67490.fb2
Несоответствие терминологических трактовок в данном случае не является принципиальным, так как общим для машинного и искусственного интеллекта (на современном этапе развития наук об искусственном интеллекте) служит то, что интеллект "принад
144
лежит" машине, а различающим моментом выступает способ его задания (построения). Последний может быть ориентирован на моделирование особенностей человеческого интеллекта или может развивать алгоритмические структуры ЭВМ без непосредственной связи их со структурами человеческого мышления. Представляется, что машинное мышление, полученное путем кибернетического моделирования естественного интеллекта, больше соответствует понятию искусственного интеллекта. Итак, методологически важным становится определение понятий "интеллект", "естественный интеллект", "искусственный интеллект".
В литературе не было предложено четкой дефиниции понятия "интеллект". Поэтому целесообразно на пути его выработки провести сравнительный анализ характеристических свойств искусственного и естественного интеллекта. При таком подходе отмечается, что "если представить себе множество различных систем, осуществляющих функции мышления, то именно выявление инвариантного аспекта этих систем и будет раскрытием той структуры, которая лежит в основе процессов мышления" [69]. При выявлении инвариантного аспекта мыслящих систем их сопоставление оправдано по структурно-функциональным свойствам, так как субстратные характеристики (у человека и ЭВМ) заведомо различны. Онтологическим основанием такого соотнесения процессов, принадлежащих к качественно различным формам движения материи, служит всеобщее свойство отражения, структурно-функциональная "родственность" уровней которого доказана развитием философии и естествознания. Значение принципа отражения состоит также в том, что он позволяет решать проблему взаимоотношения человека и машины ("одну из великих проблем", по определению Н. Винера) не только философски-умозрительно, но и с позиций естествознания и математики, то есть и с качественной, и с количественной стороны. Успех количественного познания сложных явлений (каким выступает интеллект) зависит от того, насколько удается их формализовать.
Формализация предполагает определение основной структурной схемы интеллекта. В связи с этим необходимо отметить, что в истории философии предпринимались попытки выделения в интеллекте различных сторон и элементов. Аристотель ("пассивный и активный разум"), Н. Кузанский ("рассудок и интеллект"), Д. Бруно ("разум и интеллект") расчленили мышление на отдельные, качественно своеобразные моменты. Разложение мышления на рассудочное и разумное нашло дальнейшее обоснование в философских системах Канта и Гегеля. Такой подход к мышлению приобретает эвристическое значение в свете кибернетических теорий "искусственного интеллекта". Если разум представляет собой высшую форму теоретического освоения действительности, для которой характерно осознанное оперирование понятиями, исследование их природы, творчески активное, целенаправленное отражение действительности, то рассудок, также оперируя
145
абстракциями, не вникает в их содержание и природу. Главная функция рассудка - расчленение и исчисление со способностью к автоматизму. "Рассудочная деятельность - писал П. В. Копнин, - имеет как бы три слоя: ее элементы у высших животных, рассудок человека и замена рассудочной деятельности человека машиной. В последнем случае рассудок выступает в чистом виде, он не затемнен никакими другими моментами и поражает человека точностью, быстротой в выполнении определенных операций мышления. В этом отношении машина как рассудок превосходит рассудок индивидуума" [70].
Если рассудок дискурсивен, то разум интуитивен, он выдвигает новые идеи. При диалектическом подходе с учетом практики кибернетического моделирования человеческого мышления необходимо иметь в виду взаимосвязь и взаимопереходы рассудочного и разумного. То, что на данном уровне развития мышления выступает разумным, становится со временем рассудочным, а все рассудочное было когда-то разумным. Разум переходит в рассудок путем формализации. Это превращение происходит в каждом случае передачи функций человеческого мышления машине посредством создания алгоритма. Методологически ценным поэтому выступает следующее утверждение: "Ошибочным является стремление ограничить развитие исчисляющего рассудка, поставить ему какие-то пределы, найти такие теоретические построения, которыми он не может овладеть никогда. Ставя, таким образом, пределы исчисляющему рассудку, мы в действительности ограничиваем человеческий разум..." [71].
Итак, в структуре интеллекта наряду с искусственным и естественным следует различать рассудочное и разумное. А в обобщающем анализе природу интеллекта можно выразить в понятиях поверхностной и глубинной структуры. Основная познавательная задача искусственного интеллекта выглядит как переход от поверхностных структур [72] к глубинной структуре и как "идентификация" глубинных структур машинного и человеческого мышления.
Классический вопрос "Может ли машина мыслить?" необходимо обсуждать как в философском, так и в более строгом естественнонаучном и математическом контексте. Полезность и того и другого обсуждения возрастает при их сопоставлении, которое способствует выработке уточняющих интерпретаций с использованием общенаучных понятий. Нередко говорят, что ум не сводится к отдельным способностям. Однако моделировать интеллект как таковой, не выделяя его конкретных качеств, нельзя. Поэтомy специалисты в области искусственного интеллекта при выработке исходных принципов определяют интеллект через операциональный критерий. "Под словом "думать", - пишет Р. Беллман, - мы будем иметь в виду деятельность, подобную человеческому мышлению, такие действия, как принятие решений, решение (логических) задач, распознавание образов, интеллек
146
туальные игры, творчество и т.д." [73]. Для того чтобы быть "разумной", машина должна обладать функциональными способностями человека. Но при этом едва ли целесообразно требовать от нее умения сойти за человека (тезис Тьюринга), особенно учесть существование эффективных путей эвристического программирования, которые не имитируют человеческого поведения [74].
В теоретических работах по искусственному интеллекту такие антропоморфные понятия, как "интеллект", употребляются в специально научном смысле, отличном от обычных представлений неспециалистов. И это согласуется с исторической практикой формирования научных (физических, математических) понятий, таких, например, как "тело", "энергия", "группа" и т. п. Метафорические и операциональные характеристики понятия "искусственный интеллект" служат отправным моментом в развитии теории. Сравнивая человеческий интеллект с машинным мышлением, метафорическое употребление понятия "искусственный интеллект" вместе с тем облегчает понимание человеческого разума, хотя у этих образований помимо общих свойств имеется множество других, по которым они совершенно различны.
Понятийная метафора выступает необходимым источником гипотез относительно системы-оригинала. Тем не менее на стадии формирования понятий следует помнить об их метафорическом характере. "Когда наступит такое время, - считает М. Арбиб, - что наши понятия дадут нам возможность отвечать на большинство вопросов в интересующей нас области, мы сможем позволить себе забыть об их метафорическом происхождении..." [75]. Таким образом, метафорические аналогии между искусственным и естественным интеллектом оправданы тогда, когда они понимаются не очень буквально. Этот вывод имеет значение для гипотетико-дедуктивных построений теорий искусственного интеллекта; аксиоматическое изложение нуждается в использовании неопределяемых понятий.
Понятие искусственного интеллекта, возникшее в кибернетике, позволяет классифицировать объекты по функциональному критерию. Такое понятие необходимо потому, что оно удачно объединяет целый ряд эффективных свойств специальных программ для ЭВМ, которые аналогичны (гомоморфны) качествам человеческого интеллекта. Оно показывает также, что многие различия между интеллектуальными программами ЭВМ и человека, производившие впечатление существенных, в ходе конкретных разработок оказались количественными. Эвристический поиск представляет главную особенность техники искусственного интеллекта. Однако поведение человека, его память, восприятие, способность к обучению и самоорганизации, несомненно, богаче, чем у эвристических программ ЭВМ [76]. Нужно также иметь в виду ограниченные возможности современных автоматов, являющихся "эмбриональными" кибернетическими системами, в силу чего в настоящее время многие из интеллектуальных функций ими могут выполняться лишь
147
в принципе. Это означает, что хотя в своих существенных частях эти функции могут быть реализованы, осуществление их в целом остается под вопросом из-за больших материальных затрат.
Методологическое значение данного вывода состоит в том, что при сравнении человеческого интеллекта с машинным надо четко различать, на каком уровне проводится аналогия - принципиальном или фактическом. Ясно, что фактическое сравнение не всегда оправдано. Более того, "всякое непосредственное сравнение существующих автоматов с человеком недопустимо: существующие автоматы можно сравнивать лишь с гораздо более примитивными органическими системами" [77]. Вместе с тем с точки зрения развития науки об искусственном интеллекте, видимо, нежелательно обыденные представления об интеллекте возводить в ранг серьезных аргументов. Рассуждения типа: "Допустим, вы привели примеры того, как компьютер может осуществлять процессы принятия решения, обучения, распознавания образов и т. п. Но значит ли это, что машина и в самом деле мыслит?" не единичны.
Сравнение мозга и машины может оказаться неадекватным в оценке либо первого, либо последней. Дело в том, что ЭВМ создаются преимущественно для решения задач, которые человеческий мозг сам по себе решить не в состоянии. Сопоставление мозга и машины необходимо для выделения их инвариантного аспекта при раскрытии той структуры, которая организует и "содержит" интеллект.
Для выявления особенностей структуры интеллекта нужны соответствующие понятия. Проникновение в более глубокие слои реальности предполагает построение специфической системы понятий, адекватной возникшей проблеме. Такую систему нельзя просто вывести из понятийной структуры, описывающей менее глубокие уровни действительности. Структура интеллекта должна интегрироваться в самоорганизующуюся систему, подчиняющуюся имманентным закономерностям. Это означает, что система располагает внутренними принципами и механизмами саморазвития, которые позволяют ей обучаться, совершенствоваться, самовоспроизводиться. Последнее нередко расценивается как "мотив", направленный против существования любой формы машинного интеллекта: машина получает способности от своего создателя. С этим, разумеется, нельзя не согласиться. Следует только обратить внимание на то, что и человеческий интеллект развивается аналогично [78]. Предпосылкой интеллекта служит связь с внешним миром.
Имманентность развития самоорганизующейся системы относительна. Иерархический принцип самоорганизации действует и за пределами системы, поскольку последняя является составной частью вышестоящих материальных структур. Следовательно, при изучении интеллекта как самоорганизующейся системы эвристически важна диалектика внутреннего и внешнего, которая выражается во взаимодействии моделей двух типов - модели самого се
148
бя и модели внешнего мира. При этом выделяется уровень информационных отношений, на котором внутренняя модель внешнего мира переводит и интегрирует внешнее во внутреннее. При этом в качестве существенного момента выступает отношение обратной связи, играющее важную роль в человеческом поведении (например, обратная связь от эффекторов к рецепторам). Понятие обратной связи плодотворно в исследовании работы мозга и машины. Особенно значима отрицательная обратная связь, уменьшающая рассогласование между действительным и желаемым поведением. Системы разумного поведения - это системы с обратной связью, самообучающиеся системы.
Функциональный подход к проблеме сложности преодолевает некоторые трудности, возникающие при сравнительном анализе мозга и машины. Эти трудности привносятся мнением о том, что пока не решена проблема структурной сложности машин на уровне сложности мозга, до тех пор не может быть речи об искусственном интеллекте. Кибернетика позволяет перевести проблему структурной сложности "на язык" сложности функционального порядка. Происходит своего рода оборачивание метода: то, что исторически являлось первичным, на логическом уровне анализа оказывается вторичным. Структура и функция объективно находятся в неразрывном единстве. Однако в научном исследовании существенным становится тот или иной аспект. В данном контексте функциональный аспект гносеологически обладает большей разрешающей способностью, чем субстратно-структурный подход. В самоорганизующихся системах функциональная организация приобретает решающее значение: в том случае, когда вычислительная машина может самоорганизоваться, способ первоначального соединения элементов подвергается "пересмотру", если он не обеспечивает эффективного решения стоящих перед системой задач. Вообще принципы самоорганизации (в особенности эвристической самоорганизации - на основе "отсечения" плохих вариантов поведения) выступают основанием для восхождения от абстрактных постулатов к конкретным разработкам задач искусственного интеллекта.
При сравнительной оценке интеллекта заслуживает внимания следующее определение: "Интеллект можно рассматривать как способность принимающего решения устройства достигать определенной степени успеха при поиске широкого многообразия целей в обширном диапазоне сред" [79]. Здесь интеллект определяется в терминах поведения стремящегося к цели существа, а степень интеллекта измеряется по адекватности принимаемых решений.
Достоинство такого подхода заключается в выделении универсальности и гибкости как существенных признаков интеллектуального поведения, так как, по определению, принимающее решения существо или устройство, которое может достигнуть цели только в конкретной среде, но не в других средах, не обнаруживает значительного интеллекта [80]. Заметим также, что важным
149
признаком интеллекта, согласно данному определению, является связь со средой. Разумного поведения можно ожидать только тогда, когда система имеет некоторую оптимальную модель среды. Разум будет ограничен, если модель слишком груба и не дает достаточного описания среды или если она неполным образом отражает взаимодействия между элементами среды. Интеллект присущ системам, которые обнаруживают целенаправленное поведение, обладают необходимой информационно-логической структурой, обеспечивающей продуктивное мышление.
Рассматриваемая дефиниция интеллекта охватывает наиболее сложные формы поведенческой деятельности: цель, принятие решения, предсказание. И это верно. Однако его недостаток, как полагает П. К. Анохин [81], состоит в том, что существенные и характерные для интеллекта факторы просто перечисляются, а не даются в той логической связи и последовательности, которая соединила бы их прочной нитью системного детерминизма. Иначе говоря, главным недостатком этих исследований является отсутствие универсальной модели, которая логически связала бы все этапы формирования интеллектуальных актов. Как известно, попытка создания такой модели реализована П. К. Анохиным в разработанной им концепции функциональной системы.
Функциональный подход плодотворен и в отношении к моделям человеческого мозга. Важное приложение этого подхода к моделированию мозга как самоорганизующейся системы дано Д. И. Дубровским. Он, в частности, пишет: "Во-первых, из категорического отрицания явлений сознания у современных вычислительных машин вовсе не следует, что это свойство не сможет быть воспроизведено у будущих искусственных устройств. Во-вторых, признавая правомерность функционального подхода к человеческой психике, мы тем самым обязаны признать и правомерность моделирования субъективных явлений" [82]. Что касается того часто выдвигаемого аргумента, что сознание присуще только общественному субъекту, то он не играет решающей роли, поскольку самоорганизующиеся системы с искусственным интеллектом явятся общественным продуктом и будут компонентами общества как самоорганизующейся системы более высокого ранга [83].
Интересуясь предельными теоретическими возможностями машин, нельзя не отметить ограниченности тех представлений, согласно которым машины по самой своей природе могут делать лишь то, что им прикажут, и будут делать это без каких-либо уклонений. В литературе прослеживается тенденция обходить этот вопрос, ссылаясь на то, что машины, в том числе и кибернетические, - это орудие в руках человека. Справедливы возражения [84], в которых обращается внимание на то, что создаваемые человеком орудия могут выходить из-под его контроля, - и чем сложнее эти орудия, тем пагубнее могут быть связанные с ними аварии [85].
150
Как видим, междисциплинарный характер кибернетического подхода вызывает определенные трудности при сопоставлении порождаемых им общенаучных понятий с традиционными категориями. Это объясняется известной специфичностью кибернетики как науки.
Кибернетизация науки и техники в значительной мере определяет характер и уровень общенаучного понятийного аппарата. Вновь возникающие общенаучные категории (подобно "искусственному интеллекту") отличаются, как правило, (математической) строгостью, так как современная наука вынуждает исследовать те области, в которых отказывает интуиция. В пограничных областях, на стыках различных дисциплин, нужны более тонкие и четкие идеи. Уточнение интуитивных, содержательных понятий ведется в плане формализации их содержания. Очевидно, что не все содержание такого рода понятий (нередко философских) подвергается уточнению в той или иной формализованной теории. Последнее обязывает различать понятие и его приложение к конкретному случаю. Логико-математическое уточнение качественных понятий нередко приводит к осмыслению того или иного понятия в новом значении, стимулирующем создание более широкой, обобщающей концептуальной модели. Это подчеркивает тот факт, что понятийное обобщение может приводить к обогащению и конкретизации понятия "благодаря полноте снятых в нем определений". Такое обобщение, однако, как мы убедились в отношении "искусственного интеллекта", предполагает структурирование понятия, выявление инвариантных характеристик, что сопряжено с включением его в конкретную научную теорию. Это также означает, что дефиниция и уточнение понятий осуществляется эффективнее всего в процессе решения той или иной научной проблемы.
Таким образом, кибернетические общенаучные понятия, даже не будучи философскими категориями, играют вполне определенную роль и в теоретическом решении проблем науки, и в адекватном осмыслении действительности. Этим и обусловливается их методологический статус.
ГЛАВА V
ТВОРЧЕСКИЙ ИНТЕЛЛЕКТ
1. Искусственный интеллект и творческое мышление
Вопрос о возможности создания искусственного интеллекта в настоящее время связан с проблемой воспроизведения на машине процессов творческого мышления. Творческая активность человеческого мышления нередко рассматривается в качестве уникального феномена, не воспроизводимого машиной. Так, А. В. Брушлинский пишет: "Если действительно любое мышление всегда продуктивное (творческое), то... неизбежен отрицательный ответ на столь волнующий многих вопрос: "Может ли машина мыслить?" [1] Ныне, однако, не подлежит сомнению тот факт, что машинное мышление продуктивно: машина способна порождать новое, создавать новую информацию. А творческое мышление как раз и характеризуется тем, что дает новые, неизвестные до этого результаты.
Вместе с тем высказывается мнение о том, что новизна продуктов мышления - необходимый, но недостаточный показатель творческого мышления. "Новые нетривиальные результаты, - отмечает В. С. Тюхтин, - могут быть получены путем машинной переработки информации согласно сложным по строению многошаговым алгоритмам, содержащим сотни и тысячи элементарных операций. Такие решения не являются творческими в строгом смысле слова. Творчество функция активных состояний высокоорганизованных систем" [2]. Возникает, таким образом, вопрос о новых дефинициях, позволяющих различать творческое и нетворческое мышление, об алгоритмической выразимости творческого мышления и вообще о принципах эвристического мышления и его осуществимости в машинных программах.
Разработка эвристических принципов и предписаний поведения проводится путем анализа и обобщения деятельности людей, в которой спонтанно реализуются логические и другие законы творческого мышления. Эффективность эвристического программирования достигается лишь тогда, когда логические операции творческого мышления человека, будучи алгоритмизированы, моделируются автоматами. Эвристический поиск представляет главную особенность искусственного интеллекта [3]. Эвристическая программа - это конечная последовательность предписаний в символическом выражении, однозначно описывающая операции по переработке информации некоторого эвристического опыта.
152
Широко распространено мнение о том, что творческое мышление является деятельностью, исключительное право на которую имеет лишь человек, и которая принципиально немоделируема автоматами. С такой точки зрения автомат никогда не сможет стать творчески деятельным. В этой связи правомерно поставить вопрос: есть ли принципиальные границы человеческого познания, которые препятствуют созданию программы, могущей моделировать определенные логические фазы творческого мышления автоматами? Гносеологические принципы диалектического материализма содержат в себе идею познаваемости мира. Познание как отражение объективной реальности, несмотря на ограниченность развития индивидуума и общества определенным состоянием, ведет ко все более полному знанию, приближающемуся к своей суверенности, к абсолютной истине. Будучи постоянно развивающимся процессом, познание в принципе безгранично. Отсюда нетрудно сделать принципиально позитивный вывод о моделировании творческих процессов автоматами [4]. Как справедливо заметил П. В. Копнин, "задача философа состоит не в том, чтобы ставить какие-то пределы развитию машин, а объяснять их действительное место в общественной жизни людей" [5].
Между нетворческими и творческими мыслительными процессами нередко проводится такое разграничение: нетворческое (схематичное) мышление выразимо с помощью алгоритма, в то время как творческое мышление - нет. Так как автомат совершает операции только с помощью алгоритма, а творческие процессы принципиально неалгоритмизируемы, моделирование их на вычислительной машине невозможно.
Однако благодаря эвристическому программированию, выявляющему элементарные информационные процессы, лежащие в основе сложных форм деятельности мозга, в универсальных кибернетических машинах удается воспроизводить способность человека к творческой деятельности, отличной от простых логических операций. По замечанию М. Минского, "мы должны быть готовы также к открытию эффективных путей эвристического программирования, которые не имитируют человеческого поведения" [6]. До возникновения современной эвристики в силу того, что физиологические исследования не охватывают сложных мозговых процессов, существовал разрыв между физиологией и психологией мышления. Эвристическое программирование помогает преодолению этих трудностей; оно способствует созданию материалистической теории и экспериментальных методов, позволяющих выявлять системы принципов переработки информации в головном мозге человека и идти в направлении создания целостной теории нервно-психических познавательных процессов.
Важное значение приобретает изучение процедур организации элементарных информационных процессов в программе различных уровней, поскольку живая природа представляется иерархически структурированной. Характерно, что при статистическом типе образования высшего яруса взаимная заменяемость объектов низ
153
шего яруса получается сама собой, а это сильно повышает надежность функционирования рассматриваемых систем. Таким образом открываются возможности для перехода от случайного выявления отдельных принципов (например, принципа проб и ошибок перебора вариантов) к более полному описанию сложных функций мозга.
Эвристическое программирование нередко противопоставляется алгоритмическому описанию [7]. При этом утверждается, что эвристики эффективны в тех случаях, когда невозможно алгоритмическое решение проблемы. В настоящее время существует широкий класс систем, для которых процесс управления алгоритмически описан. Теория алгоритмов - в ее кибернетическом аспекте - обычно определяется как дисциплина, в которой исследуются однозначно детерминированные процедуры преобразования дискретной информации в системах управления в отвлечении от материального носителя информации и границ реальных возможностей физического механизма, реализующего это преобразование. К границам реальных возможностей, от которых теория алгоритмов, понимаемая таким образом, абстрагируется в своем анализе, относятся также "продолжительность жизни" механизма во времени и пространстве и его надежность. Имеются, однако, такие системы, в которых процесс управления не описывается алгоритмически. То или иное регулирующее воздействие, нормализующее управляемый объект и приводящее в соответствие с программой его динамические характеристики, должно вырабатываться регулятором специально для данного случая.