68750.fb2 Конец науки: Взгляд на ограниченность знания на закате Века Науки - читать онлайн бесплатно полную версию книги . Страница 26

Конец науки: Взгляд на ограниченность знания на закате Века Науки - читать онлайн бесплатно полную версию книги . Страница 26

— Вот урок, который я не могу внушить этим людям, — сказал Минский о своих коллегах, занимающихся искусственным интеллектом. — Мне кажется, что проблема, которую мозг в большей или меньшей степени решил, — это как организовать различные методы для работы, когда отдельные методы слишком часто не срабатывают.

Единственный теоретик, который, кроме него, на самом деле уловил сложность разума, мертв, сказал Минский.

— У Фрейда на сегодняшний день лучшие после меня теории того, что требуется для создания разума.

По мере продолжения интервью упор Минского на разнообразие принял метафизический и даже моральный оттенок. Он считал, что в проблемах его области — и науки в целом — виновато то, что он назвал «принципом инвестиций». Он определил его как склонность людей продолжать делать что-то, что они научились делать хорошо, а не переходить к новым проблемам. Повторение или, скорее, всецелая приверженность чему-то одному, казалось, наводит на Минского ужас.

— Если есть что-то, что вам очень нравится, — утверждал он, — то вам следует смотреть на это не как на то, что делает вам хорошо, а на тип рака мозга, поскольку это означает, что некая малая часть вашего разума решила, как отключить все остальное.

Причина, по которой Минский освоил столько наук за время своей карьеры — он разбирается в математике, философии, физике, неврологии, роботехнике и информатике, а также написал несколько научно-фантастических книг, — заключается в том, что он научился наслаждаться «чувством неловкости», порождаемым тем, что приходится учить нечто новое.

— Это так стимулирует, когда ты не можешь что-то сделать. Это редкий опыт, который надо ценить. Он не продлится долго.

В детстве Минский был необыкновенно музыкальным ребенком, но в конце концов решил, что музыка — это скучно.

— Я думаю, что люди любят музыку потому, что она подавляет мысль — неправильный тип мысли, — а не порождает мысль. — Минский до сих пор время от времени пишет «в стиле Баха» — у него в кабинете стоит электронное пианино, — но он пытается подавлять в себе эти порывы. — На определенном этапе я должен был убить в себе музыканта, — сказал он. — Время от времени он проявляется вновь, но я расправляюсь с ним.

Минский не терпит тех, кто утверждает, что разум является слишком тонкой штукой, чтобы понять его.

— Посмотрите, до Пастера люди говорили: «Жизнь отлична. Ее нельзя объяснить механически». Это то же самое.

Но окончательная теория разума, подчеркнул Минский, будет гораздо более сложной, чем окончательная теория физики, которая, как он считает, тоже достижима. Вся физика частиц может быть сведена до страницы уравнений, сказал Минский, но чтобы описать все компоненты разума, потребуется гораздо больше места. В конце концов, посмотрите, сколько потребуется, чтобы точно описать автомобиль или даже просто свечу зажигания.

— Потребуется книга достаточно большого объема, чтобы объяснить, как следует сплавить ее с керамикой, чтобы она не давала перебоев в работе.

Минский сказал, что истинность модели разума может быть продемонстрирована несколькими путями. Во-первых, машина должна быть в состоянии повторить человеческое развитие.

— Машина должна быть способна начать как ребенок и расти, смотря фильмы и играя в игрушки.

Более того, по мере совершенствования технологий ученые смогут определить, подтверждает ли модель нервные процессы, идущие в живых людях.

— Мне кажется идеально разумным, что, после того как вы получили мозговой сканер с разрешением в один ангстрем (одна десятимиллиардная метра), вы сможете увидеть каждый нейрон в чьем-то мозгу. Вы будете смотреть это 1000 лет и скажете «Ну, мы точно знаем, что происходит, когда этот человек говорит „синий"». Люди проверят это поколениями и поймут, что теория правильна. Когда ничто не идет неправильно — это конец.

Если люди постигнут окончательную теорию разума, спросил я, то какие останутся границы для исследования науки?

— Почему вы задаете мне этот вопрос? — спросил Минский. — Беспокойство по поводу того, что ученым нечем будет заниматься, безосновательно. Остается широкое поле деятельности, — сказал он.

Мы, люди, вполне можем приближаться к нашим границам, как ученые, но когда-нибудь мы создадим машины, гораздо более умные, чем мы, которые смогут продолжать делать науку. Но это будет машинная наука, а не человеческая, заметил я.

— Другими словами, вы — расист, — сказал Минский, а его огромный выпуклый лоб побагровел.

Я поискал на его лице следы иронии, но не нашел. — Я думаю, что для нас важно вырасти, — продолжал Минский, — а не оставаться в нашем теперешнем глупом состоянии. Мы, люди, — добавил он, — просто шимпанзе в одежде.

Наша задача, по его мнению, не сохранить текущие условия, а развить, создать существа лучшие и более разумные, чем мы.

Но Минский, что удивительно, был в затруднении относительно типа вопросов, в которых эти гениальные машины могут быть заинтересованы. Повторяя Дэниела Деннетта, Минский довольно нерешительно предположил, что машины могут попытаться понять себя по мере того, как они будут развиваться в более комплексные существа. Казалось, что он с гораздо большим энтузиазмом обсуждал возможность превращения человеческих личностей в компьютерные программы, которые затем можно ввести в машины. Минский видел этот ввод как путь заняться исследованиями, которые он обычно считал слишком опасными, такими как прием ЛСД или погружение в религию.

— Я рассматриваю религиозный опыт как очень рискованное дело, потому что это может быстро разрушить мозг, но если бы у меня была запасная копия…

Минский признался, что хотел бы знать, что чувствовала Йо-Йо Ма, великая арфистка, когда играла, но он сомневался, возможен ли такой опыт. Для того, чтобы разделить опыт Йо-Йо Ма, объяснил Минский, ему потребуется обладать всей памятью Йо-Йо Ма, ему потребуется стать Йо-Йо Ма. Но став Йо-Йо Ма, подозревал Минский, он перестанет быть Минским.

Удивительно, что Минский сделал это признание. Как литературные критики, которые заявляют, что единственной истинной интерпретацией текста является сам текст, Минский подразумевал, что человек не поддается упрощению: любая попытка превратить человека в абстрактную математическую программу — последовательность единиц и нулей, которые можно записать на диск и передать с машины на машину или соединить с другой программой, представляющей другого человека, — может разрушить суть человека. Интуитивно Минский предполагал, что проблема «откуда я знаю, что у тебя есть сознание» не разрешима. Если никакие две личности никогда не могут быть полностью соединены, то и загрузка невозможна. Фактически, весь искусственный интеллект, если интеллект определяется человеческими терминами, может быть ошибкой.

Минский, несмотря на свою репутацию яростного редукциониста, на самом деле является антиредукционистом. В своем роде он даже больше романтик, чем Роджер Пенроуз. Пенроуз питает надежду, что разум может быть сведен до простой квазиквантовой хитрости. Минский настаивает, что никакое подобное сведение невозможно, потому что разнообразие — это суть разума, всех разумов, как людей, так и машин. Отвращение Минского к всецелой приверженности чему-то одному, простоте, отражает, я думаю, не только научное суждение, но и что-то более глубокое. Минский, как Пауль Фейерабенд, Дэвид Бом и другие великие романтики, кажется, боится Ответа, открытия, которое положит конец всем открытиям. К счастью для Минского, маловероятно, что такое открытие появится в неврологии, поскольку любая полезная теория разума, вероятно, будет ужасно сложна, как он понимает. К несчастью для Минского, учитывая всю сложность, также кажется маловероятным, что он или даже его внуки будут свидетелями рождения машин, полностью соответствующих человеку. Если мы когда-нибудь и создадим умные, автономные машины, они конечно будут отличаться от нас, как «Боинг-747» от ласточки. И мы никогда не сможем быть уверены, что у них есть сознание, точно так же, как никто из нас не знает, есть ли сознание у другого.

Решил ли Бэкон проблему сознания?

Проникновение в сознание потребует времени. Мозг удивительно сложен. Но является ли он бесконечно сложным? При условии скорости, с которой неврологи его изучают, через несколько десятилетий у них может появиться высокоэффективная карта мозга, которая связывает специфические нервные процессы со специфическими ментальными функциями — включая сознание в таком виде, как его определили Крик и Кох. Это знание может дать многие практические преимущества, такие как лечение умственных расстройств и хитрости обработки информации, которые можно будет ввести в компьютеры. В «Приходе золотого века» Гюнтер Стент предполагает, что шаги вперед в неврологии когда-нибудь смогут дать нам великую власть над нами самими. Мы сможем «направлять определенные электрические входные сигналы в мозг. Эти входные сигналы затем можно сделать синтетически генерирующими ощущения, чувства и эмоции… Смертные люди вскоре будут жить как боги, без печали в сердце и вдали от горя, пока их центры удовольствий правильно подключены»[131].

Но Стент, ожидавший мистические аргументы Нагеля, Мак-Джинна и других, также писал: «Возможно, мозг не сможет, даже после всестороннего изучения, дать объяснения себя самого»[132]. Ученые и философы все равно будут стремиться достичь невозможного. Они обеспечат продолжение неврологии в постэмпирическом, ироническом режиме, в котором практики спорят о смысле физических моделей точно так же, как физики спорят о смысле квантовой механики. Время от времени особо яркая интерпретация, представленная каким-нибудь очередным Фрейдом, знающим неврологию и кибернетику, может привлечь большое число последователей и угрожать стать окончательной теорией разума. Новомистики тогда вылезут вперед и укажут неизбежные недостатки теории. Может ли она обеспечить удовлетворительное объяснение мечтаний или мистического опыта? Может ли она сказать, обладают ли сознанием амебы? Или компьютеры?

Можно доказывать, что сознание было «решено», как только кто-то решил, что это — эпифеномен материального мира. Прямой материализм Крика повторяет английского философа Гилберта Райла (Gilbert Ryle) , который в тридцатые годы придумал выражение «призрак в машине», чтобы посмеяться над дуализмом[133]. Райл указывал, что дуализм, утверждающий, что разум — это отдельное явление, независимое от физического субстрата и способное влиять на него, нарушает сохранив энергии и таким образом всю физику. По Райлу, разум — это свойство материи, и только прослеживая замысловатые преломления материи в мозгу, можно «объяснить» сознание.

Райл не был первым, кто предложил эту материалистическую парадигму, являющуюся такой доверительной и принижающей одновременно. Четыре столетия назад Фрэнсис Бэкон призывал философов своего времени прекратить попытки показать, как Вселенная возникла из мысли, и начать рассматривать, как мысль возникла из Вселенной. Не исключено, Бэкон ожидал современные объяснения сознания в рамках контекста теории эволюции и, в более общем смысле, материалистической парадигмы. Научная победа над сознанием будет высшим разочарованием и тем не менее еще одним подтверждением правильности высказывания Нильса Бора: работа науки — это сведение всех тайн к тривиальностям. Человеческая наука не сможет решить проблему «откуда я знаю, что у тебя есть сознание». Есть единственный путь ее решения: объединить все разумы в один.

Глава 8Конец хаососложности

Я опускаю эру Рейгана. Рональд Рейган сделал выбор очень простым делом. Все, что нравилось ему, мне не нравилось. К примеру, звездные войны. Известная как Стратегическая Оборонная Инициатива (СОИ), эта идея была планом Рейгана построить космический щит, который защитил бы Соединенные Штаты от ядерных ракет Советского Союза. Я написал множество статей о звездных войнах, больше всего я теперь стыжусь той, в которой говорилось о Готфриде Майер-Крессе (Gottfried Mayer-Kress) , физике, работавшем (из всех возможных мест!) в Лос-Аламосской национальной лаборатории, колыбели атомной бомбы. Майер-Кресс создал модель гонки вооружений между Советским Союзом и Соединенными Штатами, применив «хаотическую» математику. Его модель предполагала, что звездные войны дестабилизируют отношения между супердержавами и, возможно, приведут к катастрофе, то есть к ядерной войне. Поскольку я одобрял выводы Майер-Кресса — и поскольку место его работы давало повод для иронии, — я написал статью, в которой выразил свое восхищение его исследованиями. Конечно, если бы модель Майер-Кресса предполагала, что звездные войны — хорошая идея, то я бы отверг его работу, как чушь, которой она очевидно и являлась. Звездные войны вполне могли дестабилизировать отношения между супердержавами, но разве нам требовалась какая-то компьютерная модель, чтобы сообщить это?

Я не собираюсь бить Майер-Кресса. Он стремился к положительному результату. (В 1993 году, несколько лет спустя после того, как я написал про исследование Майер-Крессом звездных войн, я увидел пресс-релиз Иллинойсского университета, где он тогда работал, объявлявший, что его компьютерные модели предложили решение конфликтов в Боснии и Сомали.) Его работа — это один из самых вульгарных примеров перегиба в области хаососложности. Под хаососложностью я имею в виду и хаос, и его близкую родственницу сложность. Каждое понятие, и хаос особенно, было определено в разнообразных терминах. Но при этом каждое из них получило столько частично совпадающих определений от разных ученых и журналистов, что термины фактически стали синонимами, если вовсе не утратили смысл.

Область хаососложности была впервые представлена как полностью разработанное явление поп-культуры в вышедшей в 1987 году книге бывшего репортера «Нью-Йорк Таймс» Джеймса Глейка (James Gleik) «Хаос. Создание новой науки» (Chaos: Making a New Science) . После того как книга Глейка стала бестселлером, толпы журналистов и ученых попытались повторить его успех, написав похожие книги на ту же тему[134]. В области хаососложности есть два в некотором роде противоречивых аспекта. Один заключается в том, что многие явления нелинейны и, таким образом, по своему существу непредсказуемы, потому что крохотные случайные влияния могут иметь огромные, непредвиденные последствия. Эдвард Лоренц (Edward Lorenz) , метеоролог из Массачусетского технологического института и пионер хаососложности, назвал это явление эффектом бабочки, так как оно означает, что бабочка, машущая крыльями в Айове, может, в принципе, вызвать лавину эффектов, которые достигнут высшей точки в дождливый сезон в Индонезии. Поскольку мы никогда не сможем обладать более чем приблизительным знанием о системе погоды, наша способность предсказывать ее серьезно ограничена.

Этот взгляд едва ли можно назвать новым. Анри Пуанкаре (Henri Poincare) предупреждал на стыке столетий, что «небольшие различия в начальных условиях рождают огромные различия в конечном явлении. Маленькая ошибка в первых родит огромную в последних. Предсказание становится невозможным»[135]. Исследователи хаососложности также любят подчеркивать, что многие явления природы «возникают неожиданно»; они проявляют свойства, которые не могут быть предсказаны или поняты путем простого исследования частей системы. Неожиданное возникновение — это тоже древняя идея, связанная с холизмом, витализмом и другими антиредукционистскими течениями, которые восходят, по крайней мере, к прошлому столетию. Конечно, Дарвин не думал, что естественный отбор может происходить из Ньютоновой механики.

Это негативная сторона хаососложности. Положительная звучит следующим образом: приход компьютеров и сложных нелинейных математических технологий поможет современным ученым понять хаотические, комплексные, неожиданно возникающие явления, которые сопротивлялись анализу редукционными методами в прошлом. Краткая аннотация на обороте обложки книги «Мечты о разумности» (The Dreams of Reason, 1988) Хайнца Пагелса (Heinz Pagels) , одной из лучших книг по «новым наукам сложности», представляла это следующим образом: «Точно так же, как телескоп открыл Вселенную, а микроскоп — секреты микрокосма, компьютер теперь открывает новое окно на природу реальности. Через свою способность обрабатывать то, что является слишком сложным для разума, которому ничто не помогает, компьютер позволяет нам впервые смоделировать реальность, создать модели комплексных систем, таких как большие молекулы, хаотические системы, нервные сети, человеческое тело и мозг, модели эволюции и роста населения».

Эта надежда рождается большей частью из наблюдения за простыми множествами математических инструкций, которые, когда их выполняет компьютер, могут дать фантастически сложные и тем не менее странно упорядоченные эффекты. Джон фон Нейман (Johnvon Neumari) , возможно, был первым ученым, понявшим эту способность компьютеров. В пятидесятые годы он изобрел клеточный автомат, который в своей самой простой форме представляет собой экран, разделенный на решетку клеток, или квадратов. Набор правил передает цвет или состояние каждой клетки ее ближайшим соседям. Изменение состояния одной клетки может вызвать лавину изменений по всей системе. Клеточный автомат «Жизнь», созданный в начале семидесятых годов английским математиком Джоном Конвеем (John Conway) , остается одним из самых известных. В то время как большинство клеточных автоматов в конце концов приобретает предсказуемое периодическое поведение, «Жизнь» генерирует бесконечное разнообразие картинок, включая подобные мультфильмам, которые кажутся вовлеченными в непостижимые метаморфозы. Многие ученые, вдохновленные странным компьютерным миром Конвея, стали использовать клеточные автоматы для моделирования различных физических И биологических процессов.

Еще один продукт информатики, завладевший воображением общества, — это множество Мандельбро. Множество названо в честь Бенуа Мандельбро (Benoit Mandelbrot) , математика из «ЩМ», являющегося одним из протагонистов книги Глейка «Хаос». Его работа по индетерминистическим явлениям привела Гюнтера Стента к заключению, что общественные науки никогда не будут иметь большого значения. Мандельбро открыл фракталы — геометрические объекты с дробной мерностью; фракталы более размыты, чем линия, но никогда полностью не заполняют плоскость. Фракталы также обладают самоподобной структурой, воспроизводящейся при все большем и большем увеличении. Придумав термин «фрактал», Мандельбро отметил, что многие явления реального мира, например облака, снежные хлопья, береговые линии, колебания рынка ценных бумаг и деревья, имеют свойства, подобные фракталам.

Множество Мандельбро — это тоже фрактал. Множество соответствует простой математической функции, которая повторно интегрируется; ты вычисляешь значение функции, а затем снова подставляешь его как аргумент и снова вычисляешь функцию — и так до бесконечности. При условии составления плана компьютером цифры генерируются функциональным кластером в теперь известную форму, которая была сделана похожей на сердце с опухолью, сильно пережаренного цыпленка и шишковатую цифру восемь, лежащую на боку. При увеличении множества с помощью компьютера обнаруживается, что его границы не являют собой четких линий, а мерцают, как пламя. Дальнейшее увеличение границ бросает зрителя в бездонную фантасмагорию изображения в стиле барокко. Определенные образцы, такие как основная сердцеобразная форма, все время воспроизводятся, но всегда с неуловимыми вариациями.

Множество Мандельбро, которое было названо «самым сложным предметом в математике», стало типом лаборатории, в которой математики могут тестировать идеи о поведении нелинейных (или хаотических, или комплексных) систем. Но какое отношение эти находки имеют к реальному миру? В своем труде «Фрактальная геометрия природы» (The Fractal Geometry of Nature, 1977) Мандельбро предупреждал, что одно дело наблюдать за фрактальными образцами в природе и совсем другое — определять причину образца. Хотя исследование последствий самопохожести преподнесло, по словам Мандельбро, множество сюрпризов и помогло понять структуру природы, его попытки открыть причины самопохожести «имеют мало привлекательного».

Кажется, Мандельбро намекает на соблазнительный силлогизм, который лежит в основе хаососложности, а именно: есть простые множества математических правил, которые, когда их прослеживает компьютер, порождают очень сложные образцы, которые никогда не повторяют себя полностью. Окружающий нас мир тоже включает в себя огромное количество сложных образцов, которые никогда полностью не повторяют себя. Вывод: в основе многих исключительно сложных явлений мира лежат простые правила. При помощи мощных компьютеров исследователи, занимающиеся хаососложностью, могут эти правила определить.

Конечно, в основе природы в самом деле лежат простые правила, воплощенные в квантовой механике, теории относительности, естественном отборе и генетике Менделя. Но занимающиеся хаососложностью настаивают, что еще предстоит найти правила гораздо более мощные.

Тридцать одно определение сложности

Синие и красные точки, разбросанные по экрану компьютера. Но это не просто цветные точки. Это модели людей, делающие то, что делают люди: ищут пищу, ищут партнеров, соперничают и сотрудничают друг с другом. По крайней мере, так заявил Джошуа Эпштейн (Joshua Epstein) , создатель этой компьютерной модели. Эпштейн, социолог из «Брукингс Инститьюшн», показал эту модель мне и двум другим журналистам в Институте Санта-Фе, где он по приглашению читал лекции. Институт был основан в середине восьмидесятых и быстро стал штабом сложности, самопровозглашенным преемником хаоса как новой науки, которая превзойдет отживающий редукционизм Ньютона, Дарвина и Эйнштейна.

Наблюдая за цветными точками Эпштейна и слушая его еще более цветастую интерпретацию их движения, мы вежливо бурчали, показывая свою заинтересованность, но за его спиной обменивались вымученными улыбками. Ни один из нас не воспринимал это серьезно. Мы все понимали, косвенно, что это ироническая наука. Сам Эпштейн, когда на него надавили, признал, что его модель никоим образом не является «предсказательной». Он назвал ее лабораторией, инструментом, нервным протезом для исследования идей об эволюции обществ. (Это были любимые термины сотрудников Института Санта-Фе.) Но во время публичных презентаций своей работы Эпштейн также заявлял, что подобные модели революционизируют общественные науки, помогут решить их самые неподатливые проблемы[136].

Еще один приверженец веры в силу компьютеров — это Джон Холланд (John Holland) , ученый-компьютерщик, работающий одновременно в Мичиганском университете и Институте Санта-Фе. Холланд изобрел генетические алгоритмы, являющиеся сегментами компьютерного кода, способные перестраиваться для рождения новой программы, которая может решить проблему более эффективно. В соответствии с Холландом, алгоритмы развиваются так же, как гены живых организмов в ответ на давление естественного отбора.

Холланд предположил, что возможно сконструировать «общую теорию комплексных адаптивнных систем», основанную на математических технологиях, таких как те, что воплощены в генетических алгоритмах. Он представил свое видение в лекции 1993 года: «Многие из самых острых долгосрочных проблем — пассивный торговый баланс, СПИД, генетические дефекты, умственное здоровье, компьютерные вирусы — концентрируются на определенных системах исключительной сложности. Системы, вмещающие эти проблемы — экономика, экология, иммунные системы, нервные системы, компьютерные сети — кажутся такими же разнообразными, как эти проблемы. Однако, несмотря на разнообразие, системы имеют общие важные характеристики, в результате мы в Институте Санта-Фе классифицируем их в одну группу под названием „комплексные адаптивные системы". Это больше чем терминология. Это показывает, что есть общие принципы, управляющие поведением всех комплексных адаптивных систем, принципы, указывающие на способы решения сопутствующих проблем. Большая часть нашей работы нацелена на превращение интуиции в факт»[137].

От амбициозности этого заявления захватывает дух. Ученые, занимающиеся хаососложностью, часто насмехаются над физиками, занимающимися физикой частиц, за их высокомерие, за то, что они думают, что могут создать теорию, объясняющую всё. Но на самом деле ученые, занимающиеся физикой частиц, довольно скромны в своих амбициях; они просто надеются, что смогут упаковать силы природы в одну аккуратную упаковку и, возможно, пролить свет на происхождение Вселенной. Лишь некоторые настолько смелы, чтобы заявлять, что их общая теория даст и истину (то есть взгляд внутрь природы), и счастье (решение мировых проблем), как предполагали Холланд и другие. А Холланд считается одним из самых скромных ученых, связанных с областью сложности.

Но могут ли ученые достичь общей теории сложности, если они не могут прийти к соглашению в том, что означает сложность? Изучающие сложность боролись, но с малым успехом, чтобы отделить себя от тех, кто изучает хаос. По мнению Джеймса Йорке (James Yorke) , физика из Университета Мэриленда, хаос относится к ограниченному набору явлений, возникающих предсказуемо непредсказуемыми путями — демонстрируя чувствительность к изначальным условиям, апериодическое поведение, возвращение определенных образцов на различных пространственных и временных шкалах и так далее. (Йорке — личность известная, так как именно он придумал термин «хаос» в работе, опубликованной им в 1975 году.) Согласно Йорке, сложность, пожалуй, относится «ко всему чему хотите»[138].

Одно из широко используемых определений сложности — «грань хаоса». Эта живописная фраза была включена в подзаголовок двух книг, опубликованных в 1992 году: «Сложность: жизнь на грани хаоса» Роджера Льюина (Roger Lewin, Complexity: Life at the Edge of Chaos, 1992) и «Сложность: появляющаяся наука на грани порядка и хаоса» М. Митчелл Валдроп (М. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos, 1992). (Авторы, несомненно, намеревались пробудить этой фразой интерес, а также обозначить суть новой области.) Основная идея грани хаоса заключается в том, что ничего нового не может возникнуть из систем с высокими степенями порядка и стабильности, таких как кристаллы; с другой стороны, полностью хаотические, апериодические системы, такие как турбулентные потоки или нагретые газы, слишком бесформенны. По-настоящему комплексные вещи — амебы, биржевые брокеры и подобные им — оказываются на границе между строгим порядком и хаотичностью.