67797.fb2
Современная научно-техническая революция проявляется главным образом и прежде всего в автоматизации производства. В такой технологии человек выводится за пределы производственного процесса и все операции, выполнявшиеся им, переданы автоматическим техническим средствам. «В результате автоматизации, – отмечал К.Маркс, – вместо того, чтобы быть главным агентом процесса производства, рабочий становится рядом с ним»2 .
Деятельность человека в условиях автоматизации наполняется интеллектуальным содержанием – разработка новых технических идей, воплощение их в машинах, технологии производства, предметах и результатах труда, монтаже новой техники, ее наладка, приведение в рабочее состояние и запуск, устранение неисправностей в ее работе, управлении, контроль технологического процесса и т.д. Таким образом, все другие направления НТР (энергетика, космизация, кибернетика и т.д.) выступают в подчиненной роли, так как все они "работают" на автоматизацию. Автоматизация – многогранное явление, включающее самые различные самодействующие механизмы. К ним относятся, например, искусственные спутники Земли, космические автоматические станции, многочисленные аппараты, приборы, устройства и приспособления, самонаводящиеся баллистические ракеты и т.д. Среди многообразных видов автоматов первостепенная роль принадлежит самодействующим рабочим машинам и системам машин. Превращение науки в непосредственную производительную силу наиболее ярко проявляется именно в этих машинах. Рождение, развитие и непрерывно увеличивающееся разнообразие автоматических рабочих машин – крупная революция в орудиях труда, являвшихся "костной и мускульной системой производства".
Специальные исследования в Японии, Германии, США, а также во Франции, Италии, бывшем СССР показали, что, например, промышленные роботы заменяют от 2 до 5 человек и более, обладают большей производительностью определенной технологической гибкостью. Они могут быть применены в самых различных отраслях экономики, в сфере торговли, бытовых услуг, в домашнем хозяйстве.
В современных условиях автоматизация производства развивается преимущественно в четырех аспектах: конструирование и использование различных станков с программным управлением; разработка и производство автоматических линий, отличавшихся значительно большей производительностью и большей закономерностью технологического цикла; создание автоматизированных участков, цехов, предприятий (в современных условиях это высшая форма автоматизации); разработка и внедрение промышленных роботов (некоторые ученые с их появлением связывают даже новый этап НТР).
Роботы незаменимы, когда речь идет о выполнении работ на больших глубинах морей и океанов, в агрессивных средах, в условиях труда, вредных для здоровья человека. В зависимости от функционального предназначения роботы могут быть различной конструкции. По степени гибкости при выполнении работ они делятся на жесткопрограммируемые, т.е. предназначенные для строго определенных функций, адаптивные ("очувствленные") и гибкопрограммируемые (интегральные). В бывшем СССР серийное производство роботов началось в 1975 году. Было выпущено 120 едниц, а в 1985 году промышленных роботов выпускалось уже 13,2 тысячи в год.
Сложные задачи автоматизации требуют взвешенной, трезвой оценки возможностей реализации их. В настоящее время в связи с остающейся сложной экономической ситуацией этот процесс находится практически на самом низком уровне. Задача же состоит в необходимости завершить комплексную механизацию во всех отраслях производственной и непроизводственной сфер, сделать крупный шаг в автоматизации производства с переходом к цехам и предприятиям-автоматам, системам автоматизированного управления и проектирования.
Правда, это станет возможным при достаточном финансировании всех этих проектов.
Другим направлением развития НТР является развитие электронной техники. Крупнейшим достижением НТР в оснащении техническими средствами труда человека, но уже не физического, а умственного, являются электронные вычислительные, управляющие, информационные и другие виды машин (компьютеры). Этим машинам передаются некоторые функции интеллектуальной деятельности человека, особенно однообразные, утомительные, рутинные.
Со времени появления этих машин они в своем развитии имели уже четыре поколения: ЭВМ на электронных лампах, дискретных полупроводниковых приборах, интегральных микросхемах, больших интегральных микросхемах. Пятое поколение внедряется в жизнь, по темпам выпуска они обгоняют все другие виды машин. В связи с исключительной важностью и все большим количественным увеличением ЭВМ в отраслях народного хозяйства возникла необходимость вооружения компьютерной грамотностью трудящихся. В этих целях вводится система повышения квалификации – обучения в школах и вузах программированию и практической работе на ЭВМ. Компьютеры применимы как в сфере производства, так и в повседневной жизни общества. Особенно большую роль они играют в автоматизации производства, в управлении технологическими процессами, в инженерных расчетах, в планировании социально-экономического развития районов, областей целых регионов, отраслей экономики.
Важным приложением ЭВМ является область автоматизированного проектирования, как одна из задач, имеющих первостепенное значение. Такое применение этих машин сокращает в 2–3 раза сроки инженерно-технических проектов новых машин, приборов, средств автоматизации и новых видов продукции.
ЭВМ нашли широкое применение в управлении транспортными средствами, в оптимизации перевозок, продаже билетов, в совершенствовании эксплуатационной работы, в создании единой автоматизированной сети связи страны, в организации повсеместного приема телепередач и т.д. Наконец, компьютеры – незаменимые помощники человека в научной, педагогической и производственной деятельности и других сферах.
Компьютеры и другие средства автоматики помогают изучать объекты, недоступные для непосредственного исследования: ядерные процессы в реакторах, свойства космического пространства, обширные атмосферные процессы, большие глубины морей и океанов, поверхность Луны и планет солнечной системы и т.п.
Как же обстоит дело с разработкой и производством электронно-вычислительных машин? В 1975 г. американцы оценивали отставание бывшего СССР от США в развитии микроэлектроники в 8–10 лет. Изучив в 1979 г. образцы советских схем, они уже говорили о 2–3 годах. В январе 1981 г. известный журнал «Электроникс» писал, что техническая база и квалификация технологов позволяют Советскому Союзу изготавлялись интегральные схемы не хуже американских, а для «сугубо собственных нужд и более совершенные»1.
В СССР были созданы ЭВМ, которые вполне сопоставимы с зарубежными аналогами. Значительно расширилось применение вычислительной техники. Так, еще в СССР был испытан образец супер-ЭВМ производительностью до 100 млн. операций в секунду. Введена в действие мощная вычислительная система с производительностью до 125 млн операций в секунду. Все это задел, который должен был привести к серийному производству супер-ЭВМ производительностью 1 млрд операций в секунду к 1990 г. и до 100 млрд операций в секунду – к 1995 году.
Разработка и производство мощных ЭВМ позволило бы решить проблему создания четкой системы управления хозяйством страны. Такие компьютеры позволяют обрабатывать колоссальные массивы информации, что имеет огромное значение как для оценки развития общества и его перспектив, так и обороноспособности страны.
Однако необходимо заметить, что обольщать себя в области электроники, особенно персональных компьютеров, ставших привычными в большинстве развитых стран, не стоит. Доля современного производства электроники во всем общественном продукте развитых стран сейчас составляет десятую часть. У нас же – малые доли процента. Сложность ситуации заключается в том, что в данной области мы отстаем не только по объему и абсолютному приросту, но также и по темпам. Так было и в конце 80-х годов, так продолжалось и в 90-е годы, это связано со слабым финансированием, психологической неподготовленностью, догматическим подходом, некомпетентностью тех, кто должен вести активную политику разработки и скорейшего внедрения ЭВМ в повседневную жизнь. Иначе разрыв с остальным компьютерным миром у нас может увеличиться. Положение, к сожалению, крайне медленно изменяется к лучшему и сегодня.
Важным направлением развития НТР является энергетика. Функционирование производственных сил общества невозможно без энергетики. В современных условиях почти все орудия труда – различные машины и механизмы, количество которых непрерывно увеличивается, приводятся в движение покоренными человеком природными силами – энергией падающей воды, различными видами топлива, ветра и т.д.
Как писал академик А. П. Александров, потребление энергии в мире в ХХ в. удваивалось: в начале века за 50 лет, в середине века – за 30 лет, а в последние десятилетия – за 15–20 лет. При этом электроэнергетика удваивалась еще быстрее – примерно за 10 лет; около 70 % энергопотребления в мире покрываются нефтью и газом. Однако мировые запасы этих энергоносителей ограничены и в течение нескольких десятилетий могут быть исчерпаны. Разведанные запасы нефти на конец 1974 г. оценивались в 97 млрд т, а к началу 90-х гг. ХХ в. – около 600 млрд. т. По некоторым оценкам, в 2000 . По некоторым оценкам, в 2000 г. разведанные запасы нефти приблизились к 800–1000 млрд т. Предполагается, что при нынешних темпах добычи и потребления запасов нефти хватит до 2050 г. Как быть? Научная мысль еще задолго до такой ситуации осуществляла поиск новых, более надежных и долговечных источников энергии. И они увенчались успехом: наука и техника овладели методами использования энергии, освобождающейся в огромных количествах в процессе цепной реакции деления тяжелых атомных ядер, и интенсивно исследуют возможность получения управляемой реакции термоядерного синтеза тяжелых атомов водорода и атомов гелия.
К.Маркс называл электрическую искру революционной силой и предсказывал ей великое будущее. Электричество – самый совершенный вид энергии, на основе которого можно создать высокоразвитые производительные силы общества. Овладение научными способами получения тепловой и электрической энергии из атомного ядра – величайшее достижение, характеризующее современную научно-техническую революцию в энергетике. Бывший СССР – родина первой в мире атомной электростанции, запуском которой в 1954 году ознаменовал начало мирного, гуманного пути использования энергии атома.
Производство атомной энергии увеличивалось все возрастающими темпами. В 1980 г. в мире насчитывалось 272 АЭС, они вырабатывали около 8 % электроэнергии. В 1985 г. в СССР действовало и строилось более 25 АЭС, они давали в Единую энергетическую систему около 10 % электроэнергии от ее общего производства в стране. Причем выработка электроэнергии должна была резко возрасти. Так, в 1990 г. она должна была подняться до 1840–1880 млрд квт-ч, в том числе более 20 % общего объема ее должны были произвести АЭС. Была поставлена задача ускорить строительство АЭС с реакторами на быстрых нейтронах. Они выгодны и в том отношении, что воспроизводят часть ядерного топлива. В Украине работают Ровенская, Южно-Украинская, Запорожская, Хмельницкая АЭС. Мощность АЭС постепенно меняется в пользу увеличения: в 2000 г. – 12,88 гВт, в 2003 – 13,88, в 2004 – 14,88 гВт.
Вместе с тем, создавая АЭС, нельзя забывать и о защите окружающей среды, мерах повышения безопасности использования этих источников энергии. События 1986 года на Чернобыльской АЭС, аварии на американских, английских станциях такого типа предупреждают об этом. В декабре 2000 г. Чернобыльская АЭС была закрыта.
Наряду с поисками новых источников энергии, в том числе и нетрадиционных, с высокой степенью необходимости возникает и другая задача – создание энергосберегающих и ресурсосберегающих технологий. Для Украины это является очень актуальной проблемой.
Следует ожидать, что в ближайшем будущем на смену нефти и природному газу прийдет уголь, и лидирующее место займут химические технологии по переработке угля. Уже разработаны способы эффективного производства моторного топлива и других химических продуктов при переработке угля. Мировые запасы доступного для разработки угля в 20–40 раз превосходят нефтяные ресурсы. С развитием химической технологии уголь станет одним из важнейших источников сырьевых продуктов.
Важным направлением НТР является качественное изменение технологии. Современный этап научно-технической революции вызвал к жизни принципиально новые виды технологии, которые основаны на применении электричества, физических, химических и биологических процессов, ультразвука, лазера, потоков элементарных частиц, электромагнитного поля, плазмы и других явлений и состояний вещества, используемых в качестве технологических агентов. Вместо механической обработки предмета труда на макроуровне, например, резанием, строганием, сверлением, она открыла возможность широкого применения в производстве методов изготовления продуктов труда путем воздействия на микроструктуру вещества на уровне молекул и атомов. НТР вовлекает в технологические процессы более высокие формы движения материи по сравнению с механической – физическую, химическую и биологическую. Новые технологические методы более универсальны и гибки, так как легче допускают переход на изготовление другой продукции, повышают коэфициент использования сырья и экономию материалов, требуют, как правило, менее громоздкого оборудования, улучшают качество продукции, значительно поднимают производительность труда. Так, замена механической обработки рубиновых камней лазерной привела к замене нескольких станков одной лазерной установкой, производительность которой оказалась в 500 раз выше.
Достижения НТР в области технологии должны найти широкое применение в сфере производства на длительный период. Среди прочего – это обеспечение широкого внедрения в народное хозяйство принципиально новых технологий – электронно-лучевых, плазменных, импульсных, биологических, радиационных, мембранных, химических и иных, в том числе нанотехнологии, позволяющих многократно повысить производительность труда, поднять эффективность использования ресурсов и снизить энерго- и материалоемкость производства. Перейти на индустриальные, интенсивные технологии в растениеводстве и животноводстве, широко использовать методы биотехнологии и генной инженерии, главное искать новые источники энергии – эта задача является актуальнейшей в условиях энергетического кризиса в Украине. Без решения этой проблемы сложно говорить о дальнейшем движении впереди. Очень важным для Украины является широкое внедрение передовых технологий, например, лазерной. Лазерная технология применяется для упрочения и резки металлов; плазменная – в сварке; мембранная, основанная на явлении односторонней диффузии молекул и атомов через полупроницаемые перегородки, – для разделения на компоненты растворов, газов, для обогащения воды кислородом; биотехнология – для получения медицинской промышленностью новых лекарственных препаратов, в сельском хозяйстве – для производства кормов, особенно искусственных белков; генная инженерия открывает пути конструирования новых полезных микроорганизмов.
Развитие промышленности, непрерывный рост различных потребностей общества: в жилье, средствах транспорта, связи, одежде, обуви, предметах быта и т.д. породили и обострили противоречие между все возраставшими масштабами индустрии и производством естественного сырья. Это противоречие может разрешить только развернувшаяся научно-техническая революция: в научных лабораториях были разработаны промышленные способы получения разнообразных искусственных материалов. Развитие данного направления привело к созданию смол и пластмасс, различных волокон, нитей, тканей, заменителей кожи и меха, линолеумов и полимерных отделочных материалов, всевозможных пленок и кровельных материалов, кристаллов, паст, синтетического каучука и др.
Искусственные материалы обладают рядом особенностей, делающих их предпочтительнее по сравнению с естественным сырьем. Им можно придавать любые заданные свойства, они легче и дешевле естественных материалов, более стойки к действию химических реагентов, атмосферных процессов и света, менее подвержены коррозии, более технологичны при изготовлении из них различных видов продукции. В промышленности из них изготавливают корпуса машин и аппаратов (радиоприемников, магнитофонов, холодильников, телефонов), шестерни, трубы, лаки, клеи, предметы быта – ванны, раковины, тазы, ковры и паласы, абажуры, посуду, детские игрушки и другие изделия. В строительстве – различные строительные материалы и оборудование: пенобетоны, стеклопласты, пенопласты, облицовочные, теплозвукоизоляционные и гидроизоляционные материалы, пластмассовые трубопроводы, санитарно-техническое оборудование и т.д.
Искусственные материалы получают из природных или синтетических полимеров. Широкий диапазон применения этих материалов обуславливает быстрый рост объемов их производства. В 1940 г. в бывшем СССР было произведено синтетических смол и пластических масс 109 тыс.т., химических волокон и нитей 11 тыс.т., а в 1985 г. соответственно 5019 тыс. т. и 1394 тыс.т., т.е. производство увеличилось более чем в 500 и 130 раз.
Производству искусственных материалов важное место отводится в Украине на будущее. Особое внимание обращается на увеличение объема синтетических смол и пластических масс, химических волокон и нитей, а также синтетических каучуков.
НТР распространяется и на другие направления жизнедеятельности людей: выход в космос и его освоение, космизация науки и производства; расширение средств массовой коммуникации, совершенствование и развитие транспортных средств, а также средств передачи информации и др. Под влиянием НТР существенные изменения претерпевают механизированное производство, особенно при внедрении роботов, традиционных видов технологии и естественных материалов.
Развитие НТР приводит к изменениям в структуре производительных сил, характере труда, соотношении научного и технического прогресса, в характере и направленности развития материально-технической базы, а главное – в воздействии на человека как основную производительную силу общества.
НТР – главный рычаг преобразования материально-технической базы общества. Обновление производственного аппарата в результате внедрения новой техники, более прогрессивной технологии и гибких производств, существенная структурная перестройка всего производства и оптимизация его размещения, повышение культурно-технического уровня рабочих, крестьянства, производственной интеллигенции и служащих, инженерного труда, достижение и превышение мировых параметров эффективности и качества продукции позволит значительно увеличить национальный доход, объем промышленного производства и производительность труда. Все это будет означать крутой поворот к интенсификации производства, продвинет экономические реформы. Это – не только насущная необходимость, но и реальная возможность нового этапа развития общества.
Оценивая конкретную экономическую ситуацию конца ХХ – начала ХХІ ст. в СССР, а затем в Украине и других ныне самостоятельных государствах – бывших союзных республиках, мы должны заметить, что имеющий место замедленный период экономического роста, внедрения достижений НТР, а следовательно, и темпов роста производительности труда, объясняется тем, что своевременно не была обнаружена и реализована необходимость изменения некоторых сторон, существующих производственных отношений и форм собственности. Отрицательную роль в этом сыграли разрыв экономических связей между бывшими республиками. Действующие формы, хозяйственный механизм, который, в основном сложился в условиях экстенсивного развития экономики, устарели и не только утратили свою стимулирующую роль, но и мешают более полному использованию имеющихся возможностей, сдерживают движение вперед, а кое в чем вообще превратились в тормоз.
Анализ экономического развития показывает, что решение экономических и социальных задач невозможно без глубокой интеграции науки с производством. Здесь ранее большая роль отводилась межотраслевым научно-техническим комплексам, которые были созданы более двадцати пяти лет назад.
Вскрывая трудности, противоречия в возможностях, тенденциях, направлениях академической, вузовской и отраслевой науки, Верховная Рада, Президент, обращаясь к ученым, нацеливают их на интеграцию усилий всех наук, комплексность проводимых исследований, глубину постановки фундаментальных проблем, вообще коренное изменение отношения к науке. Чтобы стать активной участницей жизни и реформ, наука сама должна во многом перестраиваться. Таково веление времени.
Видные ученые Украины в своих публикациях отмечают определенную замкнутость нашей науки, острую необходимость борьбы с бюрократизмом, планомерное развитие науки от достигнутого. Организация научной деятельности как никакая другая сфера требует развития демократии и гласности, прозрачности, новых подходов ускорения этих процессов в НАН Украины.
Следует признать, что реальной основой возможности ускорения развития науки и техники является мощный научно-технический потенциал Украины. В НАН Украины ведутся исследования в области материаловедения, математики, кибернетики, физики, астрономии, филологии, биологии, гуманитарных наук. На начало 90-х гг. численность ученых в Украине достигала 220 тыс. человек. Вместе с НАН Украины действуют другие научные учреждения, академии педагогических, сельскохозяйственных, медицинских, юридических, инженерных и иных наук, научно-исследовательские институты, центры, лаборатории.
Наряду со значительными достижениями наблюдается накопление серьезных проблем и просчетов, среди них – постоянный приоритет прикладных исследований в ущерб фундаментальным. К тому же, свыше 90 % технологических разработок не внедряется в производство.
Наряду с недостаточной материально-технической базой науки это привело к потере ведущих позиций по ряду фундаментальных исследований, отставанию от Запада в уровне научных разработок. Ощутимо снизился уровень изобретательства, усилился отток ученных за кордон и многое другое. Действуют и другие факторы.
Получив высокие результаты в лабораторных условиях, авторы разработок нередко сталкиваются с большими затруднениями, проволочками как в признании ценности и важности своих открытий и предложений, так и в промышленной реализации своих идей, отсутствием финансирования.
Что же касается в целом возможностей и перспектив стран СНГ в области науки и техники, то они располагают крупным научно-техническим потенциалом. На долю СНГ приходится значительная часть заявок на изобретения, новые материалы, препараты.
Следует заметить, что НТР ускоряет процесс монополизации, обобществления, концентрации и специализации материального производства. Поскольку этот процесс складывается стихийно, в ходе конкретной борьбы и погони за максимальной прибылью, НТР усиливает диспропорцию в развитии экономики стран, неравномерность их развития, увеличивает разрыв между развивающимися и развитыми капиталистическими странами. Неоколониалистическая политика империализма привела к тому, что развивающиеся страны, где проживает более 2 млрд человек, стали практически сплошным регионом бедности. В начале 80-х годов уровень доходов на душу населения в освободившихся странах в целом был в 11 раз ниже, чем в развитых капиталистических. На протяжении трех последних десятилетий ХХ века разрыв этот не сокращался, а возростал.
Рост концентрации и централизации производства и капитала под влиянием НТР обостряет имеющиеся определенные противоречия и порождает новые. К последним относится противоречие между необычайными возможностями, открываемыми НТР, и препятствиями, которые выдвигаются на пути их использования в интересах всего общества. Так, широкое внедрение новой техники и технологии приводит к ряду существенных социальных и человеческих издержек, прежде всего к росту массовой безработицы. Предполагалось что к 2000 г. роботы в развитых капиталистических странах смогут вытеснить до 75 % занятой сегодня рабочей силы. Например, в США "вторая промышленная революция" изменяет характер труда около 50 млн рабочих и служащих. Будет автоматизировано 80 % всех ручных операций. В результате лишними «окажутся» не менее 40 млн рабочих. Исследования, проводимые в Японии Международной организацией труда, социально-экономических последствий внедрения новых технологий, показывают, что количество рабочих мест ликвидируемых при роботизации, варьируется от менее 0,5 до 5. Подобные исследования в Германии дали соотношение от 0,8 до 6,2 рабочего места на один робот.
В связи с этим на Западе широкое распространение получаютразличного рода социал-реформистские утопии, авторы которых рисуют картины будущего "информационного общества", "новой индустриальной цивилизации",1 "научного капитализма" и проч., утверждая, что в "век роботов" якобы можно решить проблему "лишних рабочих рук", преодолеть социальное отчуждение и деградацию личности. Они предлагают различные меры для более активного использования "нематериальных сфер труда и быта людей", призывают учитывать такую "пружину", как человек, и способствовать более интенсивному развитию. Об этом много говорится, например, в Японии, где радужные перспективы связываются порой с национальными особенностями культуры, представлениями о нравственности и трудолюбии народа. Аналогичные цели преследуются при возрождении сегодня в США и других странах тех или иных вариантов теории "человеческого капитала". Расходы в области науки в Японии в 1975 г. составляли 1,12 % от ВПП, в 1988 г. – 1,96 %, США – 1,01 % и 1,38 %, Великобритании – 0,8 и 0,06 %.
Cледует заметить, что в условиях НТР имеет место эксплуатация науки, извращается ее сущность и предназначение. Крайние формы эксплуатация науки достигла сегодня в ее милитаризации. Известно, что сейчас в мире в военной сфере занята примерно четвёртая часть общего числа научных работников и она поглощает почти до 40 % расходов на все научные исследования и опытно-конструкторские разработки (НИОКР).
Длительное время гигантские материальные и человеческие ресурсы отвлечены в отраслях, работающих на военную сферу. При этом наиболее квалифицированные кадры, самые крупные капиталовложения направляются в отрасли военно-промышленного комплекса. Милитаризация деформировала науку, исказила ее гуманную сущность. В гонку вооружений прямо или косвенно вовлечено около 1 млн. научных работников. Жизнь свидетельствует, что бездумное продолжение научно-технической политики в нынешних условиях недопустимо.
Несомненно, в условиях НТР предмет профессиональной заботы инженерных работников, их деятельности и сегодня, и завтра, и в сравнительно отдаленном будущем один – техника и технология. Однако техника и технология завтрашнего дня будут не похожи на те машины, механизмы, производственные циклы, которые действуют сегодня. Научно-индустриальное производство, в основе которого лежит наука, предполагает ориентацию на технические новшества высшего технико-экономического уровня. Создаются такие новшества одновременно в двух направлениях: во-первых, при решении традиционных инженерно-технических задач нетрадиционными методами; во-вторых, в процессе исследования и решения производственных задач нового класса. Задание инженера – отыскать более рациональный, более дешевый в экономическом и рациональный в технико-технологическом отношении способ производства нужной обществу продукции. Под воздействием научно-технического прогресса существующая отраслевая структура общественного производства коренным образом изменится и произойдет это (уже происходит) в самом скором времени. А вместе с ней изменится и структура предмета инженерной деятельности: увеличится поле применения инженерных знаний и методов; иными, несопоставимыми с прежними по степени сложности станут инженерно-технические задачи; инженерные разработки еще теснее переплетутся с научными.
Предмет инженерной деятельности будет, образно говоря, разрастаться «вширь» и «вглубь». Расширение области профессиональной деятельности инженеров будет происходить буквально «не по дням, а по часам», а в молодых, бурно развивающихся отраслях техники и технологии едва ли не по минутам. И это не художественная гипербола, а точное отражение состояния дел. Известно, что уже сейчас в мире в течение года ученые открывают до 30 тыс. новых химических соединений – примерно 90 в день! Или другой пример – из области электронной техники. За последние 10-15 лет производительность интегральной схемы выросла в 100 тыс. раз; современный микрокомпьютер в 40 раз мощнее и в тоже время в 10 тыс. раз дешевле, в 17 раз легче, в полторы тысячи раз меньше по объему, и в 2,8 тыс. раз менее энергоемок, чем первые ламповые компьютеры. Эти цифры дают наглядное представление о проблемах, с которыми предстоит столкнуться инженерам всех рангов и специальностей – от исследователя до эксплуатационника – уже в недалеком будущем.
Таким образом, научно-техническая революция коренным образом изменяет технический базис общества, а вместе с ним и инженерную профессию и инженерную деятельность. Во-первых, качественно иным станет сам предмет инженерной деятельности: значительно расширится сфера деятельности инженера, стоящие перед ним задачи будут усложняться, едва ли не в геометрической пропорции. Во-вторых, кардинально изменятся средства инженерного труда. В своих профессиональных занятиях инженер будущего сможет опереться на достижения информатики и компьютерной техники. Широкое применение баз знаний, систем «искусственного интеллекта», создание сетей ЭВМ откроют перед ним фантастические с позиций сегодняшнего дня возможности. В-третьих, инженерная деятельность обретет новое содержание в плане резкого усиления интеллектуально-творческих компонентов, уровня предварительной подготовки и последующей систематической переподготовки. В-четвертых, закрепятся ныне существующие прогрессивные формы интеграции науки, инженерии и производства и раскроются новые, пока непредсказуемые. В-пятых, – и это, может, самое важное – изменятся многие личностные черты человека, возникнет инженер нового типа.