66742.fb2
Все собранные данные позволили точно вычислить изотопное содержание углерода и азота в образцах биологического материала, взятых у наших серийных убийц. Данные ввели в компьютер, и с помощью специально разработанной программы определили, кого и сколько съели хищники. Вердикт компьютеров точен до абсурда: один лев убил 10,5 человека, а второй — 24,2. В сумме выходит 34,7. Гораздо ближе к цифрам угандийских железнодорожников, нежели Паттерсона. Выходит, британец намеренно преувеличивал число пострадавших, чтобы набить себе цену? М-да, охотники любят преувеличивать, но это всё-таки чересчур… Как бы там ни было, 35 погибших — тоже очень много! Попробуем теперь разобраться со вторым вопросом: почему же именно человек стал дежурным блюдом для этих львов? Ученые склонны думать, что причина кроется в… изменении окружающей среды. Нападения на людей — это реакция на то, что специалисты называют «пищевым стрессом». Ну а виновником произошедших в природе перемен является, конечно же, человек! Огромное количество слонов, высоко ценимых за их бивни, пало от пуль охотников-европейцев, что самым плачевным образом сказалось на африканской саванне. Повсюду разрослись деревья и кусты, которые прежде поедались и вытаптывались стадами слонов. Слишком буйная и высокая для этих мест растительность пришла на смену привычному низкотравью. А это привело к сокращению популяции травоядных, и львы остались без привычного меню! Был и другой фактор: засуха, которая как раз в те годы царила в этом районе. Нехватка воды сильно поубавила зеленой краски в ландшафте Цаво, а следовательно, упала и численность стад зебр, быков и антилоп. А если добавить, что начиная с 1889 года среди кенийских буйволов и антилоп свирепствовали вирусные инфекции, то всем станет ясно, с какими трудностями приходилось сталкиваться царям природы при добыче пропитания.
Вывод однозначный: голод подтолкнул двух страшных зверей из Цаво нападать на людей! Ты можешь возразить: как же так, а почему тогда не все тамошние львы стали людоедами, а только эти два? Ответ кроется… в пасти обоих музейных хищников. У этих львов, которыми и сейчас можно полюбоваться в чикагском музее, челюсти находятся в никудышном состоянии — слишком много поломанных зубов. Поэтому-то музейные львы и не смогли охотиться на таких сильных и неуступчивых животных, как буйвол и зебра. Пришлось довольствоваться гораздо более слабой и беззащитной жертвой — человеком. Сыскался бы в саванне тех лет хороший ветеринарный дантист, пожалуй, появился бы шанс избежать кровавой бойни!
УЗНАТЬ БОЛЬШЕ о львах из Цаво можно на сайте чикагского музея Филдса по адресу http://www.fieldmuseum.org/exhibits/exhibit_sites/tsavo/default.htm
В фильме «Призрак и Тьма», вышедшем на экраны в 1996 году, Вэл Килмер сыграл роль подполковника Паттерсона. Это была крупномасштабная историческая постановка.
Считаем играючи! Немного арифметики: наблюдаем за удивительными превращениями натуральных чисел!
Многие математики любят на досуге повозиться с арифметикой: поиграть цифрами, посчитать что-нибудь, сложить-умножить — просто так, от нечего делать. Интересно же посмотреть, что получится. Так, французский математик Франсуа ле Лионе рассказывает, что в детстве как-то раз развлекался тем, что умножал числа от 1 до 9 на самих себя (1), отбрасывал десятки и записывал столбиком одни лишь единицы. Проделай то же самое! Любопытно, да? Выстроившиеся в ряд цифры располагаются симметрично по отношению к центральной «пятерке» (2). А теперь снова умножь их на 1, 2, 3… 9 (3) и повтори уже знакомую тебе операцию — десятки долой (4)! У тебя получится ряд цифр от 1 до 9, но вперемешку. Впрочем… Так ли уж вперемешку? Если приглядеться, окажется, что в их чередовании существует определенный порядок: начни складывать числа по парам, располагающимся симметрично по обе стороны от центральной цифры «5», и тебя ждет сюрприз: сумма всякий раз будет равняться 10! Попробуй еще дважды поумножать — честное слово, не пожалеешь: ты увидишь нечто в высшей степени странное! Чудесная вещь арифметика, правда? Такого рода маленькие игры не только позволяют лучше узнать числа и отношения между ними, но еще и задуматься над их свойствами. Так появилась известная «гипотеза Сиракуз» (от названия города, но не сицилийского, а американского, штат Нью-Йорк, в университете которого она произвела эффект разорвавшейся бомбы). Итак, о чем идет речь. На самом деле всё проще некуда: задумай любое число. Если оно четное, то раздели его на 2. Если нечетное, умножь на 3, а к результату добавь 1. То же самое проделай и с получившимся числом. И так далее. Скажем, возьмем число 3. Нечетное, поэтому умножаем и прибавляем: 3 х 3 + 1 = 10. А это уже четное, поэтом делим на 2, получается 5. Опять умножаем на 3, прибавляем 1. Дальнейшие арифметические действия дадут нам следующую цепочку чисел: 16, 8, 4, 2,1. Дальше продолжать подсчеты бесполезно, потому что мы получим бесконечную последовательность чисел 4, 2 и 1. А вскоре оказалось, что какое бы число ты ни задумал, действия по умножению, делению и сложению всегда дадут один и тот же результат: бесконечную последовательность чисел 4, 2 и 1. Впрочем, данное утверждение пока всего лишь гипотеза, которую никто не доказал. Попробуй сам поиграть с числами. Если хочешь, можешь построить графики взлета и падения числовых последовательностей. Так, для числа 3 движение линии будет проходить по следующим точкам «высоты»: 10, 5,16, 8, 4, 2,1 (5). У каждого такого «полета» есть своя «протяженность» (например, число 21 приходит к единице на восьмом шаге, а 27 — на сто двенадцатом!), «максимальная высота» и «продолжительность нахождения на высоте», то есть до момента, когда полученная в результате вычислений цифра не окажется меньше начального числа. Что любопытно, даже показатели двух соседних чисел могут быть совершенно различными. Сравни, например, графики «полета» двух чисел: 7 (отмечен синим цветом) и 8 (зеленым). И помни: доказать гипотезу еще никому не удалось! Может быть, тебе повезет?
Не сегодня-завтра нанороботов начнут запускать в наш организм для лечения больных клеток. Но прежде чем начинать подобные эксперименты, неплохо бы проверить, не опасна ли новая технология для здоровья человека. Хотя этот объект бесконечно мал, шума он наделал немало…
Оливье Ласкар
Нравится это кому-то или нет, но в области нанотехнологий сейчас происходит настоящий I бум. Достаточно сказать, что начиная с 2001 года американцы инвестировали в эти технологии порядка 10 миллиардов долларов, а у нас в России к концу этого года сумма вложений должна составить 310 миллиардов рублей. Для чего нужны такие траты? Ученые хотят создать технологии, позволяющие управлять материей на нанометровом уровне, то есть в их поле деятельности войдут объекты размером в миллиардную долю метра. А это — длина молекулы! Почему же нужно работать с такими микроскопическими величинами? «А потому что столь малые частицы ведут себя крайне необычно, не подчиняясь законам классической физики», — объясняет Алексис Винь, инженер «ИНЕРИС'а» (французский Национальный институт природоохранных технологий и экологических опасностей). — Вот, к примеру, золото. Ниже определенной границы оптические свойства его молекул меняются: молекулы начинают отражать не желтый, а красный цвет!»
Ученые честно признаются, что они не в состоянии пока подробно объяснить причудливые правила наномира. Ясно одно: чем меньше размеры частицы, тем теснее она связана с окружающей средой и активнее реагирует на ее изменения. А всё потому, что когда мы уменьшаем объект, его объем сократится в большей степени, чем площадь его поверхности. То есть чем меньше частица, тем большее число ее атомов располагается не в глубине, а на периферии.
Возьмем магемит, магнитную форму оксида железа. На микрометровом уровне ничего необычного заметить нельзя. Зато когда диаметр его частиц уменьшается, переходя за черту 10 нанометров, он сразу превращается в крошечный сачок, способный улавливать ядовитые вещества, в частности — мышьяк. Поэтому многие исследователи предсказывают ему большое будущее, ведь описанное свойство очень даже пригодится, например, для очищения воды в колодцах, которые в населенных пунктах развивающихся стран частенько бывают отравлены природным мышьяком.
Да. Согласно данным, представленным Афссет, французским агентством по безопасности и охране окружающей среды, наночастицы уже в наши дни введены в состав около 600 различных товаров. Простейший пример — диоксид титана, который служит фильтром, задерживающим ультрафиолетовые лучи в кремах от загара. Другую частицу — углеродную нанотрубку или УНТ (caí. текст «Терминал») — можно обнаружить во многих спортивных изделиях: от велосипедных рам и досок для серфинга до теннисных ракеток… «0, их там совсем немного, — уточняет Даниель Бернар, инженер французской фирмы «Аркема», производящей такие трубки.
— В каждой из ракеток, которыми пользуются теннисисты с мировым именем, содержится менее 2 грамм УНТ, но даже столь мизерного, казалось бы, количества вполне хватает, чтобы сделать эти ракетки суперпрочными; благодаря наличию нанотрубок значительно сокращается количество микротрещин, обычно повинных в поломках». Автомобильная и авиационная промышленности в скором времени также смогут широко прибегать к использованию наночастиц для получения более крепких и легких материалов.
Интересно, что нанотехнологии вовсе не являются детищем 21-го века. Да, да, не удивляйся! Немецкие ученые недавно обнаружили УНТ в составе стали средневековых восточных сабель. Холодное оружие сарацинов было столь острым, что, говорят, им можно было разрезать пополам шелковый платок, подброшенный в воздух. В процессе изготовления клинков раскаленную добела сталь подвергали резкому охлаждению. В результате из углерода, частицы которого содержатся в любой стали, спонтанно образовывались нанотрубки.
Нанотехнология — модная тема, о которой говорят постоянно. И в хоре голосов нередко слышны те, кто предупреждает о возможных опасностях.
Возьмем медицину. В ближайшем будущем исследователи надеются использовать нанотехнологии для того, чтобы доставлять лекарства к тому или иному месту организма. Лучших кандидатов для исполнения этой роли, чем углеродные нанотрубки, не придумать. С одной стороны, они обладают достаточным объемом для заполнения их необходимыми лекарственными препаратами, а с другой, микроскопический размер позволяет ввести их в больные клетки для того, чтобы непосредственно внутри высвободить лекарство. Предельно целенаправленный, а значит, и гораздо более эффективный курс лечения! Что и говорить: на бумаге сценарий революционного метода лечения выглядит чрезвычайно заманчиво! Но один вопрос всё-таки возникает: «А как отреагирует на подобную помощь человеческий организм?» Поэтому здравомыслящие врачи настроены не так уж оптимистично, они требуют экспериментальных проверок наночастиц на токсичность.
Сейчас существуют планы по использованию нанотехнологий в, в том числе и болезни Альцгеймера, ведущей к потере памяти. А вдруг найдутся ученые-безумцы, которым придет в голову мысль использовать нанотехнологии для контроля за нашим сознанием?
В общем, есть о чем задуматься… Поэтому не случайно французские активисты провели серию встреч и конференций, во время которых были учтены все прозвучавшие беспокойства, вопросы и предложения. Всё это было систематизировано и передано правительству для разработки законодательных актов, кающихся применению нанотехнологий. Иными словами, состоявшиеся дебаты позволят создать законы, в которых будет четко сказано о том, что такое хорошо и что такое плохо в области нанотехнологий.
Углеродные нанотрубки — УНТ — получаются из графитовых плоскостей — сетки атомов углерода (см. нижний правый рисунок на с. 21). Размеры нанотрубок поражают воображение: несколько микрон в длину, а диаметр в 100 раз меньше, то есть нанотрубка в 10 ООО раз тоньше волоса! Не менее удивительны и их физические свойства: так, сплетенный из нанотрубок канат в десять раз прочнее стального троса такого же диаметра. А поскольку УНТ — это еще вдобавок и отличный термо- и электропроводник, то легко понять, как ждут промышленники повсеместного внедрения подобных технологий.
Как человеческие клетки реагируют на проникновение в них углеродных нанотрубок? В данном случае исследователи наблюдали за тем, что происходило в легких, когда в них попали УНТ (обозначены черным цветом).
На этот простой, казалось бы, вопрос… ответа нет! Исследователи всего мира ведут испытания, пытаясь понять, могут ли наночастицы нанести вред человеческому организму. Альберто Бьянко, химик из французского Национального центра научных исследований, решил добиться ясности в этом вопросе. Со своей командой он изучил уже более полусотни различных научных публикаций. И каков же его вердикт? «Проведенных исследований недостаточно, так как мы не имеем результатов долгосрочных экспериментов», — отвечает Бьянко. И уточняет: «Опыты на грызунах позволяют получить информацию о краткосрочном — несколько месяцев, не более — воздействии УНТ на живой организм. Кроме того, иногда может понадобиться вводить пациенту большое количество доз и с равными временными интервалами. Пока еще никто не исследовал влияния на организм такого варианта лечения». А что говорят уже проведенные опыты? Ученые вводили УНТ в организм подопытных животных, после чего наблюдали за состоянием их здоровья. В научно-исследовательском институте ИНЕРИС, где как раз оценивается степень риска введения в практику новых технологий, были проведены тесты на грызунах. «Мы заметили, что УНТ добираются до легких, но этот барьер преодолеть не могут и в кровь не попадают», — комментирует один из специалистов института. УНТ скапливаются в легких, а дальше происходит то, что очень напоминает попадание в легкие частиц асбеста, которое может привести к раку. И что же делать? Сейчас уже очевидно, что риск действительно существует, — считают ученые. Значит, надо позаботиться о мерах предосторожности. Что это за меры? До тех пор пока людям не станет доподлинно известно о токсичности или, наоборот, безвредности наноструктур, лучше по возможности воздержаться от их применения по отношению к человеку. Иными словами, все рассказы о доставке лекарственных препаратов к больным органам человека не более чем научная гипотеза. «И в самом деле очень трудно сказать, наступит ли когда-нибудь день, когда такая технология станет реальностью», — заключает Альберто Бьянко… Как говорится, не зная броду, не суйся в воду!
Вот как представляют ученые будущую нанокапсулу (обозначен серым цветом), содержащую лекарства (голубого цвета). Способная проникать в больную клетку, она доставит активные целебные вещества прямо внутрь нее.
При изготовлении нанотрубок приходится постоянно думать о мерах предосторожности. «У нас существует два строжайших правила: никогда не допускать попадания наночастиц в атмосферу и исключить всякую возможность прямого контакта персонала с ними», — комментирует Даниель Бернар, инженер компании «Аркема», занимающейся изготовлением нанотрубок.
Все сотрудники работают в защитных костюмах и в шлемах с системой жизнеобеспечения, а все манипуляции с химическими веществами производят в герметичных камерах, пользуясь резиновыми перчатками, вмонтированными в фасадную стенку камер. «Любые частицы, находящиеся в воздухе камеры, удаляются с помощью труб вытяжной вентиляции и улавливаются высокопродуктивными фильтрами, способными задержать пылинки диаметром в 1 нм, — объясняет г-н Бернар. — Весь собранный «мусор» помещается в пластиковые мешки, те запечатываются оплавлением и отправляются в печь для уничтожения».
В такого рода реакторах производятся невзрачные на вид серые комочки (справа), представляющие собой скопления тысяч углеродных нанотрубок.
Ты спросишь: а разве когда сжигают нанотрубки, не остается пепел, чьи частицы еще мельче, чем сами нанотрубки? Только в том случае, если не соблюдать технологию. В компании «Аркема» разработан надежный метод, при котором сжигаемые УНТ превращаются в газ — С02. Отходы новой отрасли промышленности требуют очень внимательного отношения к себе!
В этом маленькой пробирке находятся микрочипы RFID в виде черной пудры. Они способны накапливать и передавать огромное количество самой разнообразной информации.
Вы когда-нибудь слышали об электронных устройствах RFID? (Аббревиатура английского термина Radio Frequency Identification, означающего — «радиочастотная идентификация»). Эти товарные этикетки XXI века уже кое-где заменяют штриховые коды. В Париже ими оборудованы многоразовые проездные билеты на метро, автоматически открывающие турникет. В настоящее время они размером с почтовую марку. Этого вполне хватает, чтобы поместить на них достаточный объем памяти (с личными данными человека и его медицинской картой…), а также небольшую антенну в форме плоской змейки, чтобы можно было передавать на расстоянии нужные сведения. И что мы имеем в итоге?: а то, что при определенных условиях, любая информация, от самой банальной до строго конфиденциальной, становится при желании доступной. Смахивает на телевизионные «реалии-шоу», не правда ли? А теперь представьте на минуту, что начнется завтра, когда нанотехнологии позволят создать невидимую человеческому глазу подслушивающую и подглядывающую аппаратуру. Во французской Национальной комиссии по информатике и гражданским свободам, сотрудники которой следят за соблюдением неприкосновенности частной жизни, проблему восприняли со всей серьезностью. «Это настоящий вызов современному обществу», — говорит председатель комиссии Алекс Тюрк, — при нынешних темпах развития, организация системы всеобщего контроля станет возможной уже через пять-десять лет». Перспектива, от которой волосы встают дыбом. Дома, на улице, в школе, в офисе… да где угодно можно будет накидать мириады наножучков, способных денно и нощно следить за каждым человеком. «Это будет неслыханное нарушение основополагающих прав человека, посягательство на нашу свободу, — предупреждает Алекс Тюрк. — Чувствуя, что за ними ведется непрестанная слежка, люди начнут цензурировать собственную речь… и в конце концов все будут говорить и думать одно и то же. Я называю это ментальным клонированием!» Но как избежать подобных ужасов? «Мы внимательно следим за ходом научных исследований, — отвечает Алекс Тюрк, — и готовим соответствующие рекомендации французским парламентариям, которым предстоит выработать законодательную базу использования нанотехнологии». А нам остается лишь надеяться, что производство наножучков, по вине которых каждый из нас рискует оказаться объектом постоянного незримого наблюдения, будет строго-настрого запрещено.
НЕВИДИМЫЕ ЧЕЛОВЕЧЕСКОМУ ГЛАЗУ НАНОКАМЕРЫ БУДУТ ВНИМАТЕЛЬНО СЛЕДИТЬ ЗА КАЖДЫМ ВАШИМ ШАГОМ...
Узнать больше о нанотехнологиях можно в интернете на страницах http://www.nanodigest.ru
Пеший гренадер из гвардии армии Наполеона I
В 1812 г., через три недели после ухода французской армии из Москвы, партизану и поэту Денису Давыдову довелось встретиться с колонной «старой гвардии» — лучшей военной частью Наполеона. В своих воспоминаниях он так описал этот эпизод: «Наконец, подошла «старая гвардия», посреди коей находился сам наполеон. неприятель, увидя шумные толпы наши, взял ружье под курок и гордо продолжал путь, не прибавляя шагу. сколько ни покушались мы оторвать хоть одного рядового от этих сомкнутых колонн, но они как гранитные, пренебрегая всеми усилиями нашими, оставались невредимы. Гвардия с Наполеоном прошла посреди казаков наших, как стопушечный корабль перед рыбачьими лодками».
Михаил Калишевский
До начала 19-го века гвардейские части Европы комплектовались либо по Британскому образцу — в гвардию попадали по внешним данным (например, отбирались самые высокие), либо — набором целых частей, отличившихся в боях (такой, в частности, была русская гвардия). Наполеон формировал свою гвардию по-другому: в нее попадали за личные заслуги. Каждый полк выдвигал по 10 кандидатов, а потом из каждой десятки отбирался один человек, подходивший под разработанные лично Бонапартом критерии: рост не ниже 175 см, не менее 8 лет службы, участие не менее чем в трех кампаниях, грамотность, отважные поступки, образцовое поведение.
Первый полк французских гвардейских гренадеров был сформирован 10 мая 1804 году, после того как Наполеон стал императором Франции. Уже через год к гренадерам прибавились полки егерей, два эскадрона конных жандармов, эскадрон мамлюков из Египта, «итальянский батальон». С течением времени гренадеры и егеря стали называться «Старой гвардией» — это была элита из элит, там служили самые храбрые, самые бывалые ветераны. Появилась и «Средняя гвардия», и «Молодая гвардия», которая комплектовалась новобранцами. В конце концов гвардия превратилась в своего рода «армию в армии» со своими пехотой, кавалерией (конные гренадеры, конные егеря, драгуны, мамлюки, элитные жандармы), артиллерией (пешая и конная), инженерными и даже морскими частями. К 1812 году гвардия Наполеона насчитывала 56 129 человек.