67797.fb2 История инженерной деятельности - читать онлайн бесплатно полную версию книги . Страница 4

История инженерной деятельности - читать онлайн бесплатно полную версию книги . Страница 4

В результате завоеваний Александра Македонского (356-323 гг. до н.э.) образовалась огромная империя, где греческий язык стал государственным, возникает культура, получившая название эллинистической (от слова Ellas – Греция). Главным центром эллинистической культуры стала Александрия, новая столица Египта. Механика эпохи эллинизма развивается в основном в прикладном направлении: бурное строительство потребовало создания новых, более мощных строительных машин и более пристального внимания к оценке прочности архитектурных конструкций. Развивается практическая гидравлика и пневматика, создаются новые механические приспособления, новые военные машины. Наследники Александра Македонского ведут междусобные войны. В этой связи особое внимание обращается на строительство укреплений, обращается внимание на прочность стен. Самым крупным зданием в Афинах становится Арсенал, в котором были собраны военные машины и корабельное вооружение.

Возрастание роли механики заставило изменить отношение к этой профессии. Механикой «по совместительству» начинают заниматься архитекторы и военные инженеры. Высокого развития достигла военная техника в Александрии, где Птолемеи, правившие Египтом, тратили большие средства на сооружение боевых машин. В середине ІІІ в. до н.э. в Александрии учился Филон Византийский, который написал «Свод механики» – одно из первых сочинений по практической механике. Свод состоял из девяти книг (до нас дошли лишь четвертая и пятая): 1) Общие принципы механики; 2) Учение о рычагах; 3) О постройке гаваней; 4) О построении метательных машин; 5) Пневматика; 6) О построении автоматов; 7) Военное снаряжение; 8) О фортификации и осаде городов; 9) Тактика. Этот перечень свидетельствует о многообразии направлений в развитии механики, многообразии практических интересов.

Из александрийских механиков наибольшую известность получили Ктесибий и Герон. Ктесибий (ІІ-І вв. до н.э.) был по-видимому, самоучкой. Основные интересы его лежали в области гидравлики и пневматики; он изобрел поршневой насос, счетчик оборотов, занимался устройствами с применением сжатого воздуха. Герон Александрийский (около І в. до н.э.) написал едва ли не больше всех античных ученых по вопросам механики. Его перу принадлежали «Механика», «Книга о подъемных механизмах», «Пневматика», «Книга о военных машинах», «Театр автоматов» и ряд других. До нас дошли лишь немногие из его сочинений. Кстати, личность Герона не выяснена до настоящего времени. Существует мнение, что он был учеником Ктесибия, некоторые авторы думают, что Герон жил не в І в. до н.э., а на 100 лет позже – в первом столетии нашей эры.

В «механике» Герон изучает простые машины и их комбинации. При этом он пользуется понятием момента, но неизвестно, принадлежат ли ему открытие этого понятия или он заимствовал его у других ученых. Кроме простых машин, он описывает также и некоторые механизмы: систему зубчатых колес, системы блоков, полиспасты. Ему известно влияние силы трения, и он рекомендует при работе со сложными механизмами несколько увеличивать прилагаемые к машинам силы по сравнению с расчетными. Однако численно силу трения он не определяет.

К наиболее известным изобретениям, описанным Героном, относится эолипил – прообраз паровой турбины, в котором впервые для вращения используется реактивное действие струи пара; «геронов шар» - пневмогидравлический прибор, основанный на действии сжатого воздуха на поверхность воды; еще один пневмогидравлический прибор – «геронов фонтан». Из героновых «Пневматики» и «Театра автоматов» видно, что гидравлика и пневматика в эпоху эллинизма достигли высокой степени развития. Еще, как видим, в древности знали уже многое из механики: ведь для сооружения даже самых элементарных автоматов надо хорошо знать статику простых машин, разбираться в механизмах и их частях, уметь производить вычисления, знать отношения и пропорции, т.е. применять знания всех отделов механики. Нужно было хорошо разбираться в гидравлике и пневматике, знать свойства сжатого воздуха и пара, а также уметь работать с упругими и гибкими телами, иметь большую инженерную выдумку и развитое пространственное воображение.

Творчество великих александрийских механиков было в основном направлено на постройку военных машин, водоподъемную технику, на сооружение малых автоматов, где они достигли большого совершенства. Они применяли и знали механизмы, изобретенные и распространившиеся значительно позже. В частности, Филон применял в своих приборах так называемый «карданов шарнир». Занимались они также механикой - геометрией и другими отделами математики: для них характерной была связь теории и практики.

Последним известным механиком александрийской школы был Папп Александрийский (ІІІ в. н.э.). В «Математическом собрании» Паппа механике посвящена восьмая книга. Папп называет механику наукой о материи и о природе элементов мира и указывает, что она изучает положение и тяжесть тел, движение их в пространстве, причины естественных и насильственных движений. Он различает теоретическую и практическую механику. К первой он относит результаты, связанные с арифметикой, геометрией, физикой и астрономией; практическая же механика изучает обработку меди, железа, дерева, строительное дело, живопись и прочие ремесла. Затем он описывает различные механические искусства: военные машины, строительные машины, автоматы и иные механические приспособления.

Учение о центре тяжести Папп излагает по Архимеду и Герону, а также описывает собственные исследования. Особое внимание он уделяет подъему тел по наклонной плоскости и передаче движения зубчатыми колесами. В частности, доказывает, что скорости вращения двух колес, находящихся в зацеплении, обратно пропорциональны числам зубьев и что числа зубьев соотносятся как диаметры колес. Он решает также задачу об определении диаметра колеса по числу его зубьев и по диаметру и числу зубьев другого колеса, находящегося в зацеплении с ним.

Можно сказать, что механика в Древней Греции достигла высокого уровня развития. Так, в частности, гидравлика развивалась так успешно, что уже в ХІV в. до н.э. на территории Греции строились публичные бани с водопроводом, сложной системой канализации. К 600 г. до н.э. относится первая попытка прорыть канал на коринфском перешейке, в конце VI в. до н.э. был построен водопровод в Афинах, в V в. до н.э. был сооружен канал, соединивший Нил с Красным морем, во ІІ в. до н.э. построен водопровод в Антиохии, Пергаме.

К механике эпохи эллинизма примыкает механика Рима и Карфагена. Достаточно подробные сведения об уровне римской механики можно получить из сочинения «Об архитектуре» Марка Витрувия, архитектора эпохи Августа (І в. до н.э.).

Так, книга Х этого трактата посвящена описанию машин и механических приспособлений и их действию. Почти половина Х книги трактата (главы 10-16) посвящены описанию военных машин и прочей военной техники. К этому времени военные машины достигли большого совершенства и разнообразия. Как правило, они работали за счет энергии, накапливаемой при закручивании упругого элемента, в качестве которого применялись сухожилия животных или волос (большей частью женский).

Баллисты, катапульты, палинтоны применялись для метания камней, бревен, стрел. Создавались эти машины в большом количестве, и конструкции их были разработаны весьма тщательно. В качестве основания для расчета брались толщина пучка жил, называемая модулем катапульты или вес снаряда. Например, катапульта «в один талант» (талант – около 26 кг) метала снаряд весом 1 талант; длина его равнялась 7,6 м., высота – около 7 м. При обороне Сиракуз Архимед строил катапульты «в три таланта», которые метали камни «на одну стадию» – около 185 м.

Строили и иной конструкции машины – онагры, скорпионы (метали стрелы). Так, Дионисий Александрийский построил полибол, в котором к скорпиону было добавлено приспособление для быстрой подачи стрел – античный пулемет. Ктесибию принадлежало изобретение аэротона - военной машины, в которой роль упругого элемента играл сжатый воздух.

Количество машин, которым располагали воинские части, иногда бывало весьма значительным. Так, при взятии Карфагена в руки римлян попало 476 тяжелых орудий и 2500 скорпионов.

Значительные познания в механике, а именно в практической, имели также античные архитекторы. На основании длительного опыта, совершенствовавшегося на протяжении многих поколений, они выработали ряд эмпирических правил, которыми и пользовались в своей практической деятельности. Интересно, что индусские храмы, египетские пирамиды, вавилонский Сикуррат и греческие колонны всегда суживаются кверху, как это положено для сооружений, материал которых работает на сжатие.

Многие из сооружений того времени (особенно египетские обелиски) опрокинуты и разрушены человеческою злобою, но ни один не опрокинут бурею и до сих пор стоят – так отмечают ученые. Примечательно, что египетские и греческие колонны строились высотой не более девяти диаметров. Современные специалисты знают, что за этим пределом начинается опасность продольного изгиба. Древние архитекторы соблюдали эти условия (видимо, знали). Хорошо была освоена и механика постройки античных кораблей, которые иногда достигали солидных размеров (греческий корабль «Александрия» (264 г. до н.э.) длиной 125 м., приводился в движение двумя тысячами гребцов, скорость около 7,4 км/час), причем греческие и египетские корабли отличались по конструкции.

Многие сочинения по механике не дошли до нас. Часто встречаются сочинения, не имеющие имени автора. Иногда они переписывались без указания автора. Ясно одно, что знания в области механики имеют древнее происхождение. Развитие познаний в области механики обусловливалось необходимостью решать задачи строительства зданий, устройства военных машин, объяснять различные виды движений и многим другим.

В ІV в. Римская империя разделилась на Восточную со столицей в Византии и Западную - со столицей в Риме. В 476 г. Западная была уничтожена под ударами внешних и внутренних противоречий. Византия же просуществовала долго. Уровень познаний в области математики и механики в Византии был относительно высоким: сохранялось накопленное и достаточно комментировались сочинения эпохи эллинизма, а также был написан ряд интересных сочинений по фортификации и военной технике. Одним из авторов таких работ был Герон Младший (VII в.). Работал здесь выдающийся математик, оптик, механик Иоанн Филопон (ок. 660 г.). Именно он выступил против мнения Аристотеля, развитого его последователями – парипатетиками, что воздух воспринимает импульс, сообщенный брошенному телу, и играет по отношению к нему роль двигателя. Филопон утверждал, что полет в безвоздушном пространстве осуществляется легче, чем в среде воздуха, и следовательно, импульс сообщается от двигателя исключительно брошенному телу.

Византия богата интересными храмовыми и другими постройками. Так, в 532-537 гг. два византийских архитектора и механика Исидор Милетский и Анфимий Тралльский построили в Константинополе храм Святой Софии с куполом, диаметр которого в основании имел 31,4 м. При этом вес купола равномерно распределялся на поддерживающую его конструкцию.

Крупным ученым в области математики и механики был византийский ученый Лев Математик (ок.815 – ок. 870), армянин по происхождению. Ему принадлежат автоматическая система механизмов для тронного зала византийского императора: около трона он поставил золотых львов и птиц, которые во время торжественных аудиенций приводились в движение; птицы, кроме того, пели. Как видим, Византия сохранила искусство построения автоматов, развитое александрийскими механиками.

Было бы ошибкой думать, что только непосредственно в Византии развивалась механика. В сфере влияния Византийской империи находились Абхазия, Грузия и Армения, которым часто приходилось вести с ней борьбу, но влияние греческой культуры здесь было достаточно сильным. Вместе с тем это влияние было и обратным. Среди деятелей науки и техники Византии встречаются армянские и грузинские имена.

Техника Закавказья эпохи І тысячелетия была весьма высокой. Здесь были развиты обработка металлов, керамическое и ткацкое производства, обработка кож. По-видимому, первое железо было добыто в армянских горах, на горных речках Закавказья были построены водяные мельницы – первые машины в истории человечества. В Армении был разработан интересный вариант соединения купольных устоев со стенами, учитывавший сейсмические условия страны.

В Грузии особое развитие получило строительство крепостей и оборонных сооружений. Крепости строили с учетом рельефа местности. Сохранившийся от V-VI веков грузинские храмы и иные сооружения доказывают не только полную самостоятельность строителей и присущее им чувство красоты, но и большие познания в механике. Ими были созданы интересные строительные конструкции, учитывающие распределение сил, ряд решений соединений купола с поддерживающими его стенами.

В начале VII века начались завоевательные войны арабов. Менее чем за 100 лет, к концу 30-х годов VIII в. в состав Арабского халифата вошли огромные страны и территории, ранее принадлежавшие Римской империи и Персидскому государству – образовалась колоссальная империя, которую населяло множество племен и народов, связыванных общей религией и языками. Ислам и арабский язык стали религией и языком государства, науки и культуры. В халифате появились огромные библиотеки в которых находилось до 150-200 тыс. томов, в том числе частные, а также и публичные: ученый и поэт Ибд-Хамдан учредил в Мосуле Дом мудрости с библиотекой, которой мог пользоваться всякий стремившийся к знаниям. В 994 г. везир Ардашир ибн-Сабур основал в Багдаде Дом мудрости с библиотекой в 10400 томов. В Египте в 983 г. при мечети Ал-Азхар был основан университет, существующий и поныне. В Х в. в Нишапуре было открыто медресе – училище нового типа.

Источниками развития культуры и науки народов стран ислама послужили как труды античных и византийских ученых, так и опыт, накопленный народами, входившими в халифат. Обычно считается, что первым этапом развития арабо-язычной науки явилась серия переводов научных сочинений с греческих оригиналов. Хотя с этим согласиться трудно. Не наличие переводов играло здесь роль, а потребности развивавшийся науки стимулировали появление переводов нужных сочинений. В частности, потребности практической механики заставили обратиться к сочинениям древних: Аристотеля, Герона Александрийского, Филона Византийского. Серьезное влияние на механиков оказали труды Иоанна Филопона, его учение развил, в частности, знаменитый Авиценна-Ибн-Сина (980-1037). Ибн-Сина считал, что сила, приданная движущему телу, не уничтожается и что если не было помех движению, то оно продолжалось бы бесконечно долго. Неоднократно комментировались учеными стран ислама труды Аристотеля. Известны комментарии Ибн-Сины и Мухаммеда аль-Бируни (973-1048), великого хорезмийского ученого-энциклопедиста. Следует особо отметить вклад хорезмийцев в точное естествознание; даже слово «алгоритм» является лишь латинизированным вариантом имени математика, труды которого лежат в основе арифметики и алгебры Мухаммеда-Ибн-Мусы ал-Хорезми (780-847).

Несмотря на то, что практическая механика этого периода представлена главным образом переводами трудов Герона, Филона и других эллинистических ученых и их комментированием, но комментарии зачастую выливались в самостоятельные сочинения. Так, в «Книге знаний» Ибн-Сина рассматривает пять простых машин, их комбинации и применение для подъема и передвижения грузов. Абу Абдаллах ал-Хорезми (ІХ в.) во второй книге сочинений «Ключи наук» одну из глав посвятил механике. Работа является изложением «Механики» и «Пневматики» Герона.

Более самостоятельными трактатами являются «Книга о познании практической механики» Исмаила ал-Джазари (ХІІ- ХІІІ вв.) и «О водяных колесах и подъеме воды и о служащих для этого механических устройствах» Мухаммеда ал-Хорасани.

Переводились также и труды Архимеда. Известен перевод, выполненный Сабитом Ибн-Коррой (836-901). Он также написал «Книгу о корастуне», в которой излагалась теория римских весов. Большинство стран, входящих в состав халифата, таких как Южная Аравия, Египет, Месопотамия, Персия, Мавераннахр, Афганистан, Хорезм – существовали в условиях поливного земледелия. Ирригация была для них важнейшим делом; поэтому ученые арабоязычных стран проявляли к ее проблемам большой интерес. Водопользование было делом государственной важности, и государство содержало многочисленных чиновников – инженеров, которые должны были наблюдать за водой и за исправностью плотин, дамб, шлюзов. Было придумано много машин для ирригации: черпальные – зурнук и далийя, приводимое в движение водой черпальное колесо – наура, а также более сложные машины. Некоторые плотины достигали больших размеров. Так, на реке Кур в Персии в Х веке была построена мощная плотина, основание которой залито свинцом. По обеим берегам были установлены десять водяных мельниц и десять черпальных колес; при помощи трубопроводов эта установка давала воду для орошения полей 300 деревень. Особое распространение получают в странах халифата водяные мельницы. На многих реках строились плавучие мельницы, чтобы наиболее полно использовать энергию воды.

В VIII в. в Персии и Ираке появляются ветряные мельницы различной конструкции. Имеются сведения о мельницах с ветряным колесом, лежавшим в горизонтальной плоскости; вертикальный вал вращал подвижной жернов.

В ІХ ст. в Самарканде было изобретено производство бумаги из тряпья, и на длительное время этот город стал центром бумажных фабрик.

Прикладная механика в арабоязычных странах пополнилась новыми знаниями, так сказать, получила значительное приращение. Особенно увеличились познания в строительной механике и гидравлике; значительного развития достигла техника построения мельниц и военных машин.

Мировое значение науки арабоязычных стран состояло в том, что она сохранила и творчески развила науку, унаследованную от Греции и эллинистических стран, а также ввела в научный оборот результаты творчества индийских ученых. Это наследие в области математики и механики различными путями было передано в Западную Европу. Одним из первых познакомил Западную Европу с арабской математикой бенедиктинский монах Герберт Ориллакский (ок. 938-1003), в последствии папа Сильвестр ІІ. Кстати, ему приписывают также изобретение механических часов. Но, возможно, это изобретение было сделано раньше, в халифате, поскольку арабоязычные ученые серьезно занимались изучением эллинистических и византийских трудов по автоматам. Есть сведения, что Карл Великий (786-814) в свое время получил часы в подарок от халифа Гаруна ар-Рашида.

Развитие механики в Западной Европе в течение 1000 лет происходит двумя различными путями. Знания механически развивают практики, которым приходится сооружать здания и мосты, создавать военные орудия. Так, развивается практическая механика, которая только в конце рассматриваемого периода получает литературное оформление. Механикой как наукой занимаются ученые, которые преподают в школах: этот путь теоретической механики подобен тому, как в Греции между философами-теоретиками и механиками-практиками не существовало взаимного доверия, так и здесь между учеными-схоластами и практиками-инженерами и архитекторами не заметно согласия. Каждый работает для себя и редко одни считаются с опытом или знаниями других.

Средневековая школа пришла на смену римской с кругом знаний, заимствованных от этой последней. Делаются попытки как-то систематизировать их. Первой попыткой внести некоторый порядок в круг знаний, связанный с потребностями школы, была систематика позднеримского философа и математика Аниция Северина Боеция (ок. 470-525), который разделил науки на гуманитарные и математические, так называемые тривиум и квадривиум. В тривиум входили грамматика, риторика и диалектика, в квадривиум – арифметика, музыка, геометрия и астрономия (Грамматика – говорит, Диалектика – учит словом, Риторика – упрощает речь; Музыка – поет, Арифметика – считает, Геометрия – взвешивает и измеряет, Астрономия – считает звезды). Несмотря на то, что механикой иногда занимались в школах, в список наук она не попала так как до ХVIII в. в системе школьных знаний механика относилась к математике.

Таким образом, еще в эпоху в эллинизма ученые начинают заниматься многими сторонами механики, в частности, статикой. Ученые же раннего средневековья уже не удовлетворяются изучением равновесия тел: их интересует также, а может быть, еще в большей степени - движение тел. При этом они различают геометрию движения, кинематику и движение под действием сил - динамику.

В Ы В О Д Ы

В эпоху палеолита и неолита человек начинает приобретать определенные знания и умения, связанные с использованием рычага и клина, использованием технологий обработки камня, его применения в качестве метательного орудия, наблюдением за его полетом, что приводит к изобретению пращи, лука со стрелами.

Позднее стремление осознать явления природы приводит к мифотворчеству, зарождению знаний и становлению науки, начинается государственно-культовое строительство, которое говорит о том, что люди уже владеют зачатками механики.

С появлением письменности активизируется процесс зарождения науки. Это освобождает человеческую память от тяжелого груза знаний и положительно влияет на их дальнейшее развитие. До начала VI в. до н.э. люди имеют познания в области строительной механики, гидравлики, статики, динамики и небесной механики. Все эти элементы практической механики послужили базой становлении механики как науки в дальнейшем.

Раннее средневековье характеризуется тем, что прикладная механика пополняется новыми знаниями, в частности, в области строительной механики и гидравлики, особенно в арабоязычных странах, где не только развивается наука, унаследованная от Греции, но и идет процесс ее приращения, особенно в области теоретической механики в школах.

Тема ІІІ. РАЗВИТИЕ МЕХАНИКИ КАК НАУКИ –

УСЛОВИЕ УСПЕШНОЙ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ

Развитие производительных сил в эпоху средневековья и позднее проходило несколько этапов. В раннем средневековье (V – середина ХІ в.) – период становления феодального строя, некоторого развития науки, техники, а следовательно, и инженерной деятельности – они находились на низком уровне; во время классического средневековья (ХІ–ХV вв.) – период расцвета феодализма – производительные силы начинают всесторонне совершенствоваться, бурно идет накопление знаний в области механики как основы инженерной деятельности. Особенно инженерная деятельность активизируется с ростом городов, появлением ремесленных цеховых производств. Для позднего средневековья (XVI – первая половина XVII в.) характерны процессы разложения феодализма, зарождения мануфактурного производства и капиталистических отношений, становления науки, в том числе и механики.

Рассмотрение различных аспектов накопления и расширения знаний в области механики как науки и использование их в практической деятельности является целью настоящей лекции.

1. Развитие научных знаний и создание условий для научной революции.

2. Развитие механики как науки.

Быстрое развитие феодальных отношений в эпоху средневековья, особенно начиная с ХІІ–ХІІІ вв. и позднее вызвало интерес к науке, технике, особенно к военной. Это объясняется ростом городов, замков, требующих мощной защиты, создания метательных машин (бриколь – для метания стрел; франдибола – для метания камней), подвижных устройств (аркобаллисты, смонтированные на колесной раме). Подобные изобрения в определенной степени стали возможными благодаря активизации инженерной деятельности, увеличению количества людей, занимающихся этой деятельностью.

Огромное значение в ХIV в. имело использование пороха в Европе. С этого времени начинается эра огнестрельной артиллерии, развития металлургической промышленности и расширения знаний в области таких наук, как баллистика, динамика и др.

Уже в ХIII в. ученые начинают активно интересоваться вопросами динамики. Развивается идея Иоанна Филопона о том, что сила, бросившая тело, передается этому телу. Ученые-схоласты путем рассуждения, а иногда и наблюдения приблизились к пониманию множества механических явлений. Учение об импетусе предложил французский ученый Жан Буридан, бывший одно время ректором Парижского университета. Оно заключалось в следующем: движущее тело получает от движителя импетус – определенную силу, которая может двигать его в том направлении, в каком его движет движитель. Чем большей будет скорость, с которой брошено тело, тем сильней будет приданный ему импетус. Именно импетус движет камень после того, как движение толчка прекратилось, но вследствие сопротивления воздуха и из-за тяжести, которая побуждает камень двигаться в сторону, противоположную импетусу, последний непрерывно ослабляется, иначе движение не прекратилось бы никогда. В конце концов импетус преодолевается, и тяжесть, воздействуя на камень, приводит его к «естественному местоположению». По Буридану, импетус пропорционален плотности и объему тела, к которому он приложен.

Важный след в истории механики оставили ученые Альберт Саксонский и Николай Орем середина ХIV в.. Так, Альберт Саксонский много и умно рассуждает о центре тяжести, критикует в этом отношении Аристотеля, доказывает, что каждое тело имеет точку, в которой как бы сосредоточен весь его вес, и одновременно отстаивает о том, что Земля находится в центре Вселенной. Он также являлся сторонником теории импетуса. Существует точка зрения, что в определенном плане взгляды Альберта Саксонского повлияли на становлении теории Галилея.