69174.fb2
Определим величину и направле­ние скорости Солнца в пространстве. Та точка на небесной сфере, к кото­рой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная ей точка - антиапексом. Чтобы пояснить прин­цип, на основании которого находят положение солнечного апек­са, предположим, что все звезды, кроме Солнца, неподвижны. В этом случае наблюдаемые собственные движения и лучевые скорости звезд будут вызваны только перемещением Солнца, происходящим со скоростью V¤ (рис. 224). Рассмотрим какую-нибудь звезду S, направление на которую составляет угол q с вектором V¤. Поскольку мы предположили, что все звезды не­подвижны, то кажущееся относительно Солнца движение звез­ды S должно иметь скорость, равную по величине и противопо­ложную по направлению скорости Солнца, т.е. - V¤. Эта ка­жущаяся скорость имеет две составляющие: одну - вдоль луча зрения, соответствующую лучевой скорости звезды
Vr = V¤cos q,(12.5)
и другую, - лежащую в картинной плоскости, соответствующую собственному движению звезды,
Vt = V¤ sin q.(12.6)
Учитывая зависимость величины этих проекций от угла q, получим, что вследствие движения Солнца в пространстве лу­чевые скорости всех звезд, находящихся в направлении движе­ния Солнца, должны казаться меньше действительных на величину V¤. У звезд, находящихся в противоположном направле­нии, наоборот, скорости должны казаться больше на ту же ве­личину. Лучевые скорости звезд, находящихся в направлении, перпендикулярном к направлению движения Солнца, не изме­няются. Зато у них будут собственные движения, направленные к антиапексу и по величине равные углу, под которым с рас­стояния звезды виден вектор V¤. По мере приближения к апек­су и антиапексу величина этого собственного движения умень­шается пропорционально sin q, вплоть до нуля. В целом создается впечатление, что все звезды как бы убе­гают в направлении к антиапексу. Таким образом, в случае, когда движется только Солнце, величину и направление скорости его движения можно найти двумя способами: 1) измерив лучевые скорости звезд, на­ходящихся в разных направлениях, найти то направление, где лучевая скорость имеет наибольшее отрицательное значение; в этом направлении и находится апекс; скорость движения Солн­ца в направлении апекса равна найденной максимальной луче­вой скорости; 2) измерив собственные движения звезд, найти на небесной сфере общую точку, к которой все они направлены: противоположная ей точка будет апексом; для определения величины скорости Солнца надо сначала перевести угловое пе­ремещение в линейную скорость, для чего необходимо выбрать звезду с известным расстоянием, а затем найти V¤ по формуле (12.6). Если теперь допустить, что не только Солнце, но и все дру­гие звезды имеют индивидуальные движения, то задача услож­нится. Однако, рассматривая в данной области неба большое количество звезд, можно считать, что в среднем индивидуаль­ные их движения должны скомпенсировать друг друга. Поэтому средние значения собственных движений и лучевых скоростей для большого числа звезд должны обнаруживать те же законо­мерности, что и отдельные звезды в только что рассмотренном случае движения одного только Солнца. Описанным методом установлено, что апекс Солнечной си­стемы находится в созвездии Геркулеса и имеет прямое вос­хождение a = 270° и склонение d = +30°. В этом направлении Солнце движется со скоростью около 20 км/сек.
§ 166. Вращение Галактики
Обычно апекс движения Солнца определяют по наиболее близким звездам, так как далекие объекты могут обладать каким-нибудь общим движением Если имеется такое общее движение, то при осреднении лучевых скоростей и собственных движений даже по большому числу звезд в некоторой области неба индивидуальные скорости не скомпенсируют друг друга, так как будут обладать составляющей, равной общей скорости всей группы звезд. Рассмотрим Солнце 5 вместе с окружающими его далекими звездами (рис. 225, а). Предположим, что вся эта группа звезд имеет какое-то общее движение. Если бы все участвующие в нем звезды двигались с одинаковой скоростью, то никакими способами не удалось бы обнаружить этого движения. Теперь предположим, что движение в рассматриваемой области происходит так, что линейные скорости звезд постепенно возрастают в определенном направлении, скажем, слева направо, как это показано стрел ками на рис. 225,а. Такое распределение скоростей возникает, если, например, вся рассматриваемая область совершает вращение вокруг точки, расположенной далеко вправо.
Теперь рассмотрим, какие лучевые скорости должны иметь звезды, если их наблюдать в различных направлениях из точки S (рис. 225,6). Очевидно, что при наблюдении вправо и влево от точки S лучевые скорости окажутся равными нулю, так как вдоль этих направлений вообще нет относительных движений. То же самое будет иметь место и в перпендикулярном направлении по другой причине: вдоль направления вектора скорости Солнца скорость всех звезд одинакова, и потому относительная лучевая скорость равна нулю. Во всех других направлениях будут наблюдаться лучевые скорости, причем наибольшей величины они достигают в направлениях, составляющих угол 45° с только что рассмотренными. Кроме того, наблюдаемые лучевые скорости будут тем больше, чем более далекие рассматриваются объекты. Измерения лучевых скоростей далеких звезд позволяют обнаружить плавное их изменение (рис. 226), в точности согласующееся с описанной картиной, причем нулевые значения лучевых скоростей наблюдаются как раз в направлениях на центр и антицентр Галактики и под углами 90° к ним. Отсюда следует, что все звезды вместе с Солнцем движутся перпендикулярно к направлению на центр Галактики. Это движение является следствием общего вращения Галактики, скорость которого меняется с расстоянием от ее центра (дифференциальное вращение) .
Это вращение имеет следующие особенности: 1. Вращение происходит по часовой стрелке, если смотреть на Галактику со стороны северного ее полюса, находящегося в созвездии Волос Вероники. 2. Угловая скорость вращения убывает по мере удаления от центра. Однако это убывание несколько медленнее чем если бы вращение звезд вокруг центра Галактики происходило по законам Кеплера. 3. Линейная скорость вращения сначала возрастает по мере удаления от центра. Затем примерно на расстоянии Солнца она достигает наибольшего значения около 240 км/сек, после чего очень медленно убывает. 4. Солнце и звезды в его окрестности совершают полный оборот вокруг центра Галактики примерно за 200 миллионов лет. Этот промежуток времени называется галактическим годом.
§ 167. Межзвездная пыль
На фотографиях звездного неба, особенно в областях Млечного Пути, можно заметить сильную неоднородность распределения звезд, вызванную наличием темной непрозрачной материи.
Замечательными примерами объектов такого типа являются темные туманности, известные под названием “Конской Головы” (рис. 227) и “Угольного Мешка” (последняя расположена рядом с двумя самыми яркими звездами созвездия Южного Креста). Видимый угловой диаметр области неба, занимаемой “Угольным Мешком”, больше 3°. Этот объект очень близок к нам и находится на расстоянии около 150 пс. Следовательно, истинные его размеры - около 8 пс. Из-за контраста с окружающими яркими областями Млечного Пути туманность кажется черным пятном. В телескоп видны в ней слабые звезды, число которых примерно в три раза меньше количества звезд в соседних областях того же размера. Это значит, что “Угольный Мешок” поглощает свет далеких звезд, уменьшая общее количество света примерно в три раза. Такое поглощение соответствует оптической толщине или ослаблению света, выраженному в звездных величинах
(12.7)
Множество облаков, подобных “Угольному Мешку”, образуют широкую темную полосу вдоль средней линии Млечного Пути, начинающуюся от созвездия Лебедя и тянущуюся через созвездия Орла, Змеи, Стрельца и Скорпиона. Это - знаменитая Большая развилка Млечного Пути. Особенно большое количество темных облаков наблюдается в области центрального сгущения нашей Галактики, в созвездии Стрельца (стр. 228), вследствие чего этот крайне интересный объект Галактики особенно трудно наблюдать. Наличие в межзвездном пространстве вещества, поглощающего свет, подтверждается еще одним явлением, называемым межзвездным покраснением света. Оно состоит в том, что спектральный состав излучения многих звезд, особенно далеких, оказывается не таким, как у звезд того же спектрального класса, например в окрестности Солнца. Разница заключается в недостатке излучения в синей части спектра, который приводит к кажущемуся его покраснению. В результате для многих звезд, особенно вблизи Млечного Пути, нарушается установленная в §149 зависимость между показателем цвета и спектральным классом.
Для количественной характеристики этого явления вводится понятие избытка цвета СЕ или Е (color excess); так называется разность между наблюдаемым показателем цвета данного объекта и показателем цвета, соответствующим его спектральному классу. Изменение спектральной состава излучения вызывается тем же самым веществом, которое вызывает поглощение света. Последнее оказывается более сильным для синих лучей и менее сильным для красных. Количественные измерения этого поглощения, выполненные в различных участках спектра, показывают, что в видимой области величина поглощения обратно пропорциональна длине волны излучения. Такое ослабление испытывает свет при прохождении через среду, состоящую из мелких твердых частиц (пылинок), если их диаметр порядка длины световой волны и в среднем составляет 2 r = 0,8 мк, а поперечное сечение В условиях межзвездной среды твердые частицы, похожие на кристаллы льда, могут образовываться в результате конденсации молекул подобно частицам дыма, возникающим из газообразных продуктов горения. Молекулярные соединения, существование которых следует из спектральных наблюдении играют важную роль в межзвездной среде. Подробнее они будут рассмотрены в следующем параграфе. Плотность r образующихся таким путем пылинок должна быть немногим менее плотности льда, так что можно считать r " 0,5 г/см3. Учитывая приведенные выше размеры, получим, что масса отдельной частицы межзвездной пыли должна составлять Оказывается, что поглощение лучей определенного цвета, выраженное в звездных величинах (обозначим его через Dm), пропорционально избытку цвета, т.е.
Dm = g × CE.(12.8)
Коэффициент пропорциональности у оказывается близким к 4, если поглощение измерять в фотографических звездных величинах и около 3, если его оценивать в визуальных звездных величинах. Если бы межзвездного поглощения света не было, звезды казались бы “ярче” и вместо наблюдаемой звездной величины т мы наблюдали бы
т' = т - Dm = т - g × СЕ.(12.9)
В среднем для звезд в окрестности Солнца, находящихся на расстоянии в 1000 пс, избыток цвета около 0m,5. Согласно формуле (12.9) это означает, что видимое излучение этих звезд ослаблено примерно на Dm = 1m ,5, т.е. раза в четыре. Следовательно, оптическая толщина слоя межзвездной среды в 1 кпс в среднем составляет Обращаем внимание на то, что эта величина получается в среднем на основании измерений поглощения в различных направлениях. В отдельных местах поглощение может быть как меньше, так и значительно больше этой величины. Например, как мы видели, почти такое же ослабление света (на lm,2) дает только одна туманность “Угольный Мешок”, имеющая размер 8 пс. Отсюда следует, что в ней вещества примерно столько же, сколько и в среднем в межзвездном пространстве на протяжении 1000 пс, т.е. плотность поглощающего вещества в 100 с лишним раз больше. Оценим теперь количество отдельных пылинок, вызывающих межзвездное поглощение света. Предположим, что поглощающее действие частиц сводится к простому экранированию ими проходящего излучения. Тогда, учитывая физический смысл оп-тической толщины t , получим, что при t 1кпс = 1.4 поперечники всех частиц в столбе длиной 1000 пс и сечением 1 см2 в сумме составляют 1,7 см2. Поскольку поперечник каждой частицы в среднем равен 5×10 -9 см2, всего в этом столбе находится Объем этого столба V = 103 пс × 1 см2 =3 ×1021 см3. Поэтому на каждую частицу приходится объем
т.е. куб со стороной более 200 м. Обратная величина дает концентрацию пылинок
На самом деле частицы размером 10-4-10-5 см поглощают видимые лучи сильнее, чем экранчики таких же размеров. Поэтому полученный результат завышен примерно в два раза. Даже такое ничтожное содержание крошечных пылинок в межзвездном пространстве заставляет внести важную поправку в метод определения расстояний путем сравнения видимой и абсолютной звездных величин. Действительно, чтобы получить верное значение r, в формулу (11.6) следует подставить не т, а т', в результате чего получим
lg r = l + 0,2 (m - M - g × CE).(12.10)
Если, например, избыток цвета в фотографических лучах достигает целой звездной величины, то без учета межзвездного поглощения расстояние окажется завышенным в 8 раз! Для выяснения физической природы поглощающей материи мы воспользовались средним значением величины селективного поглощения света на единицу длины в окрестности Солнца. Теперь рассмотрим, как меняется в различных направлениях полное поглощение, т. е. какова величина и форма всего поглощающего слоя. Наиболее сильное поглощение - вблизи плоскости Галактики. Здесь оно очень велико (особенно в направлении на центр Галактики) и меняется в больших пределах. По мере удаления от плоскости Млечного Пути общая величина межзвездного поглощения быстро падает за счет уменьшения толщины поглощающего слоя, расположенного на луче зрения. Уменьшение это оказывается примерно пропорциональным косинусу угла b между плоскостью Галактики и лучом зрения. В направлении, перпендикулярном к плоскости Галактики (полюс Галактики), полное поглощение видимого света (т.е. не на 1 кпс, а на всем протяжении слоя) составляет около 0m,4. Пропорциональность поглощения величине cos b означает, что поглощающий слой плоский. Аналогичную зависимость мы получали при определении оптической толщины земной атмосферы, предполагая ее слои плоскопараллельными (§ 118). Приведенная только что величина поглощения в направлении, перпендикулярном к этой плоскости (0m,4), составляет 1/4 от среднего значения поглощения Dm на 1 кпс. Поэтому, предполагая пылевой слой однородным, получим, что его толщина составляет всего лишь около Таким образом, пыль относится к плоской подсистеме Галактики, распределяясь в пределах диска толщиной в несколько сотен парсеков. Внешний вид пылевых туманностей позволяет считать, что распределение пыли в этом диске должно иметь клочковатый характер. В некоторых случаях удается видеть часть пылевой туманности, освещенную какой-либо близко находящейся яркой, но не слишком горячей звездой. Поперечник освещенной области обычно меньше 1 пс. Но и в пределах таких небольших объемов распределение пылевой материи оказывается очень неравномерным. Часто наблюдаются изогнутые тонкие волокна, обращенные выпуклостью в сторону от освещающей звезды, которую обычно легко удается найти, пользуясь тем обстоятельством, что спектры звезды и туманности очень похожи. Последнее подтверждает, что свечение вызывается пылинками, отражающими излучение звезды, почему эти светлые туманности и называются отражающими. Множество таких облаков (по 8-10 на каждые 1000 пс) часто встречается в спиральных рукавах Галактики (см. §168) вместе с газовыми туманностями, образуя так называемые газово-пылевые комплексы. Исследования изменения поглощения с расстоянием в каком-либо определенном направлении показывают, что пыль сосредоточена в отдельных облаках, каждое из которых в среднем имеет размер 5-10 пс и поглощает процентов 20 проходящего через него света. Это соответствует ослаблению на 0m, 25, что раз в шесть меньше среднего ослабления света в окрестностях Солнца, рассчитанного на 1 кпс. Поэтому в отдельном облаке на луче зрения столько же вещества, сколько в среднем приходится на . При размерах облаков 5-10 пс это означает, что плотность пыли в отдельных облаках должна превышать среднюю в несколько десятков раз (как мы видели, в “Угольном Мешке” даже в 100 раз). Еще большей величины она достигает в маленьких (размером несколько десятых долей парсека) плотных образованиях, называемых глобулами и часто наблюдаемых в виде темных круглых деталей на фоне светлых туманностей. Концентрация пыли в них в десятки и сотни раз больше, чем даже в самых плотных пылевых облаках. Мы видим, что плотность отдельных областей межзвездной среды сильно меняется, причем, как правило, она тем больше, чем меньше ее размеры. Поэтому возможно, что сжатие межзвездных облаков в плотные туманности в конечном счете приводит к образованию звезд. Однако значительно более важную роль, чем пыль, в этом процессе играет газ, также присутствующий в диффузной межзвездной среде. Количество межзвездного газа в среднем в 100 раз больше, чем пыли.
§ 168. Межзвездный газ
Газовые туманности. Самая известная газовая туманность - в созвездии Ориона (рис. 229), протяженностью свыше 6 пс, заметная в безлунную ночь даже невооруженным глазом. Не менее красивы туманности Омега, Лагуна и Трехраздельная в созвездии Стрельца, Северная Америка и Пеликан в Лебеде, туманности в Плеядах, вблизи звезды h Киля, Розетка в созвездии Единорога и многие другие. Всего насчитывают около 400 таких объектов. Естественно, что полное их число в Галактике значительно больше, но мы их не видим из-за сильного межзвездного поглощения света.
В спектрах газовых туманностей имеются яркие эмиссионные линии, что доказывает газовую природу их свечения. У наиболее ярких туманностей прослеживается и слабый непрерывный спектр. Как правило, сильнее всех выделяются водородные линии Нa и Нb и знаменитые небулярные линии с длинами волн 5007 и 4950 Å, возникающие при запрещенных переходах дважды ионизованного кислорода О III. До того, как эти линии удалось отождествить, предполагалось, что их излучает гипотетический элемент небулий. Интенсивны также две близкие запрещенные линии однократно ионизованного кислорода О II с длинами волн около 3727 Å, линии азота и ряда других элементов. Внутри газовой туманности или непосредственно вблизи от нее почти всегда можно найти горячую звезду спектрального класса О или В0, являющуюся причиной свечения всей туманности. Эти горячие звезды обладают очень мощным ультрафиолетовым излучением, ионизующим и заставляющим светиться окружающий газ точно так же, как это имеет место в планетарных туманностях (см. § 152). Поглощенная атомом туманности энергия ультрафиолетового кванта звезды большей частью идет на ионизацию атома. Остаток энергии расходуется на придание скорости свободному электрону, т.е. в конечном счете превращается в тепло. В ионизованном газе должны также происходить и обратные процессы рекомбинации с возвращением электрона в связанное состояние. Однако чаще всего это реализуется через промежуточные энергетические уровни, так что в итоге вместо первоначально поглощенного жесткого ультрафиолетового кванта атомы туманности излучают несколько менее энергичных квантов видимых лучей (этот процесс называется флуоресценцией). Таким образом, в туманности происходит как бы “дробление” ультрафиолетовых квантов звезды и переработка их в излучение, соответствующее спектральным линиям видимого спектра. Излучение в линиях водорода, ионизованного кислорода и азота, приводящее к охлаждению газа, уравновешивает поступление тепла через ионизацию. В итоге температура туманности устанавливается на некотором определенном уровне порядка , что можно проверить по тепловому радиоизлучению газа. Количество квантов, излучаемых в какой-либо спектральной линии, в конечном счете пропорционально числу рекомбинаций, т.е. количеству столкновений электронов с ионами. В сильно ионизованном газе концентрация и тех и других одинакова, т.е. Поскольку согласно (7.18) частота столкновений одной частицы пропорциональна п, общее число столкновений всех ионов с электронами в единице объема пропорционально произведению nine, т.е. Следовательно, общее число квантов, излучаемых туманностью, или ее яркость на небе - пропорциональна , просуммированному вдоль луча зрения. Для однородной туманности протяженностью L, это дает . Произведение называется мерой эмиссии и является важнейшей характеристикой газовой туманности: ее значение легко получить из непосредственных наблюдений яркости туманности. Вместе с тем мера эмиссии связана с основным физическим параметром туманности - плотностью газа. Таким образом, измеряя меру эмиссии газовых туманностей, можно оценить концентрацию частиц пе, которая оказывается порядка 10 2-10 3 см -3 и даже больше для самых ярких из них. Как видно, концентрация частиц в газовых туманностях в миллионы раз меньше, чем в солнечной короне, и в миллиарды раз меньше, чем могут обеспечить лучшие современные вакуумные насосы. Необычайно сильная разреженность газа объясняет появление в его спектре запрещенных линий, сравнимых по своей интенсивности с разрешенными. В обычном газе возбужденные атомы не успевают излучить запрещенную линию потому, что гораздо раньше, чем это произойдет, они столкнутся с другими частицами (в первую очередь электронами) и отдадут им свою энергию возбуждения без излучения кванта. В газовых туманностях при температуре 104 °K средняя тепловая скорость электронов достигает 500 км/сек и время между столкновениями, вычисленное по формуле (7.17) при концентрации ne = 102 см -3, оказывается 2×106 сек, т.е. немногим меньше месяца, что в миллионы раз превышает “время жизни” атома в возбужденном состоянии для большинства запрещенных переходов. Зоны H I и Н II. Как мы только что видели, горячие звезды на больших расстояниях вокруг себя ионизуют газ. Поскольку в основном это водород, ионизуют его главным образом лаймановские кванты с длиной волны короче 912 Å. Но в большом количестве их могут дать только звезды спектральных классов О и В0, у которых эффективные температуры Tэфф ³ 3×104 °K и максимум излучения расположен в ультрафиолетовой части спектра. Расчеты показывают, что эти звезды способны ионизовать газ с концентрацией 1 атом в 1 см3 до расстояний нескольких десятков парсеков. Ионизованный газ прозрачен к ультрафиолетовому излучению, нейтральный, наоборот, жадно его поглощает. В результате окружающая горячую звезду область ионизации (в однородной среде это шар!) имеет очень резкую границу, дальше которой газ остается нейтральным. Таким образом, газ в межзвездной среде может быть либо полностью ионизован, либо нейтрален. Первые области называются зоны Н II, вторые - зоны H I. Горячих звезд сравнительно мало, а потому газовые туманности составляют ничтожную долю (около 5%) всей межзвездной среды. Нагрев областей Н I происходит за счет ионизующего действия космических лучей, рентгеновских квантов и суммарного фотонного излучения звезд. При этом в первую очередь ионизуются атомы углерода. Излучение ионизованного углерода является основным механизмом охлаждения газа в зонах Н I. В результате должно установиться равновесие между потерей энергии и ее поступлением, которое имеет место при двух температурных режимах, осуществляющихся в зависимости от значения плотности. Первый из них, когда температура устанавливается в несколько сотен градусов, реализуется в разово-пылевых облаках, где плотность относительно велика, второй - в пространстве между ними, в котором разреженный газ нагревается до нескольких тысяч градусов. Области с промежуточными значениями плотности оказываются неустойчивыми и первоначально однородный газ неизбежно должен разделиться на две фазы - сравнительно плотные облака и окружающую их весьма разреженную среду. Таким образом, тепловая неустойчивость является важнейшей причиной “клочковатой” и облачной структуры межзвездной среды. Межзвездные линии поглощения. Существование холодного газа в пространстве между звездами было доказано в самом начале XX в. немецким астрономом Гартманом, изучившим спектры двойных звезд, в которых спектральные линии, как отмечалось в § 157, должны испытывать периодические смещения. Гартман обнаружил в спектрах некоторых звезд (особенно удаленных и горячих) стационарные (т.е. не изменявшие своей длины волны) линии H и К ионизованного кальция. Помимо того, что их длины волн не менялись, как у всех остальных линий, они отличались еще своей меньшей шириной. Вместе с тем, у достаточно горячих звезд линии Н и К вообще отсутствуют. Все это говорит о том, что стационарные линии возникают не в атмосфере звезды, а обусловлены поглощением газа в пространстве между звездами. Впоследствии обнаружились межзвездные линии поглощения и других атомов: нейтрального кальция, натрия, калия, железа, титана, а также некоторых молекулярных соединений. Однако наиболее полным спектроскопическое исследование холодного межзвездного газа стало возможным благодаря внеатмосферным наблюдениям межзвездных линий поглощения в далекой ультрафиолетовой части спектра, где сосредоточены резонансные линии важнейших химических элементов, в которых, очевидно, сильнее всего должен поглощать “холодный” газ. В частности, наблюдались резонансные линии водорода (La), углерода, азота, кислорода, магния, кремния и других атомов. По интенсивностям резонансных линий можно получить наиболее надежные данные о химическом составе. Оказалось, что состав межзвездного газа в общем близок к стандартному химическому составу звезд, хотя некоторые тяжелые элементы содержатся в нем в меньшем количестве. Исследование межзвездных линий поглощения с большой дисперсией позволяет заметить, что чаще всего они распадаются на несколько отдельных узких компонентов с различными доплеровскими смещениями, соответствующими в среднем лучевым скоростям ±10 км/сек. Это означает, что в зонах Н I газ сконцентрирован в отдельных облаках, размеры и расположение которых в точности соответствуют пылевым облакам, рассмотренным в конце предыдущего параграфа. Отличие лишь в том, что газа по массе в среднем раз в 100 больше. Следовательно, газ и пыль в межзвездной среде концентрируются в одних и тех же местах, хотя относительная их плотность может сильно меняться при переходе от одной области к другой. Наряду с отдельными облаками, состоящими из ионизованного или нейтрального газа, в Галактике наблюдаются значительно большие по своим размерам, массе и плотности области холодного межзвездного вещества, называемые газово-пылевыми комплексами. Самым близким к нам из них является известный комплекс в Орионе, включающий в себя наряду с многими замечательными объектами знаменитую туманность Ориона. В таких областях, отличающихся сложной и весьма неоднородной структурой, происходит исключительно важный для космогонии процесс звездообразования. Монохроматическое излучение нейтрального водорода. Межзвездные линии поглощения в какой-то степени дают лишь косвенный способ выяснить свойства областей Н I. Во всяком случае, это может быть сделано только в направлении на горячие звезды. Наиболее полную картину распределения нейтрального водорода в Галактике возможно составить только на основании собственного излучения водорода. К счастью, такая возможность имеется в радиоастрономии благодаря существованию спектральной линии излучения нейтрального водорода на волне 21 см. Общее количество атомов водорода, излучающих линию 21 см, настолько велико, что лежащий в плоскости Галактики слой оказывается существенно непрозрачным к радиоизлучению 21 см на протяжении всего лишь 1 кпс. Поэтому если бы весь нейтральный водород, находящийся в Галактике, был неподвижен, мы не могли бы наблюдать его дальше расстояния, составляющего около 3% размеров Галактики. В действительности это имеет место, к счастью, только в направлениях на центр и антицентр Галактики, в которых, как мы видели в § 167, нет относительных движений вдоль луча зрения. Однако во всех остальных направлениях из-за галактического вращения имеется возрастающая с расстоянием разность лучевых скоростей различных объектов. Поэтому можно считать, что каждая область Галактики, характеризующаяся определенным значением лучевой скорости, вследствие доплеровского смещения излучает как бы “свою” линию с длиной волны не 21 см, а чуть больше или меньше, в зависимости от направления лучевой скорости. У объемов газа, расположенных ближе, это смешение иное, и потому они не препятствуют наблюдениям более далеких областей. Профиль каждой такой линии дает представление о плотности газа на расстоянии, соответствующем данной величине эффекта дифференциального вращения Галактики. На рис. 230 изображено полученное таким путем распределение нейтрального водорода в Галактике. Из рисунка видно, что нейтральный водород распределен в Галактике неравномерно. Намечаются увеличения плотности на определенных расстояниях от центра, которые, по-видимому, являются элементами спиральной структуры Галактики, подтверждаемой распределением горячих звезд и диффузных туманностей.
На основании поляризации света, обнаруженной у далеких звезд, есть основания полагать, что вдоль спиральных рукавов направлены силовые линии основной части магнитного поля. Галактики, о котором речь еще будет идти в связи с космическими лучами. Влиянием этого поля можно объяснить тот факт, что большинство как светлых, так и темных туманностей вытянуто вдоль спиральных ветвей, само возникновение которых должно быть как-то связано с магнитным полем. Межзвездные молекулы. Некоторые межзвездные линии поглощения были отождествлены со спектрами молекул. Однако в оптическом диапазоне они представлены только соединениями СН, СН+ и CN. Существенно новый этап в изучении межзвездной среды начался в 1963 г., когда в диапазоне длин волн 18 см удалось зарегистрировать радиолинии поглощения гидроксила, предсказанные еще в 1953 г. В начале 70-х годов в спектре радиоизлучения межзвездной среды были обнаружены. линии еще нескольких десятков молекул, а в 1973 г. на специальном ИСЗ “Коперник” была сфотографирована резонансная линия межзвездной молекулы Н2 с длиной волны 1092 Å. Оказалось, что молекулярный водород составляет весьма заметную долю межзвездной среды. На основании молекулярных, спектров проведен детальный анализ условий в “холодных” облаках Н I, уточнены процессы, определяющие их тепловое равновесие, и получены данные о двух тепловых режимах, приведенные выше. Детальное исследование спектров межзвездных молекулярных соединений СН, СН+, CN, Н2, СО, ОН, CS, SiO, SO и других позволило выявить существование нового элемента структуры межзвездной среды - молекулярных, облаков, в которых. сосредоточена значительная часть межзвездного вещества. Температура газа в таких облаках может составлять от 5 до 50 °К, а концентрация молекул достигать нескольких тысяч молекул в 1 см -3, а иногда и существенно больше. Космические мазеры. В радиоспектре некоторых газово-пылевых облаков вместо линий поглощения гидроксила совершенно неожиданно обнаружились... линии излучения. Это излучение отличается рядом важных особенностей. Прежде всего, относительная интенсивность всех четырех радиолиний излучения гидроксила оказалась аномальной, т.е. не соответствующей температуре газа, а излучение в них очень сильно поляризованным (иногда до 100%). Сами линии чрезвычайно узки. Это означает, что они не могут излучаться обычными атомами, совершающими тепловое движение. С другой стороны, оказалось, что источники гидроксильной эмиссии обладают настолько малыми размерами (десятки астрономических единиц!), что для получения наблюдаемого от них потока излучения необходимо приписать им чудовищную яркость - такую, как у тела, нагретого до температуры 1014-1015 °K! Ясно, что ни о каком тепловом механизме возникновения таких мощностей не может быть и речи. Вскоре после обнаружения эмиссии ОН был открыт новый тип исключительно ярких “сверхкомпактных” источников, излучающих радиолинию водяных паров с длиной волны 1,35 см. Вывод о необычайной компактности источников эмиссии ОН получается непосредственно из наблюдений их угловых размеров. Современные методы радиоастрономии позволяют определять угловые размеры точечных источников с разрешающей силой в тысячи раз лучшей, чем у оптических телескопов. Для этого используются синхронно работающие антенны (интерферометр), расположенные в различных частях земного шара (межконтинентальные интерферометры). С их помощью найдено, что угловые размеры многих компактных источников менее 3×10-4 секунды дуги! Важной особенностью излучения компактных источников является его переменность, особенно сильная в случае эмиссии Н2О. За несколько недель и даже дней профиль линий совсем меняется. Порой существенные вариации происходят за 5 минут, что возможно только в том случае, если размеры источников не превышают расстояния, которое свет проходит за это время (иначе флуктуации статистически будут компенсированы). Таким образом, размеры областей, излучающих линии Н2О, могут быть порядка 1 а.e.! Как показывают наблюдения, в одной и той же области с размерами в несколько десятых долей парсека может находиться множество источников, часть из которых излучает только линии ОН, а часть - только линии H2O. Единственным известным пока в физике механизмом излучения, способным дать огромную мощность в пределах исключительно узкого интервала спектра, является когерентное (т.е. одинаковое по фазе и направлению) излучение квантовых генераторов, которые в оптическом диапазоне принято называть лазерами, а в радиодиапазоне - мазерами. Компактные источники эмиссии ОН и Н2О, скорее всего, гигантские естественные космические мазеры. Имеются все основания полагать, что космические мазеры связаны с областями, где буквально на наших глазах происходит процесс звездообразования. Они чаще всего встречаются в зонах Н II, где уже возникли молодые массивные и очень горячие звезды спектральных классов О и В. Во многих случаях они совпадают с весьма компактными, богатыми пылью, а потому весьма непрозрачными особыми зонами Н II, которые обнаруживаются только благодаря их тепловому радиоизлучению. Размеры этих зон порядка 0,1 пс, а плотность вещества в сотни раз больше, чем в обычных межзвездных облаках. Причиной их ионизации, очевидно, является ненаблюдаемая горячая звезда, окруженная плотным непрозрачным облаком. Иногда эти объекты наблюдаются в виде точечных источников инфракрасного излучения. Они заведомо должны быть исключительно молодыми образованиями с возрастом порядка десятков тысяч лет. За большее время окружающая только что возникшую горячую звезду плотная газово-пылевая среда должна расширяться под действием светового давления горячей звезды, которая тем самым окажется видимой. Такие звезды, окруженные расширяющейся плотной оболочкой, получили образное название “звёзды-коконы”. В этих весьма специфичных, но тем не менее естественных условиях, по-видимому, и реализуется мазерный эффект.
§ 169. Космические лучи, галактическая корона и магнитное поле Галактики
Диффузная среда, которую мы рассмотрели в предыдущих параграфах, состоит главным образом из газа, образующего плоскую подсистему в Галактике. Возникает вопрос, какова природа межзвездной среды на больших расстояниях от плоскости Галактики? О том, что там может иметься газ, пусть даже очень разреженный, можно судить хотя бы на том основании, что сбрасывающие с себя газовые оболочки планетарные туманности встречаются на значительных расстояниях от галактической плоскости. Наиболее важные результаты о природе межзвездной среды в этой области Галактики получаются на основании изучения космических лучей, представляющих собой весьма энергичные элементарные частицы и атомные ядра, движущиеся с огромными скоростями, близкими к скорости света. Энергии этих частиц поистине колоссальны (сотни миллиардов электрон-вольт!). Проходя через земную атмосферу, космические лучи сталкиваются с молекулами воздуха и порождают много новых энергичных частиц (вторичные космические лучи). По химическому составу первичные космические лучи отличаются от вещества большинства звезд относительно большим содержанием некоторых элементов (табл. 13), особенно лития, бериллия и бора, которые практически отсутствуют в космосе, так как легко “выгорают” в звездах из-за ядерных реакций. Содержание в космических лучах наиболее тяжелых элементов, таких как Са, Fe, Ni, превышает среднее содержание их в космосе в несколько десятков раз.
ТАБЛИЦА 13 Содержание химических элементов в космических лучах и в среднем во Вселенной (относительное число атомов)
Аномально высокое содержание лития, бериллия и бора в космических лучах объясняется расщеплением более тяжелых ядер из-за столкновений с ядрами атомов межзвездного газа (в основном с протонами и альфа-частицами). Эти столкновения увеличивают относительное количество легких ядер и уменьшают содержание тяжелых элементов (особенно железа). Для того чтобы в потоке космических лучей образовалось наблюдаемое количество Li, Be и В, необходимо, чтобы они прошли слой вещества, содержащий не менее 3 г/см2. Поскольку кос-мические лучи обладают изотропией, в отличие от распределе-ния горячих звезд и межзвездной среды, для оценки величины пройденного ими пути необходимо принять плотность межзвездной среды, усредненную по всему сферическому объему с диаметром, равным поперечнику диска Галактики. Такое среднее значение плотности составляет около 10-26 г/см3 или 0,01 атома водорода в 1 см3. Цилиндр сечением в 1 см2, заполненный газом такой плотности и содержащий 3 г вещества, имеет высоту что в тысячи раз превышает размеры Галактики. Как мы увидим в следующей главе, некоторые источники космических лучей могут находиться далеко за пределами Галактики. Однако мощность известных из них недостаточна для объяснения наблюдаемого количества космических лучей. Следовательно, необходимо принять, что космические лучи проделывают огромный путь внутри нашей Галактики, постоянно меняя свое направление. Причиной, способной изменить направление траектории заряженной частицы, движущейся со скоростью, близкой к скорости света, является магнитное поло, которое, как нам уже известно, беспрепятственно позволяет двигаться заряженным частицам вдоль силовых линий, не пропуская их, однако, в поперечном направлении. В общем случае движение заряженной частицы происходит по спирали вокруг силовых линий магнитного поля. Для типичной частицы космических лучей, движущейся в магнитном поле напряженностью 10-6 э, радиус витка такой спирали составляет около стотысячной доли парсека (3×1013 см), или две астрономические единицы, что ничтожно мало по сравнению с размерами Галактики. Поскольку силовые линии магнитного поля Галактики должны замыкаться в ней, космическим лучам трудно уйти из Галактики. Для “удержания” космических лучей напряженность поля должна быть не менее 10-6-10-5 э. Имеется еще одно свидетельство существования магнитного поля в Галактике, а именно поляризация света удаленных звезд. Точные измерения показали, что излучение многих звезд, наблюдаемых в больших областях на небе, одинаково поляризовано, причем плоскость поляризации плавно изменяет свое направление в пределах всей области. Характер и величина (~10%) поляризации говорят о том, что межзвездное поглощение, которое испытывает свет далеких звезд, вызывается удлиненными частицами (пылинками), одинаково ориентированными в больших областях Галактики. Естественно предположить, что подобной ориентирующей силой является магнитное поле. Изотропия космических лучей, т.е. тот факт, что нельзя “видеть” испускающие их источники, свидетельствует о сильной “запутанности” силовых линий межзвездного магнитного поля, вследствие чего движение космических лучей в них сходно с явлением диффузии газов. Среднее время, за которое одна частица проходит свой сложный путь от источника до Земли, получится, если найденное выше значение пути (1027 см) поделить на скорость, близкую к световой, т.е. 3×1010 см/сек. Тогда получим, что это время порядка 3×1016 сек, т.е. составляет миллиарды лет. Зная время, в течение которого существуют наблюдаемые космические лучи, легко рассчитать необходимую мощность их источников. Принимая концентрацию космических лучей 10-11 см -3, а среднюю их энергию 1010 эв " 10-2 эрг, получим, что плотность энергии космических лучей равна 10-11 см -3×10-2 эрг = 10-13 эрг/см3. Объем сферы с поперечником, равным диаметру Галактики (30 кпс = 1023 см), составляет V = 5×1068 см3. Поэтому полная энергия космических лучей в Галактике порядка 10-13 эрг/см3× 5×1068 см3 = 5×1055 эрг. За время 3×1016 сек такое количество энергии возникает, если мощность источников равна В Галактике имеется лишь один источник сравнимой мощности - это сверхновые звезды. По-видимому, взрывы сверхновых приводят к образованию быстрых электронов и космических лучей, которые по мере рассасывания оболочки сверхновой вливаются в общий поток галактических космических лучей. Космические лучи нагревают разреженный газ (вплоть до больших расстояний от плоскости Галактики) до температуры в несколько миллионов градусов, подобно тому как волны, возникающие в конвективной зоне на Солнце, нагревают солнечную хромосферу и корону (см. § 123). Этот горячий разреженный газ, образующий обширное гало (см. рис. 220), относится к сфероидальной подсистеме Галактики и называется галактической короной. Существование релятивистских электронов с огромными скоростями и энергиями подтверждается радионаблюдениями. На метровых и более длинных волнах интенсивность космического радиоизлучения такая же, как если бы газ был нагрет до температуры в сотни тысяч и миллионы градусов. Это излучение распределено по небу не так, как радиоизлучение ионизованного водорода, которое, как мы видели, имеет тепловую природу и сильно возрастает по мере приближения к галактической плоскости. На метровых волнах радиоизлучение значительно медленнее ослабевает с удалением от Млечного Пути и несколько усиливается к галактическому центру. Это говорит о том, что на длинных волнах космическое радиоизлучение имеет иную природу. Спектр этого радиоизлучения сильно похож на спектр некоторых дискретных источников, в частности, туманностей, образовавшихся в результате вспышек сверхновых звезд. Природа радиоизлучения последних рассматривалась в § 159 и объяснялась излучением релятивистских электронов в магнитных полях. Как мы только что видели, частицы космических лучей совершают движение вокруг силовых линий магнитного поля Галактики и образуют в ней сферическую подсистему. Очевидно, что разреженный газ этой короны помимо космических лучей содержит и релятивистские электроны, небольшое количество которых, около 1%, было обнаружено в составе первичных космических лучей. Излучение этих электронов, возникающее при их торможении в галактических магнитных полях, регистрируется радиотелескопами, принимающими длинные волны. В отличие от теплового излучения межзвездного газа, излучение галактической короны называется нетепловым. К нему следует отнести вызываемое теми же причинами излучение остатков вспышек сверхновых звезд.
§ 170. Общая структура Галактики
Итак, наша Галактика представляет собой огромное плоское образование с центральным утолщением, имеющее поперечник около 30 тыс. пс и состоящее из звезд, разреженного газа, космических лучей и пыли. Мы находимся почти в плоскости ее симметрии на расстоянии примерно 2/3 радиуса от центра. Теперь подведем итоги свойствам Галактики, рассмотренным в предыдущих параграфах, с целью получить более общие представления о ее структуре.
Нам уже приходилось упоминать о важнейших элементах структуры Галактики, которыми являются ее центральное сгущение, спиральные рукава, или ветви, и диск. Центральное сгущение занимает внутреннюю область Галактики и большей частью скрыто от нас темной непрозрачной материей. Лучше всего видна южная его половина в виде яркого звездного облака в созвездии Стрельца. В инфракрасных лучах, значительно слабее поглощаемых межзвездной пылью, удается наблюдать и вторую, северную его половину. Разделяющая их мощная полоса пылевой материи непрозрачна даже для инфракрасных лучей. Центральное сгущение занимает на небе область 28° ´ 18°, что соответствует линейным размерам 4,8 ´ 3,1 кпс.
Млечный Путь в направлении на центр Галактики поразительно похож на спиральную звездную систему NGC891, видимую с ребра (рис. 231) . Учитывая размеры центрального сгущения, нашу Галактику можно отнести к спиралям промежуточного типа Sb (см. гл. XIII). В центральном сгущении туманности Андромеды (см. § 161 и рис. 219) обнаружено огромное быстро вращающееся образование типа шарового скопления. По-видимому, подобный объект имеется и в центральном сгущении нашей Галактики, где инфракрасными приемниками излучения обнаружено эллиптическое образование размером около 10 пс. Скорее всего, это весьма компактное скопление, содержащее миллионы звезд, окруженное мощным облаком газово-пылевой материи, сильно поглощающей ультрафиолетовое и видимое излучение И доступное наблюдениям только в инфракрасной области спектра. Не исключено, что здесь мы имеем дело с объектом необычной и неизвестной еще природы. На расстоянии 3 кпс от центра Галактики методами радиоастрономии обнаружен водородный рукав, расширяющийся в направлении от центра со скоростью около 50 км/сек. Дальше от центрального сгущения распределение межзвездного водорода, получаемое на основании радионаблюдений (см. рис. 230), оказывается весьма сложным и непохожим на спиральную структуру, выявляемую по распределению горячих звезд. В целом, нейтральный водород в Галактике образует широкое кольцо. В той части Галактики, где находится Солнце, имеется несколько спиральных рукавов, вдоль которых располагаются скопления молодых звезд и облака межзвездного газа и пыли (рис. 232). Горячие звезды, которые наблюдаются в созвездии Ориона, образуют так называемый Орионов рукав, на краю которого находится и наше Солнце. Выявлены еще два рукава - Персеев рукав (дальше от центра Галактики) и рукав Стрельца - ближе к центру. Возможно, что эти рукава - различные ответвления от одной и той же спирали. Однако не исключено, что наша Галактика имеет несколько спиральных ветвей, связанных с центральным сгущением. Описанные представления об общей структуре Галактики большей частью сложились в последние годы и во многом имеют предварительный характер. Предстоит еще выяснить многие важные проблемы структуры Галактики.
§ 171. Классификация галактик и их спектры
В темную безлунную ночь в созвездии Андромеды можно различить даже невооруженным глазом слабое туманное пятнышко, называемое туманностью Андромеды. На фотографиях, полученных при помощи телескопа, оно оказывается большой звездной системой, имеющей спиральную структуру и, как уже упоминалось, во многом сходной с нашей Галактикой (см. рис. 219). На южном небе значительно заметнее две другие ближайшие к нам звездные системы - Большое и Малое Магеллановы Облака (рис. 233 и 234). При помощи телескопов сфотографировано очень много подобных объектов. Их называют внегалактическими туманностями или галактиками.
Обычно галактики обозначаются сокращенным названием каталога и номера, под которым они в нем зарегистрированы. Например, туманность Андромеды в каталоге Мессье стоит под № 31, а в "Новом общем каталоге" Дрейера - под № 224 (см. § 93). Поэтому она обозначается М 31 или NGC 224. Строение галактик изучают по их фотографиям. Несмотря на многообразие форм, основные элементы структуры галактик такие же, как и у нашей звездной системы. Большинство из них в центре имеет более яркое уплотнение - центральное сгущение, в то время как внешние части во многих случаях имеют спиральное строение, иногда едва заметное, а иногда и ярко выраженное. По внешнему виду галактики делятся на эллиптические, спиральные, неправильные и пекулярные. Эллиптические галактики (Е) имеют форму эллипсоидов без резких границ (рис. 235). Яркость плавно увеличивается от периферии к центру, а внутренняя структура, как правило, отсутствует. Спиральные галактики (S) - наиболее многочисленны. К ним принадлежит более половины наблюдаемых галактик. Типичными представителями являются наша Галактика и туманность Андромеды. В отличие от эллиптических галактик, в них наблюдается структура в виде характерных спиральных ветвей. Различаются два типа спиралей. У одних, подобных нашей Галактике и обозначаемых SA или S, спиральные ветви выходят непосредственно из центрального уплотнения (рис. 236). У других (рис. 237) они начинаются у концов продолговатого образования, в центре которого находится овальное уплотнение. Создается впечатление, что две спиральные ветви соединены перемычкой, почему такие галактики и называются пересеченными спиралями; они обозначаются символом SB.
Рис. 235. Эллиптическая галактика NGC 205 - спутник туманности Андромеды.
Спиральные галактики различаются степенью развитости своей спиральной структуры, что в классификации отмечается добавлением к символам S (или SA) и SB букв а, b, с. Например, обозначение Sa характеризует галактику с мало развитой или только намечающейся спиральной структурой. У систем Sb ветви уже хорошо заметны, как и у туманности Андромеды, а спирали Sc отличаются наличием клочковатых спиральных ветвей, отходящих от сравнительно небольшого центрального уплотнения. Как правило, чем сильнее развита спиральная структура, тем размеры центрального уплотнения оказываются меньшими. Особенно хорошо спиральная структура может быть изучена, если плоскость, в которой расположена спираль, перпендикулярна лучу зрения (см. рис. 236). Когда же луч зрения лежит в этой плоскости, спиральная структура не видна, но хорошо заметно, что галактика является плоским образованием, напоминающим чечевицу с утолщением в центральной части (см. рис. 231). Вдоль средней линии такой чечевицы тянется полоса поглощающей свет материи, которая у спиралей, как и в нашей Галактике, сильно концентрируется к основной плоскости. Спиральные ветви галактик являются областями преимущественного звездообразования. Об этом свидетельствует наличие в них молодых горячих звезд, на больших расстояниях вокруг себя ионизующих водород. Неправильные галактики (I). Примером галактик этого типа являются Магеллановы Облака (см. рис. 233 и 234), хотя в одном из них были обнаружены следы спиральной структуры. Неправильные галактики характеризуются отсутствием центральных уплотнений и симметричной структуры, а также низкой светимостью и относительно высоким содержанием нейтрального водорода, Пекулярные галактики. Так называются галактики, которые обладают теми или иными особенностями, не позволяющими отнести их ни к одному из перечисленных выше классов. Спектры галактик. Внегалактические туманности имеют спектры с линиями поглощения, напоминающие спектры звезд, чаще всего спектральных классов A, F или G, на которые иногда накладываются эмиссионные линии, характерные для свечения газовых туманностей. Это доказывает, что внегалактические туманности представляют собой системы, состоящие из звезд и диффузной материи. Неправильные галактики по спектру, как правило, напоминают звезды спектральных классов А и F, спиральные - F и G, а эллиптические - G и К. Это означает, что в спиральных и неправильных галактиках содержится относительно много молодых горячих звезд ранних спектральных классов, в то время как эллиптические галактики состоят из старых звезд поздних спектральных классов, подобно сферической подсистеме нашей Галактики.
По цвету излучения также можно судить о спектральных классах, к которым принадлежит большинство звезд галактики. Для галактик, а когда это возможно, и для отдельных их частей, находят показатели цвета теми же методами, что и для звезд. Однако при этом следует учитывать красное смещение (см. ниже), а также покраснение, вызванное поглощением света в них и в нашей Галактике. Большой интерес представляют взаимодействующие галактики, состоящие из двух и более (до 8) звездных систем - компонентов. Компоненты соединены между собой полосами светлой материи (рис. 238) или оказываются погруженными в облако звезд, создающих вокруг них как бы туман.
Рис. 238. Взаимодействующие галактики VV21. В большинстве случаев особенности взаимодействующих галактик удается объяснить гравитационными приливными воздействиями со стороны членов системы.
§ 172. Определение расстояний до галактик
Существует несколько способов определения расстояний до галактик. Легче всего это можно сделать, если в галактике наблюдаются хорошо изученные объекты, светимость которых мы знаем. Так, например, светимость цефеид известна по соотношению период - светимость. У новых звезд абсолютная звездная величина в максимуме около -8m,5, а у шаровых скоплений в среднем -8m. В этих случаях для определения расстояний достаточно найти видимую звездную величину такого объекта и вычислить модуль расстояния, не забывая при этом учитывать влияние межзвездного поглощения света. О расстояниях до удаленных галактик, в которых перечисленные объекты не видны, судят по их видимым угловым размерам или по видимой звездной величине. Для этого необходимо, очевидно, знать размеры или светимости галактик данного типа. Наконец, еще один способ основан на определении величины красного смещения. Это явление заключается в том, что все спектральные линии в спектрах далеких галактик оказываются смещенными к красному концу. Как мы увидим в последнем параграфе настоящей главы, это смещение линий нужно интерпретировать как увеличение средних расстояний между галактиками во Вселенной. В результате нам кажется, что галактики как бы убегают от нас. Из наблюдений следует, что скорость удаления галактик от нас Vr , соответствующая красному смещению Dl , увеличивается с расстоянием, так что между lg Vr и видимой звездной величиной галактик одинаковой светимости обнаруживается линейная зависимость. Она показана на рис. 239, на котором каждая точка соответствует среднему значению видимой звездной величины нескольких наиболее ярких галактик, принадлежащих соответствующему скоплению галактик (см. § 175). Средние светимости наиболее ярких членов скоплений значительно меньше должны различаться между собою, чем светимости отдельных галактик вообще, для которых разброс точек получился бы значительно больше, чем на рис. 240.
Вместе с тем одинаковая светимость объектов соответствует одинаковой величине М в формуле (11.5), из которой в этом случае следует линейная зависимость между т и lg r. Поэтому линейная зависимость между т и означает также линейное соотношение между скоростью удаления и расстоянием, т.е.
(13.1)
В этой формуле расстояние r выражено в мегапарсеках (Мпс), а число Н постоянная Хаббла, играющая важную роль в космологии, о которой речь пойдет в § 181. Наиболее надежное значение постоянной Хаббла, полученное в последнее время, составляет 55 км/сек× Мпс. Если для некоторой галактики известно ее красное смещение, то по формуле (13.1) легко определить расстояние до нее. Заметим, однако, что при эта формула перестает быть верной и требуется использовать более сложное выражение. Наиболее удаленные известные в настоящее время галактики находятся на расстояниях в несколько миллиардов парсеков.
§ 173. Физические свойства галактик
Галактики, даже одного и того же типа, могут сильно различаться по своим размерам, светимостям, массам и другим характеристикам. Линейные размеры внегалактических туманностей с известными расстояниями получаются непосредственно на основании видимого углового их размера. Поскольку у большинства галактик нет резких границ и звездная плотность постепенно убывает с расстоянием от центра, результат определения видимых их размеров зависит от того, до какой предельной поверхностной яркости они наблюдаются. В наиболее крупных спиральных и эллиптических галактиках звезды наблюдаются на расстояниях 15-20 кпс от центра. Встречаются, однако, и карликовые системы, размеры которых на порядок меньше. Знание расстояния r позволяет по формуле (11.5) найти светимость галактики, если измерена ее видимая звездная величина т. Наиболее крупные галактики имеют фотографическую абсолютную звездную величину Mpg = -21m, для галактик типа Е и S в среднем Mpg = -19m,3, что соответствует светимости десятка миллиардов солнц. Неправильные галактики раз в 100 слабее. Вращение галактик. Сравнивая смещение спектральных линий в различных частях одной и той же внегалактической туманности или измеряя расширение линий во всем ее спектре, можно обнаружить, что галактики вращаются. Периоды вращения внешних частей галактик оказываются порядка 108 лет. Центральные части галактик, как правило, вращаются с одной угловой скоростью, т.е. как твердые тела. Направление вращения спиральных галактик происходит, по-видимому, в сторону закручивания спиральных ветвей. Массы галактик определяются на основании скоростей вращения внешних их частей. Для грубой оценки массы предполагается, что это вращение происходит по закону Кеплера. Если линейную скорость вращения обозначить через V, то, приравнивая центростремительное и гравитационное ускорения, получим, что масса галактики равна