66302.fb2 Древнеиндийская цивилизация - читать онлайн бесплатно полную версию книги . Страница 23

Древнеиндийская цивилизация - читать онлайн бесплатно полную версию книги . Страница 23

Маловероятно, что работы Арьябхаты остались незамеченными, что придворный хронист не слышал о замечательных научных открытиях соотечественника. К тому же по времени ученый был значительно ближе к периоду правления Чандрагупты II, чем многие из «девяти драгоценностей». Случайной или преднамеренной была «забывчивость» тех, кто составлял данный список?

Самым простым объяснением могло бы послужить то, что Арьябхата родился в Декане, в области Ашмака, т. е. далеко от центра Гуптской империи. В течение многих десятилетий гуптские цари враждовали с правителями Декана, стараясь распространить свое влияние на эти районы страны. Однако, коща могущественная империя столкнулась с серьезными политическими трудностями, ее правители предприняли шаги к установлению дружеских отношений с династией Вакатаков, в государство которых входила и Ашмака. Более того, известно о браке вакатакского царевича с дочерью Чандрагупты II Викрамадитьи. В тот период заметно оживились культурные контакты Севера и Юга, поэтому возможная ссылка на отдаленность Ашмаки или культурную изолированность Декана вряд ли звучала бы убедительно.

Если бесспорно, что научные концепции ученого непосредственно отражают его идейную позицию, то это верно и применительно к астрономическим работам. «Астрономия, — писал Бируни, — самая знаменитая наука среди индийцев вследствие того, что с ней связаны дела их религии». Ознакомление с «Арьябхатией» и сочинениями других древнеиндийских астрономов, подробно излагавших его идеи, позволяет понять философское кредо автора трактата и его последователей.

В этом труде высказаны смелые идеи и догадки, намного опередившие эпоху и предвосхитившие открытия ученых нового времени. В разделе «Сфера», например, говорится: «Сфера Земли, будучи совершенно круглой, расположена в центре мирового пространства и круглого небесного свода и окружена орбитой планет. Она состоит из земли, воды, огня и воздуха».

Арьябхата, вопреки общепринятому мнению, разделявшемуся в поздней древности и средневековье, выдвинул концепцию четырех элементов, т. е. отрицал существование эфира в качестве самостоятельного природного элемента. То, что эта концепция принадлежит именно Арьябхате, подкрепляется комментарием средневекового астронома Парамешвары. У Варахамихиры в «Панчасиддхантике» речь идет о пяти больших (физических, или грубых) элементах, составляющиъ сферу земли. В «Васиштхасиддханте», известной уже в I в. (о ней упоминает, в частности, «Явана-джатака», относящаяся к III в.), сообщается: «Земля, состоящая из пяти больших элементов, расположена в центре пространства космического яйца». Любопытно, что Бируни, прекрасно знавший астрономические труды индийских ученых, приводит сведения Арьябхаты о четырех, а Васиштхи и Латы — о пяти элементах. Когда вначале прошлого столетия Г.Кольбрук приступил к изучению индийских астрономических трактатов и познакомился с рукописями «Арьябхатии», он обратил внимание на утверждение по поводу четырех элементов и усмотрел в этом влияние доктрины джайнов и буддистов. Позднее Х.Керн, первый издатель трактата, не согласился с такой интерпретацией и высказал мысль о заимствовании данной теории у греков.

На наш взгляд, обе трактовки вызывают сомнение. Дело в том, что из буадийских школ лишь позднехинаянистские — вайбхашиков и саутрантиков, родственные сарвастивадинам, признавали реальность четырех элементов (земли, воды, огня и воздуха) и отрицали реальность эфира. Сторонники тхеравады не были столь решительно настроены против акаши в качестве одного из элементов материального мира и иногда включали его в число махабхут. Еще более сложным было отношение джайнов к эфиру. Они допускали его существование как части неодушевленной природы, хотя пудгала, согласно джайнской доктрине, включала четыре элемента. Несмотря на определенное сходство концепции Арьябхаты со взглядами вайбхашиков и джайнов, у нас нет достаточных оснований вслед за Г.Кольбруком говорить о воздействии этих систем на автора «Арьябхатии».

Еще менее убедительной представляется точка зрения Х.Керна, хотя древнеиндийский ученый, как свидетельствует его сочинение, действительно был знаком с некоторыми астрономическими теориями греков (прежде всего с трудами александрийской школы).

Известно, что Арьябхата опирался на более раннюю местную традицию, не связанную непосредственно с учениями буддистов, джайнов и сложившуюся независимо от античной науки. Трактат, например, открывается обращением к Брахману. Брахман упоминается и в начале второго раздела, посвященного математике, и т. д.

Однако определенный традиционализм, свойственный, пожалуй, всем ученым древности, не помешал Арьябхате выдвинуть ряд рационалистических идей, сопоставимых с концепциями школы локаятиков. Разбирая воззрения индийских ученых на проблему мироздания, Бируни приводит следующее его высказывание: «Нам достаточно знать то пространство, которого достигают солнечные лучи, и нам нет нужды в том, куда они не добираются, хотя бы оно было очень велико само по себе. То, до чего не достигают солнечные лучи, не может быть познано чувственным восприятием, а недоступное чувству не может быть познано». В «Арьябхатии» эти слова, к сожалению, отсутствуют, но исследователи полагают, что Бируни цитировал отрывок из четвертого параграфа первой главы трактата, где говорится о размерах окружности небесного свода и орбиты солнца. Возможно, он опирался в данном случае и на другую работу, упоминаемую им, — «Тантру» (текст сочинения не сохранился). Так или иначе, у нас нет оснований не доверять свидетельству Бируни, и мы вправе вновь поставить вопрос об аналогичности некоторых идей Арьябхаты и локаятиков.

Исходный пункт учения последних — чувственное восприятие как единственный источник подлинного знания о мире. Приверженцы этого учения постоянно подчеркивали, что лишь доступное анализу бытие способно выступать в качестве подлинного объекта умозаключений. «И таково их (локаятиков. — Г. Б.-Л.) мнение, — писал Харибхадра, — что лока обозначает этот мир, который является объектом восприятия чувств», т. е. границы реальности определяются возможностью ее познания, «единственное средство которого — чувственное восприятие». Невольно бросается в глаза почти текстуальное совпадение высказываний Арьябхаты (в передаче Бируни) и локаятиков.

Влияние рационалистических идей отразилось и в астрономических построениях ученого. Он первый в Индии выдвинул теорию движения Земли вокруг своей оси при неподвижности звездного неба. Это поистине революционное положение резко расходилось с традиционными представлениями и ортодоксальными концепциями. Арьябхата не принадлежал к тем астрологам, которые, по словам Бируни, приноравливаются к священным книгам и угодничают перед хранителями преданий и религиозных догм.

И не случайно теория вращения Земли была решительно осуждена не только жрецами, оберегавшими незыблемость «божественного откровения», но и учеными, стоявшими на ортодоксальных позициях. Критика труда Арьябхаты было столь острой, что его концепция в течение длительного времени не получала дальнейшего развития. Уже Варахамихира (начало VI в.) опровергал эту концепцию; позже резко отрицательно отнеслись к ней Брахмагупта (VII в.), Бхаттотпала, Парамешвара и некоторые другие средневековые ученые. Варахамихира в «Панчасиддхантике», подразумевая Арьябхату, писал: «Другие говорят: „Земля вращается, как будто она укреплена на гончарном круге, а не созвездия“. Но если бы это было так, то птицы и другие не возвратились бы с небес к своим местам обитания». Варахамихира придерживался традиционного брахманского взгляда по поводу вращения звезд вокруг священной высочайшей горы Меру и считал, что Земля неподвижна, а Солнце, Луна и другие планеты вращаются вокруг нее.

Брахмагупта, возражая сторонникам концепции вращения Земли (судя по Бируни, он имел в виду именно последователей Арьябхаты), писал: «Если Земля движется, то почему же тогда не падают высокие предметы?». Он называл мнение Арьябхаты ошибочным. Бхаттотпала повторял аргументы Варахамихиры. «Если бы Земля двигалась, то птицы, (взлетая на небо), не смогли бы вновь отыскать свои гнезда». По словам Бируни, Брахмагупта отбрасывал правду и поддерживал ложь, был ослеплен своей ненавистью к Арьябхате, упрекая его за отход от концепций, изложенных в священных брахманских «законах» — смрити.

Теория вращения Земли настолько противоречила традиционным воззрениям, была столь смелой в условиях возрастающего влияния религиозных идей ортодоксального индуизма, что даже Лалла (VIII в.), один из самых верных последователей Арьябхаты, отказался от идеи учителя и поддержал общепринятую, брахманистскую трактовку. Парамешвара же не только упрекал автора «Арьябхатии» в ложном знании, не только интерпретировал текст в противоположном смысле, но даже менял слова оригинала, чтобы приписать древнеиндийскому астроному традиционные взгляды и доказать, что он никогда не выступал с подобной идеей. Отвергнув ортодоксальную теорию вращения звезд вокруг Меру, Арьябхата, естественно, не мог принять брахманистско-пураническую версию о невероятной высоте священной горы. В своем труде он «уменьшил» размеры Меру, до одной йоджаны, т. е. придал ей вид обычной горы (согласно, например, «Матсья-пуране», высота Меру — 86 тыс. йоджад).

Ученый, кроме того, выдвинул собственную концепцию солнечных и лунных затмений. По его словам, «Луна затмевает Солнце, и Земля своей огромной тенью затмевает Луну. Когда в конце истинного лунного месяца (т. е. в новолуние. — Г.Б.-Л.) Луна, находясь вблизи одной из точек пересечения орбит (Луны и Солнца), заслоняет Солнце или когда в конце половины месяца (т. е. в полнолуние. — Г.Б.-Л.) Луна входит в тень Земли, наступает середина затмения, которые происходят иногда до, а иногда после конца истинного лунного месяца или половины месяца».

Эта концепция тоже резко противоречила положениям ортодоксального индуизма. Жречество отстаивало архаическое представление, восходившее во многом еще к древнему мифу, согласно которому демон Раху, ставший бессмертным от выпитой им капли амриты, постоянно преследует Луну и Солнце; как только он «проглатывает» светило, наступает затмение.

Точку зрения Арьябхаты поддержал Варахамихира. В своем труде «Брихатсамхита» он как бы повторил тезис учителя («Во время затмения Луна вступает в тень Земли, во время солнечного затмения — Солнца») и отметил: «Истина науки может быть выражена так: „Раху здесь ни при чем“… С тех пор имя „Раху“ стало лишь метафорой».

Понятно, какую реакцию должно было вызвать это утверждение Арьябхаты у защитников ортодоксальных взглядов, не говоря уже о брахманах. «[Мнение], высказанное Арьябхатой… и другими, — писал Брахмагупта, — направлено против общепринятых идей и чуждо ведам, смрити и самхитам. В самхитах говорится, что Раху является причиной затмения, а если бы это было не так, то брахманы не получали бы вознаграждения за приношение масла богам, произнесение жертвенных формул и за соблюдение других правил ритуала». Брахмагупта называл Арьябхату (XI, 52) «чужаком сферы», имея, очевидно, в виду его антиортодоксальную трактовку проблем мироздания. Эти сообщения вновь позволяют нам провести аналогии между позицией Арьябхаты и взглядами локаятиков: отношение их к брахманским догмам было сходным.

Однако было бы грубой вульгаризацией объявлять Арьябхату последовательным локаятиком. Придя в результате научных изысканий к ряду рационалистических выводов, близких по существу к концептуальным положениям этого учения, Арьябхата не порвал полностью и не мог порвать с ортодоксальными нормами, столь живучими и стойкими в его эпоху, хотя и пошел дальше тех астрономов, которые, по словам Бируни, следуют за богословами во всем, что не противоречит их науке.

Разрабатывая свои теории, Арьябхата использовал не только многовековой опыт индийских ученых, но и культурные достижения других народов. Его трактат свидетельствует о знакомстве с некоторыми астрономическими представлениями античной эпохи. Идея суточного вращения Земли была известна грекам, в частности Гераклиту Понтийскому (IV в. до и. э.) и Аристарху Самосскому (IV–III вв. до н. э.). Об их космологических концепциях можно судить по сообщениям позднейших авторов. Симплиций (VI в.), например, отмечает: «Есть такие, как Гераклит Понтийский и Аристарх, которые полагают, что явления могут быть описаны, если небо и звезда находятся в. покое, тогда как Земля движется вокруг полюсов экватора с запада, совершая одно обращение за каждые сутки…». Сходное сообщение приводится и у Аэция (V в.): «Гераклит Потнийский и Экфант-пифагореец заставляют Землю двигаться не поступательно, а вращательно, около своей оси, наподобие колеса, с запада на восток вокруг собственного центра».

Не исключено, что Арьябхата знал об этих идеях. Его теория движения планет по эпициклам несет на себе следы влияния эллинистической школы; возможно, она непосредственно связана с трудами Клавдия Птолемея, знаменитый трактат которого «Альмагест» был весьма популярен на Ближнем и Среднем Востоке в течение многих столетий. Есть основания полагать, что отправной точкой для составления таблиц синусов, помещенных в «Арьябхатии», послужили таблицы хорд, введенные в первые века нашей эры александрийскими астрономами.

Сам факт заимствования и усвоения «чужеземных» идей был уже нарушением предписаний жречества, доказывавшего, что единственным правомерным источником знания являются канонизированные ведийские и индуистские тексты.

Древние индийцы довольно рано познакомились и с астрологическими представлениями античного мира, однако отношение их к этим проблемам не было однозначным. Варахамихира, например, был прежде всего астрологом, увлеченно занимался составлением гороскопов, и в его сочинениях очень заметно влияние греческой астрологии. Здесь встречаются названия всех 12 зодиакальных созвездий, непосредственно восходящие к эллинским формам. Показательно, что в «Брихатсамхите» приводится следующее высказывание, взятое из труда индийского ученого Гарги (I в.): «Греки — поистине варвары, но у них „наука о судьбе“ (астрология. — Г. Б.-Л.) развита весьма сильно. Поэтому даже их следует чтить как риши».

Увлечение Варахамихиры именно астрологическими построениями объясняется его общей идейной позицией. По словам Бируни, он «временами высказывался заодно с брахманами, к которым принадлежал и тесное общение с которыми было для него неизбежно». Иное дело Арьябхата — он последовательно разрабатывал проблемы астрономии (хотя вряд ли можно говорить о четком водоразделе между научной астрономией и астрологией применительно к индийской древности), был знаком, как показывает его труд, с античной астрологией (соотносит дни недели с определенными созвездиями), но сколько-нибудь серьезного внимания этим сюжетам не уделял.

Математическая часть трактата Арьябхаты, также содержащая немало плодотворных мыслей, получила высокую оценку его преемников в стране и за ее пределами. В ней изложены правила решения отдельных задач по арифметике, геометрии, тригонометрии, теории чисел, даются первое в Индии описание процесса извлечения квадратного и кубического корней и несколько задач на линейные уравнения с одним неизвестным, формулируются приемы решения в целых числах неопределенного уравнения первой степени.

Ученому было всего 23 года, когда он писал свою «Арьябхатию». О его дальнейшей судьбе, к сожалению, ничего не известно, но едва ли есть основания сомневаться в том, что открытые нападки представителей брахманской ортодоксии и религиозных фанатиков сделали жизнь его трудной. «Перед лицом того, кто познал движение планет из моего труда, — писал Брахмагупта, — последователи Арьябхаты… не дерзнут выступать публично и будут вести себя как антилопы перед пастью льва», т. е. сторонники традиционных идей уподобляются льву, который легко может расправиться с атнилопой, олицетворяющей собой защитников взглядов Арьябхаты. Наверное, осуждались и искажались не только его воззрения, но и содержание его трудов. Они, подобно сочинениям локаятиков, сознательно замалчивались, не переписывались. Отношение ортодоксальной традиции к наследию ученого напоминает отношение ведантистов к локаяте, к рационалистическим идеям санкхьи и вайшешики. Бадараяна, Шанкара и другие решительно боролись с концепциями этих школ, приписывали им чуждые идеи, упрекали в примитивизме и безнравственности, резко критиковали за отход от священных текстов — вед и шрути, апеллировали к авторитету брахманских «законов» — шастр.

В конце VIII в. «Арьябхатия» была переведена на арабский язык под названием «Зидж аль-Арджабхар»; на этот перевод неоднократно ссылался Бируни. Через арабских ученых отдельные идеи Арьябхаты стали достоянием европейских математиков. Астрономические и математические проблемы получили дальнейшее развитие в сочинениях Брахмагупты (родился в 598 в Бхилламале — ныне Бхинмал в Раджастхане). Его перу принадлежат «Брахмаспхута-сиддаханта»(628 г.) и «Кхандакхадьяка» (665 г.). В этих трактатах наряду с математическими главами имеются и большие астрономические разделы, в которых рассматриваются вопросы о форме неба и земли, об определении времени, о затмениях Луны и Солнца, о соединении и противостоянии светил, о лунных стоянках, о среднем и правильном положении планет, о сфере, об инструментах и т. д.

Выдающимся достижением индийской науки было создание десятичной системы счисления, которой ныне пользуются во всем цивилизованном мире. Еще в древнейшие времена это отразилось в названиях числительных, при образовании которых применялись принципы сложения и вычитания: 19 можно было назвать и навадаша (девять-десять) и эвауна-вимшати (без одного двадцать). Для первых нумераций использовались цифры письменности кхарошти (записывались справа налево), а начиная с III в. до н. э. стали употребляться цифры письменности брахми (слева направо). В обеих нумерациях было немало общего: для обозначения чисел до сотни применялся принцип сложения, а для больших чисел он сочетался с принципом умножения. Особенностью системы брахми, ставшей основой создания современной нумерации, было наличие специальных знаков для первых девяти цифр.

Одновременно в Индии широко применялась словесная система обозначения чисел; этому способствовал богатый по своему словарному запасу санскрит, имеющий много синонимов. Нуль, например, назывался словами «пустое», «небо», «дыра»; единица — предметами, имеющимися только в единственном числе: Луна, Земля; двойка — словами «близнецы», «глаза», «ноздри», «губы» и т. д. В текстах III–IV вв. число 1021 передавалось как «луна — дыра — крылья — луна».

Производить арифметические действия по такой системе было затруднительно, и она служила лишь для записи больших чисел в математических и астрономических сочинениях. Излишняя громоздкость ее потребовала замены, и Арьябхата стал использовать алфавит, предложив записывать цифры санскритскими буквами. В целях окончательного оформления системы счисления необходимо было ввести знак нуля для обозначения отсутствующего разряда.

Одно из самых ранних зарубежных сообщений об индийской десятичной системе относится к VII в. Сирийский епископ Север Себох отмечал: «Я не стану касаться науки индийцев… их системы счисления, превосходящей все описания. Я хочу лишь сказать, что счет производится с помощью девяти знаков».

Современная арифметика, несомненно, индийского происхождения. От созданной индийцами системы обозначения чисел происходит наша нумерация. Они первыми разработали условия арифметических действий, основанные на этой системе нумерации. В сочинениях V в. встречаются многочисленные задачи на простое и сложное тройное правило, пропорциональное деление, правило смешения, проценты.

Тройное правило (трай-рашика — букв. «три места») заключалось в нахождении числа х, составляющего с тремя данными числами — а, Ь, с — пропорцию. Его знали уже египтяне и греки, но индийцы выделили его в специальный арифметический прием и разработали схемы, позволяющие применить его к задачам, содержащим несколько величин, связанных пропорциями. Брахмагупта и позднейшие авторы добавили обратное тройное правило и правило 5, 7, 9 и 11 величин. Из Индии эти правила распространились в страны Ближнего Востока и далее в Европу. Ряд задач имел непосредственно практическое значение. Искусство математиков ценилось высоко. По словам Брахмагупты, «как Солнце затмевает своим блеском звезды, так и ученый может затмить славу других в общественном собрании, предлагая и тем более решая математические задачи».

В алгебре крупнейшим достижением индийских математиков явилось создание развитой символики, гораздо более богатой, чем у греческих ученых. В Индии впервые появились особые знаки для многих неизвестных величин, свободного члена уравнения, степеней. Символами служил первый слог или буква соответствующего санскритского слова. Неизвестную величину называли яват-тават (столько-сколько), обозначая слогом «я (йа)». Если неизвестных было несколько, то их называли словами, выражающими различные цвета: колика (черный), нилака (голубой), питака (желтый), панду (белый), лохита (красный), — и обозначали слогами — ка, ни, пи, па, ло. Иногда неизвестное заменялось знаком нуля, поскольку первоначально в таблицах пропорциональных величин для него оставлялась пустая клетка.

Тот же принцип использовали и применительно к арифметическим действиям. Сложение обозначалось знаком ю (юта — сложенный), умножение — гу (гунита — умноженный), деление — бха (бхага — деленный), вычитание — точкой над вычитаемым или знаком + справа от него (например, «отнять 3» записывалось так: 3 или 3+).

Начиная с Брахмагупты, индийские математики стали широко оперировать отрицательными величинами, трактуя положительное число как некое имущество, а отрицательное — как долг. Брахмагупта описывал все правила действия с отрицательными числами, хотя ему не была известна двузначность при извлечении квадратного корня. Впрочем, математик IX в. Махавира писал: «Квадрат положительного или отрицательного — числа положительные, их квадратные корни будут соответственно положительными и отрицательными». Это показывает, что Махавира уже ставил вопрос об извлечении корня из отрицательного числа, но пришел к выводу, что данная операция невозможна.

Задачи, приводящие к решению линейного уравнения с одним неизвестным, даны у Арьябхаты. Одна из них, получившая название «задача о курьерах», вошла в дальнейшем в мировую алгебраическую литературу. В ней требуется определить время встречи двух небесных светил, расстояние между которыми а, скорость же равна V1 и V2 соответственно. Арьябхата предлагал решение, в современной математике выражающееся формулой: t = a / V1 — V2 при движении в одну сторону. При движении навстречу расстояние необходимо разделить на сумму скоростей.

У Махавиры и других ученых встречаются задачи, приводящие к системам линейных уравнений с несколькими неизвестными. Были выработаны специальные правила решения таких систем. Разумеется, что речь шла о задачах с численными условиями, но правила формулировались в общем виде.

Задачи на квадратные уравнения зафиксированы уже в шульва-сутрах, но систематические их решения мы впервые находим у Арьябхаты. Такова, например, задача на сложные проценты, приводящая к квадратному уравнению: деньги р, отданные в рост, приносят за месяц неизвестную величину х, она отдается опять в рост на несколько месяцев t; первоначальный прирост вместе с вновь полученным составляет некую сумму q. Необходимо найти размер процента. Решение, по Арьябхате, можно выразить следующим уравнением: tx + px * ap.

Любопытно, что данная задача, как и «задача о курьерах», приводилась многими учеными не только в средние века, но и в новое время. С аналогичной задачи начинал раздел о квадратных уравнениях в своем учебнике по алгебре известный французский математик и механик А. Клеро (1746).

Значительных успехов достигли индийцы в решении неопределенных уравнений, к которым они прибегали в связи с календарно-астронимическими вычислениями, призванными определить периоды повторения одинаковых относительных положений небесных светил с различными временами обращения.

В отличие от древнегреческого математика Диофанта, предлагавшего только рациональные решения уравнений, индийцы нашли более сложный способ. Решение в целых числах неопределенного уравнения первой степени с двумя неизвестными (ax + Ь = су) приводит уже Арьябхата, более подробно оно изложено потом Брахмагуптой. Этот способ решения получил в индийской науке название «рассеивания», или «размельчения».

Вершина открытия индийских математиков в теории чисел — решение в целых положительных числах общего неопределенного уравнения второй степени с двумя неизвестными (ax2 + b = y) и его важного частного случая (ах2 + 1 = y), где а — целое, не являющееся квадратом целого числа. В Европе этими проблемами занимались Ферма, Эйлер, Лагранж, не предполагавшие, что индийцы за много столетий до них уже владели способом решения подобных уравнений.

Из достижений индийских ученых особо следует указать на вычисление отношения длины окружности к диаметру. Значения, определенные с различной степенью приближения, приводятся уже в шульвасутрах, где принимается равным от 3 до 3,16. В «Сурья-сиддханте» даны два значения — 3,06 и 3,08, но более точное встречается у Арьябхаты, согласно которому π = 3,1416. Это выражение он описывает такими словами: «Прибавь 4 к 100, умножь на 8 и прибавь ко всему этому 62 000. То, что получишь, — приближенное значение длины окружности, если ее диаметр 20 000». У него же имеется значение З.14.

Позднее Брахмагупта приводит для π приближенное V~10,— оно хотя и менее точное, чем у Арьябхаты, но более удобное.

Некоторые из сиддхант свидетельствуют о знакомстве из авторов с тригонометрией хорд александрийских астрономов. Опираясь на труды эллинистических ученых, индийцы внесли много нового. Главным явилась замена хорд синусами. Если греки именовали хорды «прямыми в круге», то индийцы стали называть их словом «джива» (букв. «тетива»), а перпендикуляр, опущенный из середины дуги на середину стягивающей ее хорды, — «стрелой». Варахамихира в «Панчасиддхантике» заменил хорду полухордой, т. е. линией синуса. Сама по себе такая замена может показаться и не столь существенной, ибо хорда дуги равна удвоенному синусу дуги 2f, т. е. отличается от синуса лишь постоянным коэффициентом. Но в действительности этот переход от хорды к полухорде был очень важен, поскольку позволил естественно ввести различные функции, связанные со сторонами и углами прямоугольного треугольника.

Многие астрономические и математические идеи индийцев оказали влияние на арабскую науку VII — первой половины VIII в., хотя прямое проникновение индийских математических и астрономических знаний относится к последней трети VIII в. «В 156 г. хиджры (т. е. в 773 г. — Г. Б.-Л.) из Индии в Багдад прибыл человек, весьма осведомленный в учениях своей родины. Этот человек владел приемом Синдхинд, относящимся к движениям светил и вычислениям с помощью синусов, следующих через четверть градуса. Он знал также различные способы определения затмений и восхода созвездий Зодиака. Он составил краткое изложение соответствующего сочинения. Халиф приказал перевести индийский трактат на арабский язык, чтобы мусульмане могли приобрести точное знание звезд. Перевод был поручен Мухаммаду, сыну Ибрагима ал-Фазари, который первым из мусульман приступил к углубленному изучению астрономии. Позднее этот перевод астрономы назвали Большим Синдхиндом» — так писал в своем биографическом словаре в XIII в. Абул-Хасан ал-Кифти.

Ал-Бируни отмечает, что приезд индийского астронома Канка состоялся несколько ранее: в 771 г. он привез два сочинения индийского математика и астронома Брахмагупты. Ал-Фазари выполнил сокращенный перевод его двух сочинений и представил их в виде традиционных для мусульманской науки зиджей — таблиц с необходимыми пояснениями и рекомендациями. Перевод-обработка первого трактата был назван «Большой Синдхинд» в отличие от других обработок сиддхант Брахмагупты.

По утверждению известного исследователя арабской астрономии К. Наллино, «Большой Синдхинд» настолько «прославился среди арабов, что они работали исключительно по нему вплоть до дней ал-Ма'Муна, когда начало распространяться учение Птолемея в сфере астрономических расчетов и таблиц». Перевод второго трактата Брахмагупты получил в мусульманской литературе название «Арканд». Это сочинение уступало по популярности первой работе, но и оно способствовало знакомству арабских ученых с античной астрономической традицией, проникновению индийских представлений о центре обитаемой Земли, о величине Земли и ряда других сведений.

Переводами и обработками не ограничивалось знакомство с индийской математической традицией. На основании сведений, полученных от индийских ученых, посетивших двор халифа ал-Мансура в 777–778 гг., багдадский астроном и математик Якуб ибн Тарик составил два трактата: «Строение небесных сфер»-и «Определение границ Земли и сферы», в которых, в частности, установил соотношение между индийскими и арабскими мерами длины, привел вычисленную индийцами величину окружности Земли — около 41 тысячи километров. Индийские научные традиции были развиты в работах Машалаха, работавшего с 762 по 809 г. в Ираке. Некоторые его сочинения дошли до нас на арабском языке, другие сохранились в переводах на латынь и греческий. Он был также знаком с сирийскими источниками, но наибольшее воздействие на него оказала наука сасанидского Ирана, откуда он узнал об индийской астрономии и математике.