67487.fb2 Инфодинамика, Обобщённая энтропия и негэнтропия - читать онлайн бесплатно полную версию книги . Страница 6

Инфодинамика, Обобщённая энтропия и негэнтропия - читать онлайн бесплатно полную версию книги . Страница 6

Осложнение от многомерности и многофакторности сис-тем можно преодолеть путём перехода к определению их об-общённой энтропии. ОЭ представляет собой сумму проекций средних условных энтропий относительно исполнения целе-вого критерия при условии действия отдельных влияющих на систему факторов. При этом факторы можно рассматри-вать в качестве отдельных координат или систем со статис-тическим распределением исходов. Условные энтропии проек-тируются на общую ось целевого критерия.

МЕТОДИКА ОПРЕДЕЛЕНИЯ ОЭ И ОНГ

1. Определяют по возможности подробнее пределы и объёмы исследуемой системы, её элементы и их взаимосвязи, пространство состояния и его размерность.

2. Определяют функциональные связи системы с окру-жающей средой. Особое внимание уделяют возможностям воздействия на среду и влияющим на систему внешним фак-торам. По возможности стараются не пропускать ни одного существенного фактора.

3. Определяют стабильность системы или возможности её изменения по времени. Выясняют возможные процессы и их направления. Множество цепей реальных процессов обна-руживают в той или иной мере свойства марковских. Их характеризует последовательность случайных событий, в которой каждое последовательное случайное событие зависит только от предыдущего. Причем условные вероятности, опи-сывающие зависимость последущего события от предыдущего Р (Вj / Ai) - постоянны. В эргодических системах, в которых события являются случайными, заметное влияние предшест-вующих событий простирается только на их ограниченное число. При обнаружении или допущении таких свойств не-марковский процесс может быть представлен как марковский.

4. Оценивают качественно, имеются ли в системе, меж-ду элементами или между системой и средой ситуации конку-ренции за получение ресурсов, точки неопределённости выбо-ра (бифуркации) или конфликтные ситуации. Для описания всех этих ситуации необходимо применять в моделях методы теории игр и нелинейные системы уравнений. Конфликтные ситуации возникают в живой природе и в обществе людей. Описание их сложнее, так как в этом случае наблюдается умышленное сокрытие или искажение информации, специаль-ные стратегии для получения выигрыша. Конфликтные ситу-ации принимают особенно комплицированные формы в отно-шениях между людьми. По Н.Винеру человеческая речь явля-ется совместной игрой говорящего и слушателя против сил, вызывающих беспорядок [ 21 ]. В действительности конфлик-тующими сторонами могут быть не только силы, вызывающие беспорядок, но сами говорящий и слушатель. Так, что даже в речи между людьми далеко не всегда передаётся правдивая информация. В этих случаях особенно важно определить, какое высказывание является информацией и какое шумом или дезинформацией.

5. Ответственным этапом является определение цели, а для неживой природы - целесообразности или назначения системы. По степени выполнения целевых критериев и опре-деляется неопределённость или вероятность выполнения, т.е. обобщенная энтропия системы (ОЭ). Часто целью является обеспечение устойчивости структуры, развития или эффектив-ного использования ресурсов системой. Для установления конкретных целей необходимо знать структуру и функции более общей по иерархии системы. Цель в развернутом виде определяет программу действия системы в будущем. Как и программ, целей может быть также несколько вариантов. Из них необходимо выбирать самую существенную или несколь-ко существенных. В последнем случае придётся при оптими-зации идти на компромиссы. Например, рассчитывают функ-ции желательности ожидаемых результатов. Для каждого критерия устанавливают свою весомость и рассчитывают сов-местный критерий выполнения цели. Критерии цели должны быть так конкретными, чтобы на их основе можно указать, как измерить, достигнута ли цель или нет, или в какой мере она достигнута (100 %, 80% и т.д.). Часто надо вопрос целепола-гания рассмотреть более широко и обратить внимание на ос-мысливание всей проблемы. Необходимо выяснить цели стра-тегического и тактического назначения, вероятность дости-жения цели, затраты и эффективность при альтернативных решениях. Приближённый ответ на точно заданный вопрос даёт часто больше пользы, чем точный ответ на неправильно заданный вопрос. Обычно задаётся вместе с целью и срок, когда она должна быть выполнена или соблюдена. Например, сохранение работоспособности после эксплуатации через 10 лет или получение прибыли в 2000 году. Степень достижения цели оценивают вероятностью её выполнения.

Для определения энтропии системы относительно конк-ретно поставленной цели необходимо измерить вероятность достижения этой цели. Если имеется достаточно статисти-ческих данных по поведению этой системы, то расчёты не представляют трудностей:

n

Н(a) = - S р(Ai) ln р(Ai)

i

В непрерывном варианте, если случайная величина x и плотность её распределения ?(x): + ?

H(x) = - ?(x) ln ?(x) dx - ?

При допущении равновероятностных исходов: Н(a) = - ln р(Ai), или Н(a) = - log2 р(Ai) в битах

Однако, для сложных систем, структура, функции и су-щественные факторы которых изменяются быстро, как прави-ло, статистических данных недостаточно. Проведение статис-тических экспериментов в уникальных системах вообще не-возможно. Для таких случаев придётся провести расчёты по приближенным условным энтропиям и вероятностям, най-денным по теоретическим или косвенным методам.

7. Определение условных вероятностей и энтропий системы относительно выполнения целевых критериев по вли-яющим на систему факторам. В качестве влияющих факторов необходимо учесть все вещественные, энергетические и информационные воздействия, от которых зависит цель сис-темы. В первом этапе моделирования допускается независи-мость действия отдельных факторов. В случае сильного взаим-ного влияния друг на друга, вводят ещё дополнительный фак-тор по влиянию интеракции двух факторов. Теоретически на-до было бы определить зависимость статистической кривой распределения условной вероятности целевого критерия от статистической кривой распределения каждого фактора. Од-нако практически достигается достаточная достоверность и при оценке зависимостей средних вероятностей Р (А / В). Часто при решении управленческих задач или при разработке прогнозов не хватает опытных и статистических данных. Кро-ме того, редко известны характер кривых распределения, осо-бенно для внешних факторов, которые могут быть эле-ментами других систем. Все это затрудняет точное опре-деление Р (А / В). Тем не менее, часто имеются отрывочные опытные данные или данные наблюдения, теоретические ги-потезы или априорные литературные сведения, что позволяет предположить вероятность достижения цели. Часто можно сделать полезные выводы по априорным данным, если под влиянием конкретного фактора цель вообще не может дос-тигнута или вероятность её недопустимо мала. Иногда полез-но также провести дополнительные опыты или наблюдения по методу Байеса или другими методами увеличивать точность оценки вероятностей.

8. Расчёт обобщённой энтропии (ОЭ) системы на основе данных условных энтропий, влияющих на систему факторов. Расчёты производят по формулам, для равновероятных исходов: n

ОЭ(В/х) = - е ki log2 P(B/xi)

i = 1

В обще случае неравного распределения вероятности n

ОЭ(В/хi) = - е ki . P(B/xi) . log2P(B/xi)

i = 1

здесь: P - вероятность достижения цели, B - критерий достижения цели, xi - средние значения отдельных факторов

(индексы 1 - n), k - коэффициент рассеяния информации, 1- n - перечень отдельных факторов, влияющих на

систему.

Коэффициент рассеяния информации k всегда больше 1. Он применяется, если имеются дополнительные технологичес-кие, организационные или конфликтные условия, которые обуславливают дальнейшее повышение энтропии (в проме-жуточных этапах). При допущении их отсутствия прини-мается k = 1.

В формуле предполагается аддитивность всех условных энтропий по факторам, которая соблюдалась бы в случае не-зависимости влияния всех факторов на систему. В боль-шинстве случаев влияние одного фактора зависит от влияния других факторов и это (в необходимых случаях) следует учесть путём введения дополнительного фактора (условной энтропии). Во многих случаях условие аддитивности даёт достаточную точность. Во всяком случае она для энтропии (lg2P) соблюдается значительно полнее, чем для условных вероятностей.

9. Системный анализ модели (формулы) обобщённой энтропии. Удельный вес влияния отдельных факторов ус-ловных энтропий в общей энтропии разный. Необходимо выяснить несущественные факторы (у которых ОЭ (В/xi) небольшая) и опасные факторы (большой удельный вес ОЭ (В/xi)). Несущественные факторы можно исключить из формулы. Влияние опасных факторов подвергается более подробному анализу и уточнению. Уточняются возможные пределы изменения фактора, дисперсия и её влияние на ОЭ (В/xi). Необходимо также выяснить, на каком этапе возни-кает неопределённость, можно ли дополнительными действия-ми или опытами её уменьшать. Особенно обращают внимание на возможность существования и обнаружения непредвиден-ных обстоятельств и факторов, которые могут увеличивать ОЭ (В/xi).

10. Выяснение возможностей уменьшения ОЭ путём улучшения структуры модели. Анализируется постановка проблемы и целей для системы в целостности, взаимовлияние различных факторов. Иногда возникает необходимость рас-ширения пределов системы. Выясняются причины неопреде-лённостей. Являются ли они неизбежными, зависящими от стохастического характера явлений или зависят от недоста-точности наших знаний. Устранение неопределённостей свя-зано с расходами. Надо найти компромиссное решение: что менее желательно-неопределённость или денежные затраты. Предварительная модель не является окончательным реше-нием. Необходимо найти по возможности больше альтерна-тивных вариантов решений и улучшить старые. Для оценки модели следует проверить повторно её достоверность, обосно-ванность и гомоморфность.

11. Расчёт обобщённой негэнтропии (ОНГ) модели системы. Негэнтропию реально существующей системы не-возможно точно рассчитать. Для этого надо было бы опре-делить участок от бесконечно большой энтропии до факти-ческой энтропии. Практически имеется возможность опреде-лить ОНГ упрощённых моделей, для которых имеется мак-симально возможная ОЭ (ОЭм, без учёта ОНГ).

Для определения ОНГ в модели реальных систем рас-считывают разность между максимальной ОЭм модели и фак-тической ОЭф после получения информации (ОНГ1). ОНГ2 ????????????? ? ? ОНГ1 ? ??????? ? ?

OЭф ОЭм ОЭми Энтропия R ?

????????????? ??????? ?????????R ? ? ?

где: ОЭф - фактическая ОЭ модели системы, ОЭм - максимально возможная ОЭ модели системы, ОЭми - максимально возможная ОЭ модели системы

после получения информации.

Определение ОЭм модели зависит от сложности проб-лемы (реальной системы), требуемой точности (адекватности, гомоморфности) модели и имеющихся ресурсов времени и мощности вычислительной аппаратуры. Выбор степени слож-ности модели зависит от количества независимых факторов (координат) и от масштаба каждого координата, т.е. от объё-ма пространства состояния модели. Для решения практи-ческих задач часто достаточное разнообразие имеет модель с максимально 1000 факторами, каждый из них имеет до 1000 значимых единиц. Ориентировочная ОЭм модели около 104 бит. Для научных целей соответствующие параметры модели: 10000 факторов, 10000 единиц и ОЭм около 105 бит. Для сверхточных исследований сложных систем: 100000 факто-ров, 100000 единиц и ОЭм около 106 бит. При использовании ОЭм существенно, чтобы была принято её постоянное значе-ние для определения ОНГ всех систем одной серии, обла-дающих одинаковыми целевыми критериями.

Общей формулой расчёта обобщенной негэнтропии ОНГ модели является (если максимальная энтропия не увеличи-вается):

ОНГ1 = ОЭм - ОЭф

Если в результате получения системой информации макси-мальная энтропия увеличивается, то

ОНГ2 = ОЭми - ОЭф

По определению обобщённой негэнтропии (ОНГ) можно сделать следующие заключения:

1. Нельзя определить абсолютную негэнтропию реаль-ной системы. Можно определить только изменение негэнтро-пии в модели относительно конкретного события в результате полученной информации.

2. В результате полученной информации ОНГ системы увеличивается. Однако, это увеличение может произойти за счёт уменьшения уже существующей ОЭ или за счёт уве-личения сложности (разнообразия, максимальной энтропии) модели. Поэтому как максимальную так и фактическую энт-ропию, надо обязательно определить после получения ин-формации.

3. Модель нельзя составлять слишком сложной, так как в этом случае резко возрастает её максимальная ОЭ. Вместе с этим растут трудности при проведении расчётов и падает их точность.

4. Модель следует выбрать оптимальной сложности, что даёт возможность исследовать достаточно адекватно объектив-ную реальность. Если модель выбирать слишком простую, она обладает небольшим разнообразием и ОЭ. В этом случае невозможно ввести туда даже минимум необходимой ОНГ, существующей в реальном объекте, оригинале. Такая модель не является гомоморфным относительно реального мира.

После прочтения предыдущего могут возникать сомне-ния, нужно ли вообще заниматься определением таких слож-ных понятий, как ОЭ и ОНГ. Тем более, что для сложных систем методы определения этих величин являются прибли-жёнными, часто вообще не хватает данных. Для обоснования необходимости расчётов ОЭ и ОНГ можно привести сле-дующие доводы:

1. Неопределённость и вероятностный характер явля-ются внутренней формой существования всех систем и струк-тур универсума. Они существуют как в микромире, так и в неорганическом и живом мире, также как и в человеческом обществе. Наше сознание также содержит элементы неопре-делённостей и способно их оценить и составлять вероятност-ные прогнозы событий. Поэтому игнорирование этих явлений не дало бы возможности создать достоверных моделей реаль-ного мира.

2. Точные науки, физика, химия, биология и др., зани-маются в основном вещественными и энергетическими систе-мами, частично и статистико-вероятностными явлениями. Од-нако, их законы не отражают ОЭ и ОНГ систем и поэтому не могут освещать общие закономерности инфопередачи в природе.

3. Вероятности событий в системах, в их элементах и в отдельных воздействиях на системы не обладают аддитив-ными свойствами. Их невозможно сочетать, комбинировать и проводить расчёты суммирования. Намного больше возмож-ностей для вероятностного прогноза открываются, если пере-вести вероятности в ОЭ (логарифмирование) и, после расчё-тов балансов ОЭ и ОНГ, обратно в вероятностные харак-теристики.

4. В ряде случаев могут возникать сомнения в точности расчётов ОЭ и ОНГ из-за недостаточности исходных данных. Это сильно уменьшает возможности применения метода. Ин-фомодели сами могут быть мало гомоморфными, приближён-ными, неопределёнными. С другой стороны, осознание этой неопределённости заставляет находить пути увеличения точ-ности и выяснения косвенных методов определения условных вероятностей. Человеческое сознание этим и занимается: кос-венными методами прогнозирует вероятности событий в буду-щем. Однако, исследуемые системы стали такими сложными, что только интуицией уже трудно справиться. Необходимо для определения условных вероятностей привлекать совре-менный математический аппарат и априорно существующую информацию. Часто достаточно уточнять данные путём про-ведения нескольких дополнительных опытов и при статисти-ческой обработке совместных данных. Почти для каждой сис-темы имеется достаточно косвенных данных, особенно при использовании опыта аналогичных ситуаций. При их умелом использовании можно достаточно точно оценить большинство требуемых вероятностей.