством пыли в атмосфере. Они вымерли, и на Земле распространились млекопитающие.

Искушение предположить здесь сверхъестественное вмешательство очень велико. Не исключено, что астероид был единственным возможным средством освободить планету от динозавров и создать условия для процветания млекопитающих. Если бы не он, мы, возможно, так никогда бы и не появились.

Для большинства из нас представляют особый интерес ископаемые останки предков человека, и в этом случае находки последних нескольких десятилетий тоже очень многое проясняют. В Африке были обнаружены кости более чем дюжины человекообразных видов с постоянно растущей способностью к прямохождению. Первые образцы, которые мы опознаем как принадлежащие Homo sapiens, восходят к периоду, начавшемуся около 195 000 лет назад. Остальные ветви нашего семейства оказались тупиковыми: до наших дней не дожили ни неандертальцы, обитавшие в Европе 30 000 лет назад, ни «хоббиты», скелеты которых недавно были найдены на индонезийском острове Флорес. Этих низкорослых людей с небольшим головным мозгом отделяют от нас всего 13 000 лет.

Хотя реконструкция по окаменелостям во многом несовершенна и в палеонтологии остается ряд нерешенных вопросов, практически все находки согласуются с идеей филогенетического дерева, родства всех живых организмов и их общего происхождения. Хорошо прослеживаются переходные формы от рептилий и к птицам, и к млекопитающим. Что же касается возражений, базирующихся на неспособности данной модели объяснить возникновение определенных видов — например, китов, — то очень многие из них были отметены благодаря вновь открытым переходным формам, причем место находки и возраст отложений часто в точности соответствовали предсказанным на основе теории эволюции.

Революционная идея Дарвина

Чарльз Дарвин, родившийся в 1809 г., сначала изучал в университете богословие и готовился стать священником англиканской церкви, но серьезно увлекся естествознанием. И хотя в молодости ему представлялась убедительной аналогия с часовщиком, предложенная Пейли, и он рассматривал высокую организованность жизни как доказательство ее божественного происхождения, эти взгляды стали меняться в 1831-1836 гг. во время путешествия на корабле «Бигль». Дарвин побывал тогда, в частности, в Южной Америке и на Галапагосских островах, где изучал окаменелые останки древних организмов и наблюдал разнообразие форм жизни в условиях их изоляции от внешнего мира.

На основе наблюдений, сделанных в период путешествия, а также дополнительных исследований, которые он вел на протяжении более чем 20 лет, Дарвин создал теорию эволюции путем естественного отбора. В 1859 г., когда выяснилось, что его может опередить Альфред Рассел Уоллес (развивавший аналогичные идеи), он в конце концов подготовил к печати и опубликовал свое знаменитое «Происхождение видов». Хорошо понимая, что его суждения наверняка будут иметь широкий резонанс, Дарвин в конце книги скромно отмечает: «Когда воззрения, развиваемые мною в этой книге и м-ром Уоллесом, или аналогичные взгляды на происхождение видов сделаются общепринятыми, это будет сопровождаться, как мы смутно предвидим, глубоким переворотом в области естественной истории».

Дарвин выдвинул гипотезу о происхождении всех видов живых существ от немногочисленных общих предков — возможно, от единственного предка. В пределах вида случайным образом происходят изменения, а выживание или гибель каждого организма зависит от его способности адаптироваться к окружающей среде. Этот процесс Дарвин назвал естественным отбором. Осознавая, что реакция, вероятно, будет очень бурной, он намекал на возможность аналогичного развития и для человека; соответствующая концепция была им позднее подробно развита в книге «Происхождение человека».

На «Происхождение видов» сразу же обрушилась лавина критики, хотя реакция влиятельных священнослужителей не во всех случаях была такой однозначно отрицательной, как ее часто изображают сегодня. Так, выдающийся протестантский теолог консервативного направления Бенджамин Уорфилд принимал эволюцию как «теорию метода, применявшегося божественным провидением», выдвигая тезис о том, что природа самой эволюции может быть сверхъестественной.

Многие истории об общественной реакции на теорию Дарвина — мифы. Например, хотя знаменитый диспут между ярым сторонником эволюционной теории Томасом Хаксли и епископом Сэмюэлом Уилберфорсом действительно имела место, Хаксли, вопреки легенде, по-видимому, не говорил там, что ему не стыдно происходить от обезьяны, а стыдно лишь иметь что-либо общее с теми, кто затуманивает истину. Замечу, кроме того, что Дарвин похоронен в Вестминстерском аббатстве, так что религиозная община его вовсе не отвергала.

Самого Дарвина очень беспокоило воздействие его теории на религиозные верования, хотя он и постарался предложить возможную гармоничную интерпретацию. «Я не вижу, — пишет он в "Происхождении видов", — достаточного основания, почему бы воззрения, излагаемые в этой книге, могли задевать чье-либо религиозное чувство... Один знаменитый писатель и богослов писал мне: "Я мало-помалу привык к мысли об одинаковой совместимости с высоким представлением о божестве как веры в то, что оно создало несколько первоначальных форм, способных путем саморазвития дать начало другим необходимым формам, так и веры в то, что оно нуждалось каждый раз в новом акте творения для того, чтобы заполнить пробелы, вызванные действием установленных им законов"».

А завершается «Происхождение видов» следующими знаменательными словами: «Есть величие в этом воззрении, по которому жизнь с ее различными проявлениями Творец первоначально вдохнул в одну или ограниченное число форм; и между тем как наша планета продолжает вращаться согласно неизменным законам тяготения, из такого простого начала развилось и продолжает развиваться бесконечное число самых прекрасных и самых изумительных форм».

Собственные религиозные представления Дарвина были неоднозначными и, по-видимому, претерпели изменения в течение последних лет его жизни. Как-то он сказал: «Правильнее всего было бы описать мое умонастроение как агностическое». В другой раз написал о «крайней трудности или даже невозможности представить себе эту необъятную и чудесную Вселенную, включая сюда и человека с его способностью заглядывать далеко в прошлое и будущее, как результат слепого случая или необходимости, — и заключил: — Размышляя таким образом, я чувствую себя вынужденным обратиться к Первопричине, обладающей интеллектом, в какой-то степени схожим с разумом человека, т.е. заслуживаю названия теиста».

Ни один серьезный биолог сегодня не сомневается в способности теории эволюции объяснить удивительную сложность жизни и ее разнообразие. Фактически учение о родстве всех видов и связывающем их механизме эволюции представляет собой настолько фундаментальную основу биологической науки, что без него трудно себе представить вообще какое бы то ни было исследование живой природы. И все же ни одна сфера человеческих знаний не вступала в такие серьезные конфликты с религиозным мировоззрением, как революционные идеи Дарвина. Этой битве — от анекдотического «обезьяньего процесса» против учителя Джона Скоупса до нынешних дебатов о преподавании в школах теории эволюции — пока не видно конца.

ДНК, наследственный материал

Догадка Дарвина представляется тем более замечательной, если вспомнить, что в его время ничего еще не было известно о физической основе эволю­ции. Лишь спустя столетие биологам удалось установить, какой конкретный механизм отвечает за дарвиновское «происхождение, сопровождаемое модификацией».

Грегор Мендель, сравнительно малообразованный монах августинского монастыря на территории современной Чехии, был современником Дарвина и читал «Происхождение видов», но два ученых, по-видимому, не были знакомы лично. Мендель был первым, кто показал дискретный характер наследования. Многолетние опыты с горохом на монастырском огороде позволили ему заключить, что наследственные факторы, участвующие в формировании таких признаков, как сморщенная или гладкая поверхность горошин, подчинены математическим законам. Мендель не знал, что такое ген, но его наблюдения заставляли предположить существование чего-то подобного.

В течение 35 лет на эти исследования почти никто не обращал внимания, а затем произошло одно из тех удивительных совпадений, которые иногда случаются в истории науки. На рубеже XX в. труд Менделя практически одновременно (в течение нескольких месяцев) заново открыли трое других ученых. Арчибальд Гаррод, изучая «врожденные нарушения метаболизма» — редкие заболевания, встречавшиеся в семьях некоторых из его пациентов, — смог убедительно показать, что законы Менделя распространяются на людей и расстройства передаются по наследству по схеме, выявленной Менделем для растений.

Конечно, факт передачи по наследству определенных признаков — например, цвета кожи или глаз — был известен каждому, кто пристально наблюдал за нашим видом, но Мендель и Гаррод внесли в представления о наследовании математическую специфику. Механизм, стоявший за этими моделями, оставался, однако, неясным, поскольку никому не удавалось проследить химическую основу наследственности. В первой половине XX в. исследователи в основном предполагали, что наследуемые признаки передаются через белки, в силу большого разнообразия белковых молекул в составе живых организмов.

Лишь в 1944 г. Освальд Т. Эйвери, Колин М. Маклауд и Маклин Маккарти сумели в ходе микробиологических экспериментов выявить роль ДНК в передаче наследуемых признаков. О существовании ДНК на тот момент было известно уже почти сто лет, но ее считали всего-навсего «набивкой» клеточного ядра, не представляющей особого интереса.

Менее чем через десять лет Джеймс Уотсон и Фрэнсис Крик первыми нашли решение вопроса о химической природе наследования, оказавшееся поистине красивым и элегантным. История бешеной гонки, итогом кото­рой стало открытие в 1953 г. структуры ДНК, подробно описана в занимательной книге Уотсона «Двойная спираль». Уотсон, Крик и Морис Уилкинс, пользуясь данными, полученными Розалиндой Франклин, смогли определить, что молекула ДНК представляет собой двойную спираль — как бы скрученную веревочную лестницу, — а записанная в ней информация определяется химическими компонентами, составляющими «ступеньки» этой лестницы.

Будучи химиком и понимая, насколько необычайны свойства ДНК и как блестяще она решает проблему кодирования «чертежей» живых организмов, я преклоняюсь перед этой молекулой. Позвольте мне рассказать и вам о ее красоте.

У молекулы ДНК (см.рис.4.1) — целый ряд замечательных свойств. Ее внешний остов состоит из однообразно чередующихся фосфатов и Сахаров, а все самое интересное спрятано внутри. «Ступеньками лестницы» служат пары химических компонентов — нуклеиновых (азотистых) оснований, — которых насчитывается четыре. Они условно обозначаются начальными буквами своих химических наименований — А, С, G и Т (аденин, цитозин, гуанин и тимин).

Каждое основание обладает специфической формой, причем А соответствует Т и только вместе с ним может образовать «ступеньку», a G соответствует С. Это так называемые «комплементарные пары». Таким образом, существует четыре возможных типа ступенек: А-Т, Т-А, C-G и G-C. Если какое-то основание в одной из цепочек двойной спирали окажется повреждено, его легко будет восстановить, обратившись ко второй цепочке: единственная допустимая замена для Т (к примеру) — тоже Т. И — может быть, самое элегантное — двойная спираль прямо в себе содержит способ самокопирования: каждая из цепей способна служить шаблоном для создания новой. Если расщепить пополам все комплементарные пары, разрезав «лестницу» по серединам «ступенек», каждая половинка будет содержать всю информацию, необходимую для восстановления точной копии первоначальной молекулы.

Таким образом, в первом приближении можно рассматривать ДНК как сценарий или программу, записанную в ядре живой клетки. Эта программа закодирована на языке, в алфавите которого всего четыре буквы (или, используя компьютерную терминологию, букве соответствуют 2 бита). Каждая ее команда — ген — состоит из сотен тысяч букв кода, и гены определяют все сложнейшие функции клетки даже в таких организмах, как человеческий.

Рис. 4.1. Двойная спираль ДНК. Информация задается порядком нуклеиновых оснований (А, С, G и T). ДНК упакованы в хромосомы, которые находятся в ядре каждой клетки

Сначала ученые не представляли себе, как в действительности «выполняется» программа. Разгадкой стало выявление «матричной РНК» (сокращенно мРНК), в которую копируется информация ДНК, соответствующая определенному гену. Молекула РНК представляет собой одинарную цепочку — как бы половинку веревочной лестницы со свисающими вбок ступеньками. Эта цепочка выходит из ядра клетки (хранилища информации) в цитоплазму (весьма сложную смесь белков, жиров и углеводов) и затем попадает в рибосому — удивительную фабрику по производству белков. В рибосоме происходит трансляция — считывание матрицы и построение по ней молекулы соответствующего белка. Последовательность из трех нуклеиновых оснований кодирует одну аминокислоту. Именно белки обеспечивают работу клетки и отвечают за ее структурную целостность (см. рис. 4.2).

Это краткое описание дает лишь очень поверхностное представление об удивляющем и восхищающем ученых изяществе строения ДНК, РНК и белка. Возможных трехбуквенных комбинаций из букв А, С, Т и G, как легко посчитать, 64, а аминокислот — всего 20. Это означает, что генетический код обладает встроенной избыточностью: например, последовательность GAA в коде ДНК и РНК означает глутаминовую кислоту, GAG — ее же.

Исследования многих организмов, от бактерий до людей, показали, что генетический код, определяющий, каким образом информация, записанная в ДНК и РНК, должна транслироваться в белок, един у всех известных живых существ. Язык жизни не испытал Вавилонского столпотворения. GAG соответствует глутаминовой кислоте и в почвенной бактерии, и в горчичном семечке, и в аллигаторе, и в вашей тетушке Гертруде.

Эти успехи дали начало новому научному направлению — молекулярной биологии. Открытие множества других миниатюрных химических чудес, включая белки, действующие как клей и как ножницы, позволило ученым манипулировать молекулами ДНК и РНК, сшивая вместе кусочки молекулярных программ, взятых из разных источников, и получая в результате так называемые рекомбинантные ДНК. Отсюда родилось еще одно новое направление — биотехнология, которая, наряду с другими достижениями, обещает революционные сдвиги в лечении многих заболеваний.

Научная истина и выводы из нее

То, что изложено в этой главе, может расстроить верующего, для которого аргумент от порядка мира был убедительным доказательством сотворения жизни Богом. Без сомнения, многие мои читатели думали про себя или слышали, например, в религиозной проповеди, что великолепие цветка или орлиного полета могло возникнуть только благодаря сверхъестественному разуму, ценившему сложность, разнообразие и красоту. Теперь же, когда все это начинают объяснять с помощью молекулярных механизмов, генов и естественного отбора, кому-то наверняка хочется воскликнуть: «Довольно! Своими естественно-научными объяснениями вы лишаете мир всякой божественной тайны!»

Не огорчайтесь, божественная тайна не пострадала. Многие люди, рассмотрев все научные и религиозные доказательства, по-прежнему видят в мире творящую и направляющую руку Бога. Сам я нисколько не разочарован открытиями молекулярной биологии — наоборот. Какой же удивительной и замысловатой оказалась жизнь, как чудесно цифровое изящество ДНК! Как прекрасны и совершенны компоненты живых существ, от рибосомы, где строится белок по матрице РНК, до гусеницы, превращающейся в бабочку, или павлина, привлекающего самку своим немыслимым оперением! Учение об эволюции может — и должно быть — истинным. Но разве эволюция не имеет автора? У тех, кто верит в Бога, сейчас больше, а не меньше причин для благоговения перед Ним.

Рис. 4.2. Информационный поток в молекулярной биологии: ДНК->РНК->6елок

Глава 5: Расшифровка божественных чертежей

Уроки генома человека

Когда я в начале 1980-х работал научным сотрудником в Йельском университете, секвенирование, т.е. определение фактической последовательности букв генетического кода, было грандиозным предприятием даже для сравнительно короткого (в несколько сотен букв) участка ДНК. Методы отличались сложностью, для экспериментов требовалось множество подготовительных шагов, в них использовались дорогостоящие и опасные (в том числе радиоактивные) реагенты, а сверхтонкие гели приходилось переливать вручную, и чуть ли не всегда их портили пузырьки или какие-то еще дефекты. Детали не имеют значения; суть в том, что мы продвигались очень медленно, методом проб и ошибок.

Тем не менее моя первая опубликованная работа по генетике человека касалась именно секвенирования ДНК. Я исследовал выработку в организме одного особого белка — фетального (плодного) гемоглобина, который в норме присутствует в красных кровяных тельцах человеческих эмбрионов, но постепенно исчезает после рождения, когда младенец начинает дышать своими легкими. Гемоглобин отвечает за перенос кислорода из легких во все органы нашего тела, причем у людей и некоторых обезьян существует его специальная плодная форма, помогающая извлечению кислорода из крови матери для питания растущего плода. В течение первого года жизни ребенка гемоглобин этого типа обычно полностью заменяется на взрослую форму. Однако у представителей одного семейства с Ямайки, которое я обследовал, фетальный гемоглобин продолжал вырабатываться и в зрелом возрасте. Эта особенность представляла большой интерес: научившись запускать выработку плодной формы у взрослых, мы могли бы значительно облегчить страдания людей, больных серповидно-клеточной анемией. Присутствие у них в крови хотя бы 20% фетального гемоглобина практически избавило бы их от мучительных приступов и остановило бы прогрессирующее разрушение органов.

Никогда не забуду тот день, когда очередной эксперимент показал G вместо С в определенной позиции «вверх» по одному из генов, отвечавших за отключение выработки фетального гемоглобина, — как оказалось, именно из-за этого отклонения программа, запускаемая в период эмбрионального развития, продолжала работать во взрослом состоянии. Я был счастлив, но устал до изнеможения — на поиски одной-единственной нужной мне «буквы» кода ДНК у меня ушло 1,5 года.

Три года спустя я был очень удивлен, узнав, что несколько ученых, оценивая перспективы науки, начали обсуждать возможность определения последовательности ДНК для всего генома человека, насчитывающего, по оценке, около 3 млрд комплементарных пар. Казалось немыслимым, чтобы это могло произойти при моей жизни.

Мы сравнительно мало знали о возможном содержании генома. Увидеть под микроскопом нуклеиновые основания какого-либо конкретного гена не представлялось возможным (для этого они слишком малы), охарактеризованы на тот момент были лишь несколько сотен генов, и разные оценки количества генов в геноме очень сильно друг от друга отличались. Даже точного определения гена не было (и сейчас нет), поскольку оказалось, что ген не всегда можно определять как цепочку, кодирующую определенный белок. Исследования ДНК позволили выявить так называемые интроны — сегменты генов, не содержащие информации о последовательности аминокислот белка. Из РНК интрон удаляется до начала считывания кода, и в зависимости от того, как соединятся друг с другом кодирующие участки, с одного и того же гена в определенных случаях может быть считано несколько разных (но родственных друг другу) белков. Далее, между генами обнаруживались длинные цепочки ДНК, которые, судя по всему, ничего не кодировали; некоторые исследователи даже называли их «мусорными», хотя, учитывая скудость наших знаний, требовалась немалая самоуверенность, чтобы объявить какую бы то ни было часть генома мусором.

Несмотря на все сомнения, гипотетическая ценность полного генома представлялась мне бесспорной. Ведь в этой огромной инструкции уда­лось бы найти полную «спецификацию» человеческого организма, а заодно и ключ к множеству заболеваний, природу которых мы плохо понимаем и которые не умеем эффективнно лечить. Для меня как врача возможность раскрыть эту самую могущественную на свете книгу по медицине была особенно притягательна. Поэтому я, со своим скромным на тот момент академическим статусом и без уверенности, что столь смелый план удастся осуществить на практике, принял участие в дискуссии, выступив за организацию программы по секвенированию генома — вскоре она получила известность как проект «Геном человека».

Через несколько лет мое желание видеть геном человека полностью расшифрованным еще усилилось. Я возглавил новую лабораторию, где под моим началом работали серьезные и трудолюбивые аспиранты и молодые научные сотрудники, и мы предприняли попытку раскрыть генетическую основу некоторых заболеваний, до тех пор не поддававшуюся определению. Первым из них был муковисцидоз, или кистозиый фиброз — самое распространенное тяжелое наследственное расстройство в странах Северной Европы. Болезнь обычно проявляется в младенчестве или в раннем детстве — ребенок мало прибавляет в весе и постоянно страдает от респираторных инфекций. Муковисцидоз можно опознать по повышенной концентрация ионов хлора в детском поте — наблюдательные матери замечают соленый привкус, целуя ребенка. Для болезни также характерны густые вязкие выделения в легких и поджелудочной железе. Но ни один из известных признаков болезни не давал даже косвенных указаний на назначение вызывавшего ее гена.

Впервые я столкнулся с муковисцидозом в конце 1970-х, когда проходил медицинскую практику в больнице. Еще в 1950-х гг. страдающие им дети редко доживали до десяти лет, однако к 70-м ситуация значительно изменилась к лучшему, так что многие больные вырастали, заканчивали колледж, шли на работу, вступали в брак. Но все это было достигнуто благодаря совершенствованию симптоматического лечения — созданию препаратов, заменяющих гормоны поджелудочной железы, новых антибиотиков, эффективных против легочных инфекций, специальных диет и методов физиотерапии. В том же, что касается борьбы с самим заболеванием, долгосрочная перспектива по-прежнему оставалась мрачной. Не понимая природы наследственного дефекта, медики блуждали на ощупь. Мы лишь знали, что где-то среди 3 млрд букв кода ДНК есть как минимум одна ошибочная, расположенная в уязвимом месте.

Трудности, связанные с нахождением такого тонкого отличия, представлялись почти непреодолимыми. Однако мы знали, что муковисцидоз наследуется по рецессивному типу. Поясню, что означает этот термин. Каждый наш ген существует в двух экземплярах: один получен от матери, другой от отца. (Исключение составляют гены, содержащиеся в хромосомах X и Y, которые у мужчин представлены только в одном экземпляре.) Рецессивная патология проявляется, только если она присутствует и в материнском, и в отцовском экземпляре гена, т. е. оба родителя являются ее носителями. Когда же в одном экземпляре гена патология есть, а в другом нет, болезнь никак не проявляется, так что ее носители, как правило, не подозревают о своем статусе. (Примерно каждый тридцатый житель Северной Европы — носитель муковисцидоза, и в семейной истории большинства из них болезнь не зафиксирована.)

Таким образом, вырисовывалась интересная задача по «выслеживанию» ДНК: не зная ничего о функции гена, ответственного за муковисцидоз, проанализировать другие наследственные признаки и поискать среди них сцепленные с заболеванием. Если в многодетных семьях, где некоторые дети больны, а некоторые нет, какой-то признак встречается только у больных детей, это означает, что участок, ответственный за данный признак, локализован неподалеку от интересующего нас гена. Мы не могли прочитать все 3 млрд букв генетического кода, но в наших силах было выхватить из темноты пару миллионов в одном определенном месте, пару в другом и проверить, нет ли здесь корреляции с муковисцидозом. Это требовалось проделывать сотни и сотни раз, но, так как геном представляет собой свзяанный набор информации, рано или поздно мы обязательно должны были выявить связь.

В 1985 г., к большой радости как ученых, так и обследовавшихся семейств, удалось установить, что ген муковисцидоза находится в 7-й хромосоме, в сегменте, содержащем примерно 2 млн комплементарных пар. Теперь можно было переходить к основной, по-настоящему сложной части работы. Чтобы объяснить, в чем заключалась основная сложность, я сравнивал нашу задачу с поиском одной-единственной перегоревшей лампочки в подвале дома где-то в Соединенных Штатах: предварительный анализ помог нам установить нужный штат и даже округ, но он обеспечивает обзор с шестикилометровой высоты и не позволяет спуститься ниже. Теперь нужно обходить дом за домом, проверяя одну лампочку за другой.

Интересовавшая нас часть 7-й хромосомы до 1985 г. никем не изучалась, так что, продолжая сравнение, у нас не было даже приблизительной карты местности, не говоря уже о такой роскоши, как схемы расположения улиц, поэтажные планы домов или, тем более, инвентарные списки электроприборов. Нас ожидала гора тяжелой однообразной работы.

Изобретенный в нашей лаборатории метод «прыжков по хромосоме» позволял проводить поиск параллельно в нескольких местах, что значительно ускоряло работу по сравнению с традиционным методом. Но даже при этом задача оставалась огромной, и в научном сообществе многие считали наш подход непрактичным и непригодным для исследования болезней человека. В 1987 г., когда подошли к концу и финансовые ресурсы, и запасы энтузиазма, мы решили объединить усилия с исследовательской группой Госпиталя для больных детей в Торонто, которую возглавлял выдающийся генетик доктор философии Сюй Личжи (Lap-Chee Tsui). Вместе наши лаборатории заработали с удвоенной энергией. История поиска несколько походила на сюжет детектива: мы знали, что на последней странице тайна обязательно раскроется, правда, не имели представления о том, сколько времени нам потребуется, чтобы до нее добраться. На нашем пути в изобилии встречались и ключи к разгадке, и тупики. После того, как три или четыре раза нам казалось, что цель близка, а на следующий день новые данные это опровергали, мы запретили себе чрезмерный оптимизм по поводу чего бы то ни было. Нам тяжело было снова и снова объяснять коллегам, почему мы еще не нашли ген — или не отказались от проекта. В какой-то момент я, чтобы наглядно представить другую метафору, объясняющую наши трудности, даже съездил за город и сфотографировался, сидя с иголкой в руке на большом стоге сена.

Ответ был наконец найден в мае 1989 г. Дождливой ночью факс, стоявший в общежитии Йельского университета, куда мы с Личжи приехали на конференцию, выбросил нам результаты очередного дня работы лаборатории; из них однозначно следовало, что муковисцидоз у большинства пациентов связан с отсутствием трех букв (а именно СТТ) в кодирующей последовательности не известного ранее гена. Вскоре исследования нашей и других групп показали, что практически все случаи заболевания вызваны мутациями — этой и другими, менее распространенными — того же гена, получившего название МВТР (трансмембранный регулятор муковисцидоза).

Вот оно — доказательство: мы все-таки сумели, последовательно сужая область поиска, определить «перегоревшую лампочку» — ген, ответственный за патологию. Это был момент торжества: мы одолели долгий тяжелый путь, и наши результаты позволяли начать работы, способные привести к полной победе над муковисцидозом.

Отметить открытие гена собрались и генетики, и члены обследовавшихся семей, и врачи, а я написал в честь этого события песню. Музыка всегда помогала мне выразить переживания, которые трудно передать обычными словами, хотя я играю на гитаре только как любитель. Когда голоса людей сливаются в едином хоре, меня переполняет радость, которая никак не связана с наукой, зато имеет самое прямое отношение к моей духовной жизни. Я не мог удержаться от слез, когда присутствующие поднялись со своих мест и подхватили припев:

Верь мечте, верь мечте.

Братья, сестры, минут годы слез.

Мы свободно вздохнем,