67797.fb2
Изучением кривых, в частности, циклоиды, занимался и профессор математики Роберваль (1602-1675). Одновременно с Торричелли ему удалось сформулировать кинематический метод проведения касательной к кривой. С помощью этого метода он построил касательные к большому числу кривых. Одновременно с итальянским математиком Бонавентурой Кавальери (1598-1647) Роберваль разработал так называемый метод неделимых, развитие которого привело к созданию анализа бесконечно малых. Следует сказать, что именно ему принадлежит едва ли не первое в истории механики определение силы. По его словам, сила «есть качество, посредством которого тело стремится перемещаться в другое место, будет ли это место внизу, сбоку или сверху и независимо от того, присуще ли это качество самому телу или сообщено ему извне».1 Роберваль изобрел несколько приборов, в частности, ареометр и «весы Роберваля», проводил он и исследованиями маятниковых часов.
В кружке Мерсенна принимал участие физик Эдм Мариотт (1620-1684), который стал затем одним из первых членов Парижской академии. Это был механик очень широкого диапазона: изучал механику твердого тела, механику жидкостей и газов, построил теорию удара, много экспериментировал. Результатом его опытов с газом (воздухом) стал известный закон Бойля – Мариотта. Изобрел Мариотт и баллистический маятник. В ходе проектирования водопровода для дворца в Версале Мариотту пришлось заняться теорией изгиба балок. Он убедился при этом, что теория Галилея неверна, посколькунапряжения при изгибе распределяются по сечению неравномерно: верхние волокна балок растягиваются, а нижние – сжимаются. Он установил также, что балка с заделанными концами выдерживает вдвое большую нагрузку, чем свободно лежащая на опорах. Исследовал он и прочность труб на разрыв под действием внутреннего давления.
Значительный вклад в становление механики как науки – основы инженерной деятельности внес один из основателей Королевского общества Роберт Бойль (1627-1691), который был физиком, механиком и химиком. Независимо от Мариотта он открыл закон изменения объема газа в зависимости от изменения давления. Все явления, включая и химические, Бойль объяснял с точки зрения механики.
Нельзя не упомянуть и о Роберте Гуке (1635-1703) – крупнейшем английском ученом конца ХVII в. С ним тесно сотрудничал Р. Бойль (усовершенствование воздушного насоса). Гук занимался физикой, механикой, биологией, геологией, физиологией, астрономией, был практикующим врачом и профессором геометрии. Среди его многочисленных изобретений немало относятся к механике: анкерный ход часов, пружина баланса, насосы, приборы для испытания материалов, часовой привод телескопа, «Шарнир Гука». Важнейшим его теоретическим достижением считается разработка доктрины всемирного тяготения. Впервые он высказал соображения относительно гравитации в очень коротком сообщении, прочитанном в королевском обществе весной 1666 г. Гук объяснил движение планет совместным действием гравитации и силы инерции, поставил проблему происхождения гравитации и предложил ее колебательный характер. К 1670 г. Гук установил универсальный характер тяготения. За исключением, быть может, Ньютона, он был единственным мыслителем, который ясно и отчетливо сформулировал эту доктрину. Очевидно, между 1675 и 1679 г. Гук разрабатывал и ее математическую часть. Другим его открытием, также своевременно не оцененным, было объяснение света как «весьма коротких колебательных движений, совершающихся в поперечных направлениях к линии распространения света». Гук установил и закон пропорциональности между значением сил и размером производимых ими деформаций, носящий его имя.
Бессомненно велик и неизмерим вклад в развитие механики английского ученого Исаака Ньютона (1642-1727), члена Королевского общества (с 1672 г.), долголетнего президента этого общества (с 1703 г.). Его труд «Математические основания натуральной философии» (1687 г.) стал основой для создания не только ньютоновской механики, но и нового миропонимания. Его работа как бы завершила научную революцию. Вплоть до разработки теории относительности А.Ейнштейном ньютоновская механика была единственной теорией всех земных и небесных движений; ее значение для техники остается непоколебимым. Ньютон сформулировал закон всемирного тяготения, по-видимому, независимо от Гука и в значительно более общей форме. Им были установлены три знаменитых «аксиомы, или закона движения».
Знаменитый труд Ньютона «Математические основания…» состоят из трех книг. Первая книга посвящена теории всемирного тяготения, вторая – учению о сопротивлении среды, третья – небесной механике. Работы Ньютона касались многих вопросов физики и механики. Он занимался теорией кривых, теорией перспективы. Ему принадлежит заслуга в изложении принципов метода флюкций, а также теоремы этого метода. Правда, следует заметить, что метод флюкций – ньютоновский вариант анализа бесконечно-малых – стал объектом спора о приоритете, возникшего между Ньютоном и Лейбницем в 1699 г.
Готфрид Вильгельм Лейбниц (1646-1716) был ученым-универсалом - математик, механик, физик, философ, занимался логикой, юриспруденцией, историей и богословием, а также психологией, геологией и языкознанием. Он изобрел счетную машину, причем такую, от которой ведут свой род прочие аналогичные изобретения ХVIII-XIX вв., Лейбниц изучал химию, медицину и горное дело, был дипломатом и принимал активное участие в организации Берлинской академии наук. В 1700 г. академия была открыта и Лейбниц стал ее первым президентом. В 1673 г. он избран членом Лондонского королевского общества, в 1700 г. - иностранным членом Парижской академии наук. В 1711, 1712 и 1716 гг. Лейбниц встречался с российским царем Петром І и давал ему советы относительно организации Академии наук в России. Широко занимался методом дифференциального исчисления, создал теорию цепной линии. Разработал основы символического исчисления по геомертрии, ему принадлежит первый опыт алгебраизации анализа.
Человек с таким кругозором, как Лейбниц не мог не оставить глубокого следа в науке, в том числе и механике. Он вводит в механику понятие живой силы, кинематической энергии как меры движения, подходит к формулировке закона сохранения энергии при взаимодействии тел. Картезианцы1 же применяли в качестве движения произведение массы на скорость, т.е. количество движения. Хотя решения задач, выполняемых тем и другим методом, были совершенно одинаковы.
Несмотря на революционные преобразования науки ХVII века, в технике не происходило коренных изменений, и она продолжает развиваться очень медленно. Впрочем каких-то радикальных изменений (особенно в области энергетики) и не требовалось, поскольку машины оставались такими же, как и в прошлом веке. Практическая же механика не стояла на месте. Большие изменения наблюдались в строительстве, возник архитектурный стиль барокко, который получил широкое распространение в Европе и который требовал новых инженерных решений, создания механики материалов. Практика и ее запросы явились, несомненно, одной из побудительных причин для теоретических и экспериментальных выводов. Факты свидетельствуют, что в эпоху научной революции были заложены основы различных направлений прикладной механики, но уровня науки она достигала лишь более чем через столетие.
Важным в формировании механики как науки оказался ХVIII век - век, когда происходили значительные перемены в производительных силах – техническая революция, а вслед за ней и промышленный переворот. Сущностью этих революционных премен стало изобретение машин, позволивших заменить человека в прядении и ткачестве, появление силового универсального парового двигателя, создание суппорта токарного станка (т.е. машины, заменившей руку человека).
Техническая революция дала толчок развитию различных отраслей техники, а следовательно, и отраслей промышленности. В связи с этим возникла потребность в инженерах, которых ранее готовили путем индивидуального ученичества. Поэтому в ХVІІІ в. повсеместно организуются технические школы. Однако механиков и технологов на протяжении всего ХVIII в. никто не готовил. Мельницы, машины и различные технологические установки строили механики-практики, профессия которых зачастую была наследственной. Такой механик, отмечают историки техники, был иногда единственным представителем механических искусств и наивысшим авторитетом во всем, что касалось применения воды и ветра в качестве источников энергии для мануфактур. В своей округе он был механиком-универсалом и к тому же умел работать на токарном станке, знал слесарное, кузнечное и столярное дело. Он ремонтировал и исправлял установки, сооружал новые и запускал их, обслуживал все близлежащие населенные пункты и производственные предприятия, ибо как же говорилось нередко был единственным механиком в округе.
Таким образом, механик ХVIII в. был чем-то вроде бродячего инженера и ремонтера в одном лице. Он хорошо знал арифметику, кое-что из геометрии, иногда имел достаточно глубокие познания в практической математике, умел измерять, работал с уровнем, мог рассчитать скорость, определить мощность и нагрузку машины, составить чертеж, построить здание, колесо и плотину, соорудить мост. Все это умел делать английский «millwriqkt» и западноевропейский практик-механик; на Руси такой мастер на все руки назывался розмыслом.
Небольшие познания в математике имели и архитектор-практик, и военный инженер, и горный мастер начала ХVIII в. С развитием производительных сил инженеров требовалось все больше, и в разных странах Европы стали возникать технические школы. Сперва военно-инженерные, артиллерийские, морские и горные, затем – путейские. Кстати, Россия одной из первых пришла к необходимости создания технических школ – Петр I заставлял изучать инженерное дело не только в Навигацкой и Инженерной школах и Морской академии, но и в духовных училищах.
Следует заметить, что преподавание механики в университетах и в технических школах было принципиально различным. Так, в университетах читался курс «прикладной», или «смешанной», математики, в программу которого, наряду с элементами статики, входили также некоторые сведения из оптики, гониометрии, космографии, фортификации, архитектуры, артиллерии и еще десятка наук. Для специальных школ это не годилось, поэтому начиная с 60-х годов ХVIII в. стали появляться учебники, в которых, помимо статики, в большем объеме излагались элементы динамики. Так, в 1764 г. в Петербурге вышел из печати учебник механики Л. П. Козельского. Подобные книги появлялись и в других странах. Во Франции учебник механики издал в 1764 г. известный астроном Н.Л.Лакайль, а 1774 г. вышел «Трактат по механике» Ж.Ф. Мари. Эти ученики содержали сведения не только по статике, но и по динамике.
Развитие механики в ХVIII в. в значительной степени находилось под влиянием школы Бернулли. Братья Бернулли - Якоб (1654-1705) и Иоганн (1667–1748) стали родоначальниками целой династии математиков и механиков. В области точного естествознания в ХVIII в. работали: племянник Якоба и Иоганн Бернулли – Николай I (1687-1759), сыновья Иоганна - Николай II (1695-1726), Даниил (1700-1782) и Иоганн II (1710-1790), сыновья Иоганна II – Иоганн III (1744-1807) и Якоб II (1759-1799). К школе Бернулли принадлежали также ученики Иоганна I – Г. Ф. Лопиталь (1661-1704) и Леонард Эйлер (1707–1783), слушавший его лекции в Базельском университете.
После Ньютона и Лейбница братья Бернулли и Лопиталь были первыми математиками, обладавшими техникой дифференциального и интегрального исчисления, с их помощью которого они решили несколько важных задач механики (изохронной кривой и др.). Иоганн Бернулли в 1696 г. трудился над задачей о брахистроне – кривой, по которой тяжелое тело покрывает расстояние между двумя точками в кратчайшее время.
В 1688 г. математик Пьер Вариньон (1654-1722) представил Парижской академии наук доклад о проекте новой механики.
Первым трактатом, в котором была построена система механики, была «Механика, или Наука о движении» Леонарда Эйлера, где материал был изложен аналитически (1736). В своем трактате Элейлер развивает динамику как рациональную науку, в частности исследует динамику точки, вводит понятие мощности или силы.
Следующий шаг в этом направлении сделал Д’Аламбер. Его научный труд по динамике был опубликован в 1743 г. Жан Лерон Д’Аламбер (1717-1783) - один из самых блестящих ученых ХVІІІ века. Он утверждал, что механика строится на основе трех принципов: инерции, сложного движения и равновесия. Считал, что необходимо учитывать лишь две причины изменения состояния тела: удар и силу притяжения. Первая часть работы Д’Аламбера посвящена статике, вторая – динамике системы со связями. Трактат Д’Аламбера отличается весьма сложными рассуждениями и не менее сложной терминологией. Практически он не повлиял на развитие методов механики. В качестве активного автора энциклопедии (начала выходить в 1751 г., к 1780 г. все издание составило 35 томов) Д'Аламбер написал статьи, касающиеся математики, механики и других отделов точного естествознания, а также введение, в котором изложил свой проект систематизации наук.
Наряду со становлением механики, как основы инженерной деятельности, ХVIII в. характеризуется интенсивной изобретательской деятельностью, которая дала практической механике развится в различных ее ответвлениях. Появляются новые станки и технологические машины в Англии, Франции и России. Ведется активная работа по созданию универсального парового силового двигателя. В 1712 г. атмосферную машину для откачки воды из шахт сконструировал английский кузнец Томас Ньюкомен (1663-1729), решив таким образом задачу преобразования энергии пара в механическую. В 1722 г. машины Ньюкомена были установлены в Кесселе, Вене и Хемнитце. Первая машина Ньюкомена попала в Россию в конце века. Ее приобрели для Кронштадтского порта, хотя в самой России в то время пошла на слом значительно лучшая машина – машина Ползунова.
Продолжаются интенсивные поиски вечного двигателя. Появляется целый ряд заявок, хотя невозможность его построения доказал еще Леонардо да Винчи. Эти поиски стимулировали изобретательскую работу над автоматами. Сначала это были лишь механические игрушки, но идеи, заложенные в них, к концу ХVIII в. приводили к важным результатам. Так, замечательный французский механик Ж. Вокансон (1709–1782) изобрел несколько остроумных автоматов, имитировавших движения человека и животных. Он же в 1745 г. создал механический ткацкий станок.
С развитием торговли и расширением городов непрерывно возросла роль дорог и водных путей сообщения. Их строительство ставило перед механикой много вопросов. В частности, в середине ХVIII в. в Испании велись работы по сооружению Кастильского канала. Тогда же в Англии был прорыт первый судоходный канал. В России строительство каналов было начато при Петре I. Для снабжения Петербурга были прорыты два канала: Ладожский (длиной 104 версты), соединявший Волхов и Неву, и Вышневолонский, соединявший реки Тверцу и Мсту. Впоследствии было создано две системы: Тихвинская (связала реки Самину и Тихвинку), и Мариинская (соединила Ковжу и Вытегру). Так появилась возможность попасть водным путем из Каспийского в Балтийское море, а из столицы – непосредственно в центральные губернии России. Наиболее важная часть всей системы каналов – Вышневолоцкая – была существенно усовершенствована известным русским гидротехником М. И. Сердюковым (1677–1754). Он в течение 1720–1740 гг. построил целый комплекс гидротехнических сооружений и обеспечил бесперебойное движение судов.
Исследования в механике в рассматриваемый период захватывали все новые и новые области. Например, еще в 1662 г. П. Ферма (1601–1665) применил к решению одной из задач оптики принцип кратчайшего времени. В 1744 г. подобный принцип в механике был развит французским астрономом П. Мопертюи (1698–1759). В соответствии с этим принципом при всяком изменении в природе количество движения, которое потребно для такого изменения, является наименьшим возможным. В этом же году Эйлер нашел для данного закона математическую формулировку, исследуя форму кривых, которые принимает гибкий стержень при различных условиях нагрузки. Эту задачу он решил с помощью разработанного вариационного исчисления. Рассматривал также задачи о поперечных колебаниях стержня. В 1757 г. Эйлер опубликовал работу «О силе колонн», в которой изучил проблему продольного изгиба колонн и вывел формулу для определения критической нагрузки. В других работах он возвращается к понятиям покоя и движения. Следует заметить, что Эйлер написал более 800 работ, многие из которых представляли научную ценность.
Значительное место в ХVIII в. занимает изучение проблемы сопротивления среды движению. Одним из первых, кто обратил внимание на сопротивление воздуха, был Тарталья. Этой проблемой занимались и другие ученые. Так, Г. Амонтон (1663–1705) пришел к заключению, что трение между твердыми телами зависит лишь от относительного давления. В 1704 г. Паран (1966–1716) установил понятие угла трения, который он назвал углом равновесия, а тангенс этого угла – коэффициентом трения. Мусхенбрук (1692–1761) заметил, что на значения трения влияет и поверхность соприкосновения, а в 1722 г. М.Камю нашел, что трение движения меньше, чем трение покоя. Трение изучали Лейпольд, Белидор, Эйлер. Например, Эйлер установил, что коэффициент трения является числом близким к 1/3. Поиски значения силы сопротивления среды начались позже – с середины ХVIII в. Французский ученый Ж. Ш. Бордс (1733–1799) в 1762 и 1765 гг. вывел, что сопротивление жидкости движущимуся в ней тел пропорционального квадрату скорости.
В последней четверти ХVIII в. изучением трения занялся Шарль Кулон (1736–1806). В 1781 г. он опубликовал «Теорию простых машин с точки зрения их частей…», в которой развил теорию трения и вывел законы, которые стали носить его имя. В это время делаются попытки создания теории машин.
Создание теории машин связано с именами Монжа и его ученика Карно. Гаспар Монж (1746–1818) учился на кондукторском отделении Мезерской военно-инженерной школы, позже серьезно изучал начертательную геометрию и создал техническое черчение, явился инициатором преподавания курса «Построение машин» и приблизился к формулировке основ классификации механизмов.
Большой вклад в механику внес Лазар Карно (1753-1823), который окончил ту же военно-инженерную школу, что и Монж. В 1783 г. Карно опубликовал «Опыт о машинах вообще», а в 1803 г. книга была переиздана под названием «Основные принципы равновесия и движения». Кстати, Карно считал, что механика по своей сущности является наукой экспериментальной и этим подтверждал ее право на самостоятельное существование вне границ математики. Свою систему он строил на основании изучения движения, отрицая возможность построения ее из «метафизического и темного понятия силы». Фундаментальным законом механики Карно считал закон количества движения. Все законы и теоремы механики он рассматривал применительно к машинам. Книгу его уже можно отнести к прикладной механике.
Формирование механіки и как науки в XVIII в. завершил Лангранж. Его классическая работа «Аналитическая механика» вышла в Париже в 1788 году, в которой он считал, что в общем-то, он обобщил и окончил труды своих предшественников. Динамика Лангранжа основана на законе, который носит название уравнения Д’Аламбера – Лангранжа. Из этого уравнения он выводит три закона: движения центра тяжести системы, моментов количества движения и живой силы. Ланггранж также формирует принцип наименьшего действия и показывает, как из последнего можно было бы получить исходное уравнение. Далее он выводит уравнения, получившие название уравнений первого и второго рода. Однако следует признать, что Лангранж не завершил механику и не сделал ее полного свода. Еще при его жизни начали формироваться новые направления: теория упругости, механика материалов, механика машин.
Большой вклад в развитие механики сделал П. С. Лаплас (1749–1827). Так 1799–1800 гг. он опубликовал два первых тома «Небесной механики». И, что самое существенное, в начале ХIХ в. начали весьма интенсивно развиваться именно те направления механики, которые основывались на экспериментальных законах и пользовались экспериментальными методами исследования.
Эксперимент еще в XVIII в. был характерен не только для науки, но и для техники, особенно для техники промышленного переворота. В принципе, все новые машины, заменившие руку человека, явились результатом глубокого и длительного экспериментирования. Так было и с паровой машиной Джеймса УАтта, который добился успеха в результате большой серии экспериментов. Следует сказать, что машина Уатта до конца ХVIII в., была государственным секретом Англии, и вывоз таких машин из страны был запрещен.
Паровые машины собственными усилиями стали строить во Франции, России, Германии, США и в других странах. Так, в США Оливер Ивэнс (1756–1819) сконструировал паровую машину высокого давления (1ОАТ), построил первый в США локомобиль и изобрел прямило («прямило Ивэнса»). Это была первая попытка после Уатта найти механизм, преобразующий поступательное движение во вращательное. Можно сказать, что к началу ХIХ в. время практический механики проходит и наступает эра прикладной науки. Кстати, в Англии – стране самой передовой техники того времени – развитие механики отстает. Но промышленный переворот, поднявший Англию на более высокую ступень экономического развития, не мог не повлиять на английскую науку. Быстро развивающаяся машинная промышленность (производство машин) требовала ответа на возникающие вопросы, и она не могла долго ждать. Поэтому с начала ХIХ в. наука в Англии приобретает практический характер. Запросы промышленности стимулируют появление новых наук – «технических», основанных на наблюдении и опыте и уже во вторую очередь пользующихся расчетно-математическими методами. Что касается «старых» наук, то здесь в основном развиваются их прикладные направления. Очевидно, именно в связи с этим в Англии до середины ХІХ в. не открываются технические школы. Англичане пользуются старыми, традиционными методами ученичества, но знания в области механики продолжают накапливать и совершенствовать.
Существенный вклад в механику упругого тела сделал Томас Юнг (1775–1829). Он в 1807 г. опубликовал в Лондоне «Курс лекций по натурфилософии и по механическим искусствам», в котором изложил сведения из самых различных областей знания. Во втором томе этого энциклопедического курса содержится определение модуля, позже названного модулем Юнга, который стал важнейшим понятием новой отрасли механики – теории упругости. Юнг показал также, что срез является одной из упругих деформаций, сформулировал понятие нейтральной линии при изгибе. Развитие теории упругости продолжили ученые, среди которых выдающуюся роль сыграли французы Навье, Коши и Сен Венан.
Значительный вклад в развитие механики, особенно на рубеже ХVIIІ–XIX вв., внесли ученые Парижской политехнической школы. Так, один из ее организаторов Пьер Симон Лаплас создал небесную механику как новое направление науки. Он завершил объяснение движения тел Солнечной системы на основе закона всемирного тяготения, в результате чего развил свою знаменитую космогоническую гипотезу. Лаплас сформулировал задачу о трех телах, изучил движения небесных тел, в частности Луны, и разработал теорию приливов и отливов, которая стала существенным вкладом в гидродинамику. В его «Небесной механике», состоящей из пяти томов, механика рассматривалась как физическая наука. Лаплас является одним из основоположников молекулярной механики – механики, основанной на молекулярной теории строения вещества (в первой половине ХІХ в. понятие молекулы и атома считались тождественными). Молекулярным притяжением тогда объясняли химическое сродство, явление упругости, капиллярность и иные физические явления, не поясняемые теорией всемирного тяготения.
Физическую сущность механики подчеркивали и другие французские ученые – Пуансо, Пуассон, Навье. Так, воспитанник Политехнической школы Луи Пуансо (1777–1859) ввел в механику понятие «пара сил» – двух равных сил противоположного направления, приложенных к разным точкам плоскости. Он показал, что значение пары сил равно произведению силы на кратчайшее расстояние между направлениями сил. Вообще, понятие «пары сил» было важнейшим в статике Пуансо, с его помощью он вывел теорему о том, что любое число сил, действующее на твердое тело, можно привести к силе и к паре сил. Пуансо разработал теорию вращения тел, установил один из случаев вращения гироскопа, сформулировал понятие эллипсоида инерции. Механика Пуансо была физической в еще большей степени, чем механика Лапласа, и в значительной мере стала основой для разработки прикладной механики.
Существенный вклад в развитие механики внес Симеон Дени Пуассон (1781-1840). Будучи учеником Лапласа, он являлся одним из самых ярких теоретиков молекулярной механики, занимался небесной механикой. Успешно решал задачи полета снаряда и отдачи орудия, издал «Учебник механики» (1811 г.), где изложил основы механики как физической науки и применил ее к различным задачам физики, астрономии и артиллерии.
Среди выпускников Политехнической школы выделяется также Луи Мари Анри Навье (1785–1836). Работая одно время инженером, он исследовал ряд вопросов практической механики, активно участвовал в создании теории упругости и сопротивления материалов. Навье развил теорию изгиба балки, предложил общий метод решения статически неопределимых задач, получил дифференциальные уравнения равновесия упругого изотропного тела. Используя метод Д'Аламбера он вывел общие уравнения движения упругого тела. Его работы лягли в основу строительной механики.
Появление локомотива, изобретение американским инженером Робертом Фультоном (1765–1815) парохода, способствовали развитию речного и морского механического транспорта, а это, в свою очередь, привлекло внимание ученых к вопросам динамики машин. Аварии локомотивов и пароходных машин происходили по разным причинам: не были известны их динамика, поведение материалов, из которых они сооружались; недостаточно была разработана и техническая термодинамика. Поэтому железные дороги стали своего рода лабораторией, на базе которой создавались прикладные и технические науки, в том числе строительная механика, теория сооружений и в значительной степени динамика машин.
В последнем направлении успешно работали почти одновременно Жан Виктор Понселе (1788–1867) и Гюстав Гаспар Кариолис (1792–1843). Так, в 1829 году Кариолис опубликовал работу «Вычисление действия машин», в которой поставил вопросы динамики машин. Ему принадлежит известная теорема о трех слагающих полного ускорения: относительной, переносной и добавочной. Понселе создал стройную систему динамики машин, основанную на глубоком изучении паровой машины. Одновременно с Кориолисом он работал над уточнением понятия механической работы, применил это понятие к вычислению действия машин.
Следует заметить, что английское машиностроение в первой половине ХIХ в. стояло значительно выше машиностроения стран континентальной Европы.
В Англии зарождается и техническая пресса. В 1797 г. вышел первый номер «Журнала Никольсона», посвященного практическим вопросам технических знаний; в 1798 г. – «Философский журнал», также посвященный техническим наукам. В 1841 г. в Англии были опубликованы две книги по вопросам прикладной механики: «Механика инженерного дела» Уэвелла (1794–1866) и «Принципы механизмов» Роберта Виллиса (1800–1875). Уэвелл систематизитровал практические задачи механики; Виллис занимался проблемами практической кинематики, в частности, ввел понятие механизма как элементарной составляющей машины. Он внес также большой вклад в создание теории зубчатых зацеплений.
В те же годы профессор математики Кембриджского университета Ч. Беббидж (1792–1871) трудился над созданием вычислительной машины. Однако задача, которую он поставил, не могла быть решена в то время. Еще не было создано соответствующих технических условий. Машина Беббиджа предполагала программное обеспечение. Кстати, первым программистом стала женщина-математик, дочь Байрона Ада Ловлейс (1815–1852).
В первой половине ХIХ в. работал замечательный английский механик Уильям Гамильтон (1805–1865). Он проводил исследования в области оптической механики, в частности, создал оптику по образцу механики Лагранжа, сформулировал закон наименьшего действия. Дальнейшая разработка этого закона привела к созданию метода интегрирования задач динамики Гамильтона – Якоби – Остроградского.
В 1851 г. в Лондоне открылась первая Всемирная выставка, на которой были показаны машины, построенные в различных странах мира. Выставка продемонстрировала значительный прогресс в области мирового машиностроения, который в том числе отражал и достижения теоретических наук, в частности механики. Поскольку теория не могла еще ответить на многие вопросы практики, вслед за прикладными возникают технические науки, основанием для которых служат наблюдения и опыт. Их научная база была неглубока: из разных соображений, иногда несовместимых между собой, строились формулы со многими эмпирическими коэффициентами. Следует заметить, что число этих наук непрерывно расло. В частности, появление железных дорог дало толчок для создания строительной механики и теории сооружений.
В строительной механике средины ХIХ в. возникает проблема расчета свода как упругого тела, которая вначале пытался решить ученик Клапейрона – Шарль Бресс (1822–1883). Затем его работу самостоятельно повторил немецкий ученый Отто Мор (1835–1918). Вскоре появилась новая задача – теория ферм. Быстрое развитие железных дорог выдвинуло на первый план необходимость расчета и строительства мостов. С середины ХIХ в. теория ферм становится одной из важнейших задач теории сооружений. Важные исследования в этом направлении выполнил русский инженер Д. И. Журавский (1821–1891). Он принимал участие в проектных и строительных работах при сооружении мостов Петербургско-Московской железной дороги, а затем руководил Департаментом железных дорог. При расчете многопролетной неразрезной фермы Журавский впервые применил метод деформаций. Дальнейшие вычисления в области теории ферм проводили Шведлер (1823–1879), Ламе и Максвелл.
К середине ХIХ в. начались поиски графических методов решения задач механики. Векторное исчисление находилось в процессе становления, но уже давно умели воспроизводить параметры статики графическими методами. В 1687 г. Ньютон и Вариньон установили закон параллелограммы сил, ставший основанием для создания графических методов. Позже Вариньон разработал метод веревочного многоугольника. Ряд графических построений предложили Клапейрон и Ламе. Дельнейшее развитие графическая статика получила в трудах профессора Римского политехникума Луиджи Кремона (1830–1903). Метод графического расчета ферм, созданный им на основе идей Максвелла, носит название диаграммы Кремона – Максвелла. Так в механику проникли графические методы расчета. Начиная с 70-х годов ХІХ в. эти методы применяются и в учении о машинах, где создаются важные разделы графической динамики и графической кинематики. Такой обмен методами и идеями, несомненно, был прогрессивным и способствовал развитию и возникновению новых направлений науки.
К концу ХIХ в. развитие механической техники еще более ускорилось. Были созданы новые машины – гидравлические и паровые турбины, электродвигатели, двигатели внутреннего сгорания. С появлением последних облегчилась работа над созданием самодвижущихся экипажей – автомобилей – и аппаратов тяжелее воздуха для воздушного пространства – самолетов. Таким образом, парк энергетических машин расширился, хотя и в не такой степени, как парк машин технологических, который увеличивался чрезвычайно быстро. Сам этот факт весьма интересен. Совершенствование старых и создание новых рабочих машин отвечало потребностям капиталистического производства, поскольку машины для осуществления технологических процессов гарантировали увеличение прибылей. Разработке энергетических машин отводилась второстепенная роль, так как к паровым за 100 лет привыкли, а к новой энергетике относились без особого доверия. С этим обстоятельством связан и другой факт из истории науки о машинах. Паровая машина в начале ХIХ в. была достаточно хорошо изучена, и ее теория составила основное содержание важнейшей отрасли механики – динамики машин; теорию же «новых» машин создать в ХIХ в. еще не удалось, да в этом и не было необходимости, поскольку разнообразные типы машин возникали как экспериментальные модели и их рабочие и технологические возможности оценивались практикой и временем.
Большое значение для изучения динамики кривошипно-ползунного механизма паровой машины имела монография австрийского инженера Иоганна Радингера (1842–1901) «О паровых машинах с высокой скоростью поршня», в которой был приведен графический расчет действия сил в этом механизме. Интересны и работы Эрнеста Отто Шлика (1840–1913) – немецкого корабельного инженера, опубликовавшего исследование об уравновешивании поступательно движущихся масс.
60-е гг. ХIХ в. характеризуются активизацией интереса к теоретической кинематике. Среди работ на эту тему необходимо отметить «Трактат чистой кинематики» (1862 г.) профессора Политехнической школы Анри Резаля (1828–1896). Важнейший вклад в развитие данного направления внесли русский ученый П. Л. Чебышев, который ввел в теорию механизмов математические методы; англичанин Джеймс Джозеф Сильвестр и другие ученые, которые работали над воспроизведением математических зависимостей при помощи механических средств.
Значительных результатов в области прикладной кинематике удалось достичь выдающемуся немецкому машиностроителю Францу Рело (1829–1905). Он сформулировал задачи кинематики и указал на важнейшую структурную особенность механизмов – существование кинематических пар, т.е. сочетаний звеньев и кинематических цепей, соединений звеньев с помощью кинематических пар.