67797.fb2
Интересны поиски философа Фомы Аквинского (1225–1274). Являясь идеологом католической церкви, Аквинский основывал свое учение на творчестве Аристотеля, но указывал при этом, что область веры не следует смешивать с областью знания; ссылки на бога в вопросах физики считал невежеством. Он делал различие между математическими и физическими телами: первые делимы бесконечно, тогда как вторые имеют предел делимости, перейдя который перестают быть самим собою, разлагаясь на простейшие элементы. Аквинский утверждал также, что время непрерывно и связано с движением; рассуждал он и о бесконечности.
Развитие производительных сил, рост городов, укрепление церкви приводит к строительству храмов, монастырей, которые становятся сосредоточием не только веры, но и образования. Они оснащаются мощными оборонительными сооружениями. Бурно развивается цеховое производство. В частности, строительные цехи (каменщиков, отделочников) растут количественно и качественно, в них накапливаются практические познания из области строительной механики. Но многое делалось на ощупь и длительное время было результатом коллективных усилий.
Следует заметить, что уже в период раннего средневековья началось становление, хотя и в достаточно широком понимании и профессии инженера. Сперва эта профессия не была цеховой и означала лишь совокупность знаний, которые мог иметь зодчий, скульптор или художник, помимо своих основных профессиональных умений. Сплошь и рядом один и тот же человек создавал машины, сооружал укрепления, строил водопроводы, ваял, писал картины и исполнял еще много мелких поручений феодального властителя либо бюргерской знати. Каждый такой инженер или архитектор обязательно должен был быть механиком, ибо без знания механики его машины могли отказать в действии, а выстроенные им крепости – не выдержать удара осадной мощи противника.
Сохранился любопытный документ начала 1481 г., в котором тридцатилетний Леонардо да Винчи (1452–1519) предлагает свои услуги правителю Милана Лодовико Сфорцг и где он характеризует разнообразие знаний инженера. «Поскольку, сиятельнейший господин, я видал и продумал опыт всех тех, кто выдает себя за знатоков искусства изобретения военных машин, и нашел, что их инструменты не отличаются ни в чем существенном от тех, которые общеизвестны, я решаюсь … сообщить Вашей светлости о некоторых секретах, которыми обладаю я, в следующем кратком перечислении:
1. Я владею способом постройки очень легких мостов, которые можно легко переносить и с помощью которых можно привести врага в бегство и преследовать его. Знаю также и иные, более прочные, которые смогут противостоять огню и мечу и которые можно легко поднимать и опускать. Я знаю также способы сжигать и разрушать вражеские мосты.
2. В случае осады я знаю, как осушать рвы, строить складные лестницы и иные подобные машины.
3. Далее: в случае высокого местоположения или мощности враждебной позиции, когда невозможно ее обстрелять, я знаю способы уничтожить ее путем минирования, если только фундамент крепости не скалистый.
4. Я умею также строить нетяжелые пушки, легкие в перевозке, которые могут бросать горючие материалы, дым коих вызовет ужас, разрушения и растерянность среди врага.
5. Далее: при помощи узких и извилистых подземных ходов, сооружаемых без всякого шума, я могу создать проход в самые недоступные места, причем даже под реками.
6. Далее: я умею строить безопасные крытые повозки для подвоза пушек к расположению врага, сопротивляться коим не смогут даже значительные силы и под защитой которых пехота сможет безопасно подойти к месту боя.
7. Я могу строить орудия, мортиры и огненные машины и иные, одновременно прекрасной и полезной формы, которые отличаются от всех, применяемых в настоящее время.
8. Или же, если применение пушек окажется невозможным, я смогу заменить их катапультами или иными прекрасными бросающими машинами, доселе неизвестными. Коротко говоря, я смогу создать бесконечное число орудий для нападения.
9. А если сражение должно разыграться на море, я знаю многие, чрезвычайно мощные машины как для нападения, так и для защиты и такие корабли, которые будут безопасны как от пушечной стрельбы, так и от огня. Знаю я также порохи и воспламеняющиеся вещества.
10. Полагаю, что в мирное время я смогу соревноваться с каждым по части архитектуры, а также по части сооружения общественных и частных монументов и в постройке каналов.
Я могу выполнять статуи из мрамора, бронзы и из глины; что касается живописи, то в ней я могу соперничать с любым. В частности, я смогу изваять из бронзы конную статую вашего вечной памяти отца… Если из вышеупомянутых вещей покажется что-либо вам невыполнимым, то я готов выполнить сие…»[2].
Леонардо не преувеличивал. Он действительно и мог все, и занимался всем. В этом была сильная сторона его гения, но здесь же была и его слабость: он не мог сосредоточиться, многое начал, но немногое закончил. После него осталось множество записок, схем и рисунков, которые он предполагал слить в трактаты. Этого он тоже не сделал. Многие из них относятся и к механике. Леонардо – практик, и его теоретические рассуждения играют лишь подсобную роль. В механике он занимался изучением движения тел по наклонной плоскости, законом рычага уяснил понятие момента, исследовал трение, падение тяжелых тел, законы гидростатики. В динамике он следовал учению Буридана. Он пробовал определить понятие силы, впрочем без особого успеха, он пытался складывать и разлагать силы.
Леонардо первым исследовал полет птиц и приблизился к созданию летательного аппарата, тяжелее воздуха. Он создал много различных схем машин и предвосхитил идею о составе машины из механизмов (а не из «простых машин»). Он изучил трение и понял невозможность вечного двигателя лет за 300 до того, как это было доказано.
Начавшийся со второй половины ХV в. Ренессанс явился величайшим переворотом в истории человечества, эпоха гигантов-ученых, величайших открытий, инженерных решений.
В годы деятельности Леонардо понятие «инженер» уже бытовало в Западной Европе. Появилось оно около ХII в. и обозначало строителя военных машин и фортификаций (т.е. специалиста, которого в эпоху эллинизма называли «механиком»), так как все технические средства по части ведения военных операций и обороны назывались «ihgenia». С ХV в. в Италии инженерами называлт также строителей каналов, хотя еще в Римское время уже есть такое упоминание.
Леонардо неоднократно указывал на значение математики для инженерного дела. В этом он следовал за знаменитым архитектором Филиппо Брунеллески (1377–1446).
Ф. Брунеллески сознательно пользовался расчетными методами и говорил о важности математики для всех искусств. Математические познания и изучение римских построек дали ему возможность установить пропорции здания, эстетические и одновременно оптимальные с точки зрения техники. Таким образом, в строительство вводятся методы расчета, что явилось одним из первых шагов перехода строительной механики от практической науки к прикладной. Шедевром Ф. Брунеллески стал купол флорентийского собора Санта Мария дель Фьоре диаметром 42 м – на 10 м больше купола Софийского собора в Константинополе. Купол Брунеллески не имел правильной сферической формы, его внутренняя поверхность была описана радиусом, равным трем четвертям диаметра основания. Крепился он восемью ребрами, воспринимавшими вес фонаря и опиравшимися на углы барабана. Брунеллески возводил купол с 1419 по 1434 г. Для выполнения строительных работ он сконструировал и построил несколько кранов и иных подъемных машин.
Крупнейший художник немецкого Возрождения Альбрехт Дюрер (1471–1528) также широко пользовался математикой как прикладной наукой. В «Наставлении к укреплению городов» (1525 г.) он разработал теорию фортификации. Дюрер применил геометрические методы и к изображению человеческого тела. В своих построениях пользовался циркулем, линейкой и опирался на основы проекционного черчения. Дюрер разрабатывал теорию пропорций, учение о перспективе и проекциях, которые использовал не только в живописи, но и в инженерных работах.
Тем временем в Польше, в старинном поморском городе Торунь, сын краковского купца каноник Николай Коперник (1473–1543), астроном и математик, работал над гелиоцентрической моделью мира. Труд Коперника «Об обращениях небесных сфер» вышел из печати в год его смерти. Введя в теорию строения мира принцип относительности движения, Коперник не только значительно упростил очень сложную кинематику движения планет, разработанную в геоцентрической системе Птолемея, но и доказал, что Земля является одной из планет, вращающихся вокруг Солнца, и что, кроме того, она вращается и вокруг собственной оси. Революционное учение Коперника послужило основанием для развития науки о Вселенной. Впервые была поставлена задача о движении небесных тел не кажущемся, а естественном, чем подтверждена догадка древних астрономов и заложены основы новой науки – небесной механики.
В эпоху позднего Ренессанса (ХVI в.) все больше работ посвящается проблемам прикладной механики. В 1537 и 1546 гг. вышло в свет два труда Никколо Тартальи (1499-1557), которыми были заложены основы теории полета снаряда, брошенного под углом к горизонту. Тарталья пользовался теорией импетуса, сопротивления воздуха он не учитывал. Его ученик Джованни Баттиста (1530-1590) развил учение о моменте силы относительно некоторой точки. В 1586 г. он высказал мнение, что тело, вращающееся вокруг точки, в случае нарушения связи с этой точкой полетит по касательной к окружности, а не по радиусу, как думали до того времени. Еще один ученый Бенедетти был последователем Коперника и в своих сочинениях приводил некоторые доказательства его гипотезы; он также развил теорию равновесия жидкости в сообщающихся сосудах.
Важных результатов в области прикладной механики удалось достичь выдающемуся итальянскому ученому-энциклопедисту Джироламо Кардано (1501-1576). В особенности он прославился как математик и медик, но с воодушевлением занимался и астрологией. В области механики он изучал сопротивление среды движению тел. Известно его доказательство невозможности вечного движения: подобно Леонардо, Джироламо учитывал вредные сопротивления. Кардано довольно основательно разработал теорию передач, к числу его достижений в этой области слудет отнести идею определения передаточных отношений путем подсчета чисел зубьев зубчатых колес. Ему также принадлежат некоторые изобретения в часовом искусстве и в практической гидравлике. Занимался Кардано и мельничным делом: в частности, опубликовал одно из первых описаний ветряной мельницы.
Как видим, в эпоху Ренессанса основная «работа» по созданию науки о движении выпала на долю инженеров и практиков, и занимались они главным образом прикладными вопросами. Это было совершенно естественно. Официальная наука, которую преподавали в университетах и которая в существеннейшей части основалась на рассуждениях, себя исчерпала и начала тормозить развитие прогресса. Разделение науки на схоластическую - науку рассуждения и практическую - науку наблюдения и опыта постепенно принимает организационные формы. В первой половине ХV в. возникают кружки ученых (пользующиеся иногда поддержкой князей и иных влиятельных лиц), которые получают название академий. Так, в 1438 г. Козимо Медичи основал во Флоренции Платоновскую академию, в 1478 г. в Риме возникает Академия святого Луки, в 1542 г. – Витрувиевская академия, затем Академия дей Линчей (1603 г.) и Академия дель Чименто (1607 г.). Не все академии оказались жизнеспособными, но некоторые из них сумели сплотить постоянные коллективы участников, получить финансовую поддержку от власть имущих и стать официальными научными учреждениями. Некоторые академии приняли на себя образовательные функции. К примеру, в ХVI в. Флорентийская академия искусств стала чем-то вроде политехнической школы: как и в университетах, здесь преподавалась математика, но уже не чистая (арифметика, алгебра, геометрия), а прикладная, которую можно было применять для решения задач техники и искусства.
Складывались условия для научной революции, формирования новой науки, основанной на эксперименте, опыте. Постепенно в недрах цехового производства развивается капиталистическая мануфактура, которая пока все еще основывается на ручном труде: машины продолжают заменять лишь физическую силу человека. Мануфактуры не могли обойтись без достаточно усовершенствованной механической техники: подъемных приспособлений, печатных, маслобойных и монетных прессов, ткацких станков, бумажных и пороховых толчей, обычно с кулачковыми приводами, и т.п. В качестве энергетической системы применялись водяные колеса-приводы с использованием силы людей и животных, ветряные мельницы (при помоле муки). Такой была техника развивающихся мануфактур.
В период ХVI-XVII вв. появляется целый ряд сочинений инженеров, в частности, Агостино Рамелли (1530-1590), Генриха Цейзинга (ок. 1560-1613), Соломона де Ко (1576-1630), Каспара Шотта (1591-1670) и др. Теоретическое сочинение по механике «Теория равновесия простых машин» написал около 1577 г. Гвидо Убальдо дель Монтес (1545-1667), тосканский военный инженер. Через 20 лет, в 1597 г., Буонай Уто Лорини, военный инженер, служивший у Козимо Медичи, выпустил трактат «Об укреплениях», в котором свой практический опыт подтверждает теоретическими изысканиями. Он обращает внимание, в частности, на тот факт, что при расчете равновесия рычага нельзя исходить лишь из веса нагрузок и их расстояния от точки подвеса, но следует учитывать и собственный вес рычага.
Расширяются познания и в строительной механике. Итальянский математик Б.Бенедетти уже знает основы теории статических моментов; предполагает, что тела падают с одинаковой скоростью вне зависимости от их веса. Голландский инженер Симон Стевин (1568-1620) разработал теорию наклонной плоскости и установил, что если три силы находятся в равновесии, то их значения относятся как стороны треугольника, параллельные этим силам.
Появляется много машин, оснащенных новыми механизмами. А. Рамелли в сочинении «Разнообразные и искусные машины» (1588 г.) привел изображения передаточных механизмов – зубчатых, винтовых, цепных - и дал описание различных, конструкций насосов. Профессор математики Вюрцбургского университета Шотт описал сложные установки, например, систему механизмов пивоваренного завода.
Развитие инженерной деятельности, вызванное с усложнением машин, заставило обратиться к вопросам прав собственности по отношению к профессиональным секретам. Отдельные патенты выдавались и в середине века. К концу ХV в. Венеция имела уже достаточно развитую патентную систему. В ХVІ в. патенты и привилегии широко выдаются во Франции, Нидерландах, в империи Габсбургов.
В конце ХVІ и на протяжении ХVII в. в теоретическом естествознании, математике и механике происходит длинная цепь открытий и разработка теорий. Результатом интенсивной деятельности ученых оказалась новая система миропознания. Этот период вошел в историю под названием научная революция: разрушались устоявшиеся представления о мире, природе, материи и движении, происходила крутая ломка уже сложившихся объяснений явлений природы, их использования, формировался новый метод мышления. Революция в науке началась с открытий Н. Коперника. Затем И. Кеплер (1571-1630), «упорядочил» Солнечную систему. Для механики наибольшее значение имели открытые И. Кеплером три закона движения планет вокруг Солнца, которые гласили:
I. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце;
II. Площади, описываемые радиусом – вектором планеты, в равные времена, равны между собой;
III. Квадраты времен обращения планет относятся как кубы их средних расстояний от Солнца.
Первые два закона Кеплер опубликовал в сочинении «Новая астрономия» в 1609 г., третий – в 1619 г. в трактате «Гармония мира». В динамике он высказал ряд мыслей об инерции и о притяжении тел как о всеобщем законе.
Зачинателем и теоретиком экспериментального метода в естественных науках считается английский философ и государственный деятель Френсис Бэкон (1561-1626). Нельзя сказать, что его личный вклад в естествознание был значительным. Вместе с тем Бэкон обосновал экспериментальный метод исследования, объявил физику «матерью всех наук» и отделил науку от теологии. Для этого надо было иметь немалое мужество и смелость. Начиная с ХVII в. экспериментальный метод становится господствующим, а главные интересы ученых сводятся к задачам механики. Даже революция в математике была обусловлена развитием науки о движении и о силах, его производящих.
Этот период характеризуется широкой постановкой и решением задач механики. Ученые систематизировали познания по статике, а полученные законы применяли для решения проблем прочности материалов и гидравлики. На основе динамических идей схоластов разрабатывается динамика, которая сразу, же распространяется на баллистику, решаются задачи геометрии движений, и, пожалуй, лишь учение о машинах остается на уровне чистого описания, так как рабочие скорости были ничтожны и для расчета действия машин достаточно было элементарных законов статики.
В 1586 г. в Лейдене был опубликован на фламандском языке трактат о статике, который написал Симон Стевин. Автор стремится «очистить» статику от несвойственных ей учений, поэтому «отбрасывает» движение машин, сопротивления в машинах и те доказательства теорем статики, которые основаны на рассмотрении виртуальных скоростей. Интересно предложенное ним решение задачи о равновесии тела на наклонной плоскости. Он исходит из положения о невозможности вечного движения и в этом отношении является приемником Леонардо да Винчи и Кардано.
Симон Стевин внес также важный вклад в развитие гидростатики, предложив принцип отвердения. В соответствии с которым твердое тело плотности, равной плотности воды, будет находиться в воде в состоянии равновесия.
Значительна роль в становлении механики как науки выдающегося ученого Галилео Галилея (1564-1642). Он изучал медицину, а затем математику, к которой тогда относилась механика, оптика, гидравлика, астрономия и часть технических знаний. Физикой же тогда назывались и элементы знаний из биологии, физиологии, геологии и т.п., т.е. то, что можно было бы назвать естественной историей. Занимаясь традиционной механикой схоластов, он все же приоритет отдавал практической механике. В 1594 г. Галилей прочел в Падуанском университете курс лекций по механике, который был опубликован в Париже лишь в 1634 г. Содержание этих лекций относится, собственно, к статике машин. Следуя учению Аристотеля, Галилей оценивает действие машины с помощью «момента» - произведения величины груза на скорость. Он указывает, что при рассмотрении машины нужно знать следующие составляющие: переносимый груз, перемещающую его силу, расстояние переноса и время, которое следует на это затратить. Большое внимание Галилей уделяет изучению движения тел по наклонной плоскости и приходит к формулировке закона падения тел, который стал основополагающим положением новой динамики. Ему принадлежат и другие важные положения, в частности, закон независимого действия сил и закон инерции, который Ньютон назвал «галилеевым законом инерции». Галилей активно поддерживал учение Коперника, невзирая на непринятие и осуждение последнего церковью. В 1632 г. он опубликовал «Диалог о двух главнейших системах мира – птолемеевой и коперниковой». «Диалог…» был запрещен церковью, а сам автор привлечен к суду инквизиции и вынужден был отречься от отстаиваемой им теории.
В 1638 г. была издана еще одна книга Галилея - «Рассуждения и математические доказательства о двух Новых науках». С этой книги начинается история механики материалов и строительной механики. Здесь автор выясняет понятия растяжения и сжатия тел под действием нагрузки, исследует изгиб консольной балки и балки на двух опорах. Правда, не все его выводы оказались правильными. Например, он предположил, что напряжения распределяются равномерно по сечению и в случае растяжения, и в случае изгиба. Галилей выяснил также, что полые балки прочнее тех, которые имеют сплошные сечения. Именно такие балки находят разнообразные применения в технике, а еще чаще в природе (кости птиц, тростники и др.).
Продвижению механики вперед способствовали работы в области теории удара чешского ученого профессора Карлова университета в Праге Иоганна Маркуса Марци (1595-1667). Он рассматривает соударение сферических твердых тел, движущихся по прямой друг против друга, и формулирует четыре закона, очень важных для дальнейшего развития механики.
Значительную работу в области механики проделал ученик Галилея Эванджелиста Торричелли (1608-1647). Продолжая исследования своего учителя, он обобщил знания о брошенном теле, рассмотрев случай, когда тело брошено под углом к горизонту. Успешно занимался он и механикой жидкости – изучал течения жидкостей через узкое отверстие, находящееся в нижней части сосуда.
Необходимо отметить, что при решении различных вопросов механики ученые свои рассуждения подкрепляли примерами из животного мира. Это относится и к Галилею, и к Леонардо да Винчи и др. С другой стороны, успехи механики побудили ученых-медиков искать применение ее законов к решению задач физиологии. Так, выдающийся физиолог и врач Уильям Гарвей (1578-1657), открывший кровообращение в теле, в 1628 г. пробовал количественно оценить объем крови в нем. Это учение, объясняющее физиологические процессы с точки зрения механики, получило название ятромеханики. Виднейшим представителем его был соученик Торричелли, медик и математик Джованни Альфонсо Борелли (1608-1679), профессор Мессинского университета, член Академии дель Чименто. Последователи ятромеханики, возникшей на стыке физиологии и механики и признающей возможность объяснения физиологических явлений с помощью механических аналогий, в дальнейшем смогла разработать и реализовать рабочие механизмы, которые заменили в производстве функции руки человека, а также создать роботы и манипуляторы.
В ХVI-XVII вв., когда набирала силу научная революция, в некоторых странах делались попытки объединить усилия ученых, обменяться определенной информацией. Так, важнейшую роль в объединении ученых сыграл Марен Марсенн (1588–1648), школьный товарищ Декарта, крупный математик, естествоиспытатель и философ. Он был знаком едва ли не со всеми выдающимися учеными того времени - Декартом, Кавальери, Ферма, Паскалем, Робервалем, Торричелли. Именно благодаря Марсенн в 1634 г. на французском языке была издана «Механика» Галилея. Сам Марсенн много занимался этой наукой: исследовал колебания, ставил опыты по гидравлике и гидродинамике, писал о судах, плавающих под водой и многое другое. Владея ценнейшей информацией того времени, Марсенн оказался в центре обмена научными новостями и создал кружок ученых, который уже после его смерти получил правительственный статут (1666 г.) и был преобразован в Парижскую академию наук.
Почти одновременно с Мароном Марсенн в 1645 г. епископ Честерский Джон Уилкинс объединил вокруг себя группу ученых в Лондоне. В 1660 г. этот кружок получил наименование королевского общества и таким образом фактически стал высшим научным учреждением Англии (Оксфорд), в Уставе которого подчеркивалось, что занятия богословием, метафизикой, этикой, политикой, грамматикой, риторикой и логикой для общества нежелательны. Насколько серьезны были задачи этого общества в области естественных наук, создания машин, развития мануфактур!
Эпоха научной революции богата на имена мыслителей, философов, ученых чей вклад в механику не только значителен, но и поучителен. Одним из самых крупных в этой плеяде был Рене Декарт (1596-1650) – философ, физик, математик, физиолог, создатель учения «О картезианстве», которое в значительной степени определило дальнейшее развитие естественных наук. Декарт сделал вклад в рассмотрение понятия силы, дал оценку движения, изучил качение маятника и теорию удара.
Нельзя не назвать и великого ученого из Голландии Християна Гюйгенса (1629-1695), прозванного «гениальным часовщиком всех времен». Особое значение для развития механики имел его трактат «Колебания в часах, или Геометрическое доказательство движения маятников в их применении к часам», опубликованный в Париже в 1673 г. Трактат имел пять частей. В первой части приведено описание новой конструкции маятниковых часов, в которой центр тяжести маятника движется по циклоиде. Вторая посвящена падению тяжелых тел и их движению по циклоиде. В третьей изложена математическая теория эволют и эвольвент, которая, имела не только практическое значение для часового дела, но и фундаментальное для математики и механики: вместе с работами Марсенна и Паскаля по теории рулетты теория Гюйгенса была положена в основу кинематической и дифференциальной геометрии. Четвертая содержит учение о центре качания. Пятая посвящена теории центробежной силы. Гюйгенсу принадлежат многие практические изобретения и глубокие теоретические исследования. Много внимания он уделял проблеме создания универсального двигателя. Вместе с Дени Папеном (1647-1712) работал над сооружением пневматических и гидравлических машин, устройством фонтанов, насосов и многого другого.